Активация плазминогена происходит под действием. TPA (Тканевой активатор плазминогена, фактор III, тромбопластин, ТАП)

💖 Нравится? Поделись с друзьями ссылкой

Изобретение относится к новому усовершенствованному тканевому активному плазминогена (усовершенствованному АПТ), имеющему пролонгированный полупериод существования в организме и повышенную стабильность к воздействию тепла и кислот, который может быть использован для подавления воспламенения вокруг области тромбообразования. Изобретение также касается способа получения названного тканевого активатора плазминогена с помощью технологии рекомбинантных ДНК и средств, используемых для его осуществления. Известно, что человеческий тканевый активатор плазминогена (АПТ) обладает полезной фибринолитической активностью и чрезвычайно эффективен в отношении фибринсвязанного плазминогена, тогда как плазминоген в фазе свободной циркуляции в организме он активирует не столь эффективно как обычные тромболитические средства, стрептокиназа (СК) и урокиназа (УК). Известны аминокислотная последовательность человеческого АПТ и нуклеотидная последовательность кДНК, кодирующей человеческий АПТ (Pennica. D., et al., Nature, 301, 214-221, 1983). Также известно, что человеческий АПТ растворяет сгустки венозной и артериальной крови. В крупномасштабных клинических исследованиях отмечается, что человеческий АПТ, вводимый внутривенно, эффективен при повторной перфузии закупоривающейся венечной артерии у пациента с острым инфарктом миокарда. Однако недостатком применения этого препарата при лечении заболевания, связанного с тромбообразованием, является крайне короткий полупериод существования его ферментативной активности в крови (Rijken, D.C., et al., Thromb. Heamost. 54 (1), 61, 1985, Hubert, E.F., et al., Blood, 65, 539, 1985). При использовании для лечения человеческий АПТ приходится применять в виде непрерывной внутривенной инъекции с высокой дозой. Известно, что встречающийся в природе человеческий АПТ имеет доменную структуру, начиная от N-конца молекулы следуют фингердомен, домен ФРЭ (фактор роста эпидермиса), два домена "крингл 1" и "крингл 2" и домер серин-протеазы. В работе Rijken et al., отмечается (Rijken D.C., et al., Thromb. Heamost., 54 (1), 61, 1985), что непродолжительность биологического полупериода существования человеческого АПТ может иметь отношение ко всем доменам человеческого АПТ, кроме домена серин-протеазы. В работе Zonneveld et al. (Zonneveld, A.J.V., et al, Proc. Natl. Acad. USA., 83, 4670, 1986) также отмечается, что фингердомен, домен ФРЭ и домен "крингл 2" могут иметь важное значение для фибринсвязывающей активности встречающегося в природе человеческого АПТ, а также для поддержания фибринзависимой активации АПТ. Однако до сих пор не разработаны какие-либо конкретные меры для поддержания фибринсвязующей активности, которой обладает встречающийся в природе человеческий АПТ, и его фибринзависимой активности, а также для пролонгирования биологического полупериода существования. В опубликованной выложенной заявке на патент Японии N 48378/1987 описывается АПТ, полученный делецией 87-175 аминокислот встречающегося в природе человеческого АПТ, в котором "крингл 1" делетирован. Этот АПТ отличается дополнительной индуцированной точечной мутацией в области фактора роста эпидермиса. В заявке на патент Японии раскрывается, что модифицированный АПТ имеет способность связываться с фибрином, но взаимодействие с ингибитором тканевого активатора плазминогена является ослабленным. В Европатенте N 241208 описывается АПТ, полученный делецией 92-179 аминокислот встречающегося в природе человеческого АПТ, в котором также делетирован "крингл 1". В данной работе упоминается, что этот АПТ имеет фибринолитическую активность. Кроме того, Европатент N 231624 раскрывает модифицированный АПТ, обладающий пролонгированным полупериодом существования. Модифицированный АПТ, имеющий F-EGFK2-A - последовательность, лишен домена "крингл 1", однако какой-бы то ни было конкретный способ его получения не показан. В свете цитированного выше понятно, что модифицированный АПТ в соответствии с изобретением должен отличаться от встречающегося в природе АПТ аминокислотной последовательностью в области внутренних доменов. В результате обширных исследований заявитель получил усовершенствованный АПТ, который содержит фингер-домен, ФРЭ-домен, крингл 2-домен и домен серин-протеазы, но при этом первый "крингл 1" - домен делетирован в специфическом сайте, а в сайт, связывающий домены "крингла 2" и серин-протеазы введена мутация, в результате чего получен усовершенствованный АПТ, проявляющий превосходную устойчивость против тепла и кислот, имеющий заметно пролонгированный биологический полупериод существования и выраженную противовоспалительную активность и при этом сохраняющий желательные свойства встречающегося в природе человеческого АПТ. Изобретение относится к усовершенствованному АПТ. АПТ в соответствии с изобретением заметно отличается по своей химической структуре от встречающегося в природе человеческого АПТ и проявляет лучшие свойства. Усовершенствованный АПТ в соответствии с изобретением представляет собой полипептид, имеющий аминокислотную последовательность, представленную общей формулой, представленной на фиг.28-29, где R является прямой связью, Y обозначает A-Ile-B (A обозначает Arg или Glu и B обозначает lys или Ile), предпочтительно Glu-Jle-Lys. H 2 N обозначает аминоконец и -COOH обозначает карбоксиконец). В изобретении термин "усовершенствованный АПТ" используют для обозначения аналога АПТ, в котором A и B обозначают описанные ниже аминокислоты соответственно:

Усовершенствованный АПТ (II): Arg, Lys;

Усовершенствованный АПТ (V): Arg, Ile;

Усовершенствованный АПТ (VI): Glu, Lys;

Усовершенствованный АПТ (VIII): Glu, Ile. Изобретение также направлено на экспрессию предлагаемого аналога АПТ с использованием методик рекомбинантной ДНК. С этим связаны новые ДНК, кодирующие усовершенствованный АПТ, и векторы экспрессии рекомбинантной ДНК. На фиг.1, 2 показана последовательность 16 олигодезоксинуклеотидов, используемая для конструирования фрагмента синтетического гена, кодирующего усовершенствованный АПТ (II); на фиг.3 - 4 - фрагмент синтетического гена для конструирования усовершенствованного АПТ (II) изобретения, содержащего концы рестрикции ферментами Bge 11 и Eco R1, который конструируют с использованием 16 олигодезоксинуклеотидов, показанных на фиг.1 - 2; на фиг.5 - методика конструирования усовершенствованного АПТ (II) (на рисунке черный участок, заштрихованный участок и незакрашенный участок обозначают область, кодирующую соответственно зрелый белок АПТ, область, кодирующую пропропептид и нетранслируемую область; на фиг.6 - метод проверки фрагмента синтетического гена блока IV путем определения последовательности оснований ДНК дидезоксиметодом и методом 7-DEAZA; на фиг.7 - методика построения вектора экспрессии pVY1 в животных клетках и интеграцию ДНК усовершенствованного АПТ в pVY1; на фиг.8 - 13 последовательности ДНК, кодирующие усовершенствованный АПТ (II) и усовершенствованный АПТ (V); на фиг.14 - 19 - аминокислотные последовательности, происходящие из последовательностей ДНК, кодирующих усовершенствованный АПТ (II) и усовершенствованный АПТ (V); на фиг.20 - рестрикционные ферменты и функциональная карта плазмиды pTPA 2, имеющей фрагмент Eco R1-Xho (около 1000 пар оснований) природного гена АПТ, интегрированный в вектор pBR322 по сайтам расщепления Eco R1 и Bam H1; на фиг.21 - mp9 (усовершенствованного АПТ (II), имеющую фрагмент BgL11-Xho 11 (около 1500 пар оснований) гена, усовершенствованного АПТ (II) интегрированный в двуцепочечную ДНК M13 mp9 в сайте расщепления BamH1; на фиг.22 - зависимость "доза-эффект" для активности АПТ усовершенствованного АПТ (VI) и встречающегося в природе АПТ методом S-2251 в присутствии (+Fb) и отсутствие (-Fb) заместителя фибрина; на фиг.23 - изменение активности усовершенствованного АПТ (VI) и нативного АПТ в крови кролика с течением времени; на фиг.24 - изменение остаточной активности усовершенствованного АПТ (VI) после термообработки; на фиг. 25 - ингибирование усовершенствованным АПТ (VI) фактора, активирующего лимфоциты (LAF); на фиг.26 - активирование с помощью денатурированного белка, усовершенствованного АПТ (VI); на фиг.27 - деградация денатурированного белка под действием усовершенствованного АПТ (VI). Ниже подробно излагается способ получения рекомбинатных ДНК и трансформированных клеток. Способ получения усовершенствованного АПТ. Ген, кодирующий природный АПТ, на основе которого получают АПТ настоящего изобретения, выделяют из банка кДНК, изготовленного из клеток человеческой меланомы Bowes. Поли A + РНК выделяют из клеток человеческой меланомы Bowes и фракционируют центрифугированием в градиенте плотности сахарозы. Затем отбирают небольшое количество фракционированной поли (A) + РНК и фракцию мРНК, кодирующую ген АПТ идентифицируют методом дотгибридизации с использованием олигонуклеотидного зонда, способного распознавать специфическую последовательность мРНК АПТ. С использованием в качестве исходного вещества этой фракции, богатой мРНК АПТ, получают банк кДНК и подвергают скринингу при помощи зонда для идентификации мРНК АПТ, описанного выше. Поскольку не выделено ни одного клона, имеющего полную последовательность гена АПТ, недостающую последовательность оснований синтезируют ДНК-синтезатором с получением нужного гена. Затем желаемый ген конструируют методом индукции сайт-специфической мутации. Фрагмент Eco R1-Xho 11 встречается в природе гена АПТ (около 1000 пар оснований), часть которого делетирована у N = окончания, введен в вектор pBR332 в сайтах расщепления Eco R1 и BamH1, при этом получена pTPA2. Штамм (E.coli HB 101/pTPA2), полученный трансформацией E.coli этой плазмидой, депонирован в институте ферментационных исследований Агенства по промышленной науке и технике Японии под регистрационным номером P-9649 (FERM BP-2107). Рестрикционная и функциональная карта плазмиды pTPA2 приведены на фиг.20. Ген усовершенствованного АПТ встраивают в плазмиду pVY1. Плазмиду pVY1 получают лигированием фрагмента BamH1-Kpn1 (около 2900 пар оснований) плазмиды pRSV10 (изготовленной фармация Файн Кемикалэ) с фрагментом от расщепления Eco R1 плазмиды pAdD26SV (A) N 3 (N) (полученной от доктора Хироши Ханда из Токийского университета (после получения у обоих тупых концов. Соответственно, данный вектор содержит кДНК гена дигидрофолат-редуктазы мыши под транскрипционным контролем основного позднего промотора аденовируса (Ad2), ранний промотор SV 40 вверх от сайта инсерции гена усовершенствованного АПТ и интрона и последовательность полиаденилирования, расположенные ниже гена. Ген настоящего изобретения может быть встроен и в другой подходящий вектор экспрессии. Вектор экспрессии интродуцируют далее в пригодную клетку хозяина с получением трансформантов. В качестве клеток хозяина могут быть использованы прокариотические клетки, также как E.coli, Bacillus subtilis и т.д., эукариотические микроорганизмы, такие как дрожжи, и т.д., а также клетки высших животных. В качестве представителя E.coli обычно используются штамм JM109, штамм W3110, Q и т.д., принадлежащие к штамму K12, в качестве представителя Bacillus subtilis используют штамм BD170, штамм BR151 и т.д. Из дрожжей можно использовать штамма RH218, штамм SHY1 и т.д. дрожжей Saccharomyces cerevisiae. Для экспрессии обычно используют плазмидный вектор или фаговый вектор, содержащий репликон, происходящий от видов, совместимых с клетками хозяина, и регуляторную последовательность. Примерами вектора для E.coli являются, например, плазмиды pBR322, pUC18, pUC19 и т.д., - фаг, например qt , Charon 4A и т.д., фаг M13 и др. В качестве вектора для Bacillus subtilis можно использовать pUB110, pSA2100 и т.д., а в качестве вектора для дрожжей можно использовать YRp7, YEp61 и т.д. Вектор должен нести промотор, способный экспрессировать искомый белок. В качестве промотора для гена E.coli или фагового гена можно использовать, например, Lae, trp, tac, trc, pL и т.д. В качестве хозяина можно использовать культивируемые клетки животных, такие как клетки почки макак резус, клетки личинок комара, клетки почки африканской зеленой мартышки, мышиный фетальный фибробласт, клетки яичника китайского хомячка, человеческие фетальные клетки почки, клетки ткани яйца бабочки, человеческие цервикальные эпителий-подобные клетки, человечески клетки миеломы, мышиные фибробласты и так далее. Как вектор можно использовать ранний промотор SV40, поздний промотор SV40, SV40, несущий промотор от эукариотного гена (например, эстроген-индуцируемый ген птичьего овальбумина, ген интерферона, глюкокортикоид-индуцируемый ген тирозин-аминотрансферазы, ген тимидин-киназы, ранний и поздний гены аденовируса, ген фосфоглицерат-киназы, ген -фактора и т.д.), вирус коровьей папиломы или производные от них векторы. Кроме того, известно, что АПТ, секретируемые и продуцируемые клетками, имеют различные N-окончания в зависимости от различия в сайтах расщепления. В случае секретирования и продуцирования АПТ с использованием культуральных клеток в качестве хозяина способ расщепления сигнальной пептидазой или протеазой варьируется в зависимости от вида клеток, так что можно получить и виды АПТ, имеющие различные N-окончания. Это явление подходит не только для случая секреции и производства при помощи культуральных клеток, так как считают, что аналогичное явление также может возникнуть при получении АПТ посредством E.coli, Bacillus sublitis, дрожжей и других клеток, подвергнутых специальной модификации. Для трансформации хозяина с использованием вектора экспрессии с интегрированным в него геном усовершенствованного АПТ в случае использования E.coli можно применять метод Hanahan, Hanahan, D.J.Mol. Biol., 166, 557, 1983), в случае манипулирования с животными клетками можно использовать кальцийфосфатный метод (Vander Eb, A.J. and Graham, F.L., Method in Enrymoloqy, 65, 826, 1980, Academic Press) и так далее. Как описано выше, усовершенствованный АПТ является пригодным для лечения различных приобретенных заболеваний, включая васкулярную коагуляцию (даже глубокой вены), эмболию легочной артерии, периферический артериальный тромбоз, эмболию в результате поражения сердца или периферической артерии, острый инфаркт миокарда и тромботический приступ. Как и встречающийся в природе человеческий АПТ, усовершенствованный АПТ особенно пригоден для лечения острого инфаркта миокарда. Как недавно доказано, встречающийся в природе человеческий АПТ эффективен для растворения закупоривающего венечную артерию тромба, регенерации миокардиальной перфузии и восстановления большинства частей в ишемическом миокардиальном слое при введении внутривенно с дозировкой от 30 до 70 мг в течение 1-3 часов. Усовершенствованный АПТ отличается пролонгированным биологическим полупериодом существования в крови и поэтому эффективен в тех же случаях, что и встречающийся в природе человеческий АПТ. Ожидается, что усовершенствованный АПТ может дать клинический эффект, подобный природному человеческому АПТ, при дозе около 10% от дозы, которая рекомендуется при использовании встречающегося в природе человеческого АПТ, даже при однократном введении. Кроме того, усовершенствованный АПТ настоящего изобретения проявляют следующие ценные свойства, которые до сих пор не были известны в отношении нативного человеческого АПТ и модифицированных АПТ. а) Противовоспалительная активность. На участке тромба выявляется не только образование самого тромба, но также и образование продуктов деградации фибрина или следовых количеств кинина. Известно, что эти вещества имеют индуцирующую воспаление активность и вызывают, таким образом, воспаление в области тромба. По этой причине желательно, чтобы средство, используемое для лечения тромбоза, обладало не только тромболитической активностью, но также и противовоспалительной активностью. В результате проведенных исследований заявителю удалось придать усовершенствованному АПТ противовоспалительную активность на основе двух функций. Одна из них состоит в том, что усовершенствованный АПТ ингибирует биологическую активность интерлейкина 1 (ИЛ-1), который является одним из медиаторов воспалительной реакции. ИЛ-1, продуцируемый макрофагом, как считают, принимает участие в воспалительной реакции посредством гипертермии, ускорения роста фибробласта, производства коллагеназы в синовиальной клеточной мембране и так далее, или за счет ускорения синтеза простациклина в васкулярных эндотелиальных клетках. Также известно, что ИЛ-1 воздействует на клетки печени, ускоряя производство белков (сывороточного амилоидного белка, фибриногена и т.д.) в острой фазе, которая возрастает при воспалении. Заявитель установил, что усовершенствованный АПТ ингибирует активность (LAF-активность) по повышению митогенной реакционной способности мышиного тимоцита, которая является одной из биологических активностей ИЛ-1. Другая функция заключается в том, что усовершенствованный АПТ имеет сродство к денатурированному белку (денатурированному иммуноглобулину G, денатурированному альбумину и так далее), возникающему в результате воспаления в участке тромба, и дополнительно обладает свойством активироваться под действием этого денатурированного белка. Благодаря этой активности усовершенствованный АПТ разлагает только денатурированный белок в области воспаления, и воспаление может временно ослабиться. Заявитель подтвердил посредством гель-электрофореза в додецил-сульфате натрия, что усовершенствованный АПТ разлагает только денатурированный белок. Как показано на фиг. 26, активация и селективность усовершенствованного АПТ под действием денатурированного белка являются очевидными. С иммуноглобулином G, обработанным HCl, причем при в несколько раз меньшей концентрации, показана та же активность, что и с фибриногеном, обработанным BrCN. С другой стороны, нормальный иммуноглобулин C не проявляет активирующего действия по отношению к усовершенствованному АПТ даже при концентрации, равной 500 мкг/мл. Предотвращение повторной окклюзии после восстановления перфузии закупоренного кровеносного сосуда. Известно, что при лечении тромбоза натуральным АПТ отмечается повторная окклюзия с высокой частотой после восстановления кровотока закупоренного кровеносного сосуда. По этой причине осуществляют комбинированную терапию с ингибитором коагуляции тромбоцитов или антикоагулянтом. Однако комбинированная терапия заключает в себе проблемы взаимодействия лекарственных препаратов, контроля дозировок, подобных эффектов и так далее. Предпочтительно, чтобы сам АПТ дополнительно обладал активностью предотвращения повторной окклюзии. Усовершенствованный АПТ настоящего изобретения обладает способностью предотвращать случаи повторной окклюзии за счет двух типов активности. Первый тип представляет собой предотвращение быстрого снижения концентрации АПТ после введения усовершенствованного АПТ благодаря пролонгированной длительности действия, что приводит к устранению симптома Стюарта-Холмса и тем самым препятствует случаям возникновения повторной окклюзии. Второй тип заключается в том, что благодаря предотвращению повреждения васкулярных эндотелиальных клеток, вызванного ИЛ-1, опосредованно ингибируется коагуляция тромбоцитов, что препятствует случаям возникновения повторной окклюзии. с) Повышенная устойчивость. Белковые препараты, как правило, неустойчивы, поэтому желательно хранить препараты в замороженном сухом состоянии или при низких температурах в виде раствора. При введении активатора плазминогена пациенту с острым инфарктом миокарда существует необходимость осуществлять процедуру в течение нескольких часов после начала приступа с тем, чтобы снизить коэффициент смертности. В таком случае желательны устойчивые препараты, которые можно хранить при комнатной температуре. Кроме того, повышенная устойчивость позволяет осуществлять термообработку, обработку кислотами и т.п. во время приготовления препаратов. В частности, в отношении усовершенствованного АПТ настоящего изобретения, который продуцируют культуры клеток, становится возможным удалять ретровирус клеточного происхождения, который, как известно, является нестойким к воздействию тепла. Ниже изобретение описано более конкретно со ссылкой на примеры, однако оно ими не ограничивается. Если не указано что-то иное, рекомбинантную ДНК продуцируют в соответствии с лабораторным руководством. Маниатис Т и др., Молекулярное клонирование: лабораторное руководство, Коулд Спринг Харбор Лаборатори, Коулд Спринг Харбор, Нью-Йорк (1982). Пример 1. Клонирование к ДНК АПТ. Клетки человеческой меланомы Bowes (приобретены у доктора Роблина, Р. в Национальном институте по вопросам исследования рака, США) культивируют в соответствии со способом Opdenakker et al. (Opdenakker, G., et al., Eur. J. Biochem, 131, 481-487 (1983)). С целью индукции мРНК АПТ в культуральную смесь прибавляют ТФА (12-О-тетрадеканоилфорбол-13-ацетат) при конечной концентрации 100 нг/мл с последующим культивированным в течение 16 часов. Затем полную клеточную РНК экстрагируют из культивируемых клеток в соответствии с модифицированным методом Freeman et al. ((Okayama)Berqa DNA Manual, стр. 3, 1985, Фармация Файн Кемикалз). С использованием колонки с олиго-dT целлюлозой (изготовленной Фармация Файн Кемикалз) поли (A) + РНК отделяют от всей клеточной РНК. В результате из числа приблизительно 10 o клеток получают около 400 мкг поли(A) + РНК. Эту поли(A) + РНК фракционируют центрифугированием в градиенте плотности сахарозы традиционным способом. Отбирают часть фракционированной поли(A) + РНК, и проводят дот-блотгибридизацию (Perbal, B., Apractical Gube to Molecular Cloninq, 410, 1984, John Wiley and Sons, Inc) с использованием олигонуклеотидного зонда, специфического к мРНК АПТ. Зонд (зонд Y), используемый в данном случае, имеет последовательность оснований 5"-GCNNGGCAAAGATGGCA-3", которая комплементарна области мРНК, кодирующий аминокислотные остатки от +291 до +297 в последовательности АПТ, описанной Pennicaetal, и синтезируют -цианофосфамидатным методом, используя ДНК-синтезатор, модель 380А, (изготовленный фирмой Applied Biosystems). Синтез ДНК-олигомера, отщепление защитной группы, отщепление от смолы и очистку осуществляют в соответствии с руководством по эксплуатации ДНК-синтезатора, Модель 380А. Мечение радиоактивным изотопом зонда Y на 5"-конце осуществляют в соответствии с лабораторным руководством, используя Т4-полинуклеотид-киназу (изготовленную Така-Ра Шузо Ко, Лтд) т и -(32 P) АТФ. Зонд Y сильно гибридизуется, главным образом, с 20-30S поли(A) + РНК (эту фракцию называют фракцией M). Используя матрицу, получают 10 мкг поли(A) + РНК из фракции M; 3 мкг двуцепочечной кДНК синтезируют с использованием обратной транскриптазы (изготовленной Биокемикал Индастри Ко., Лтд) в соответствии с методом Gubler-Hoffman (Gubler, U. and Hoffman, B.J., Gene 25, 263, 1983), и прибавляют к двуцепочечной кДНК у 3"-окончания дезокси C-цепь в соответствии с методом Denq-Wu (Denq, G. R. and Wu, R., Nucleic Acids Res., 9, 4173, 1981). Затем двуцепочечную кДНК, удлиненную дезокси C-цепью подвергают гель-фильтрации на сефарозе CL 4B (изготовленной фармации Файн Кемикалз) с целью удаления низкомолекулярных нуклеиновых кислот, имеющих менее 500 пар оснований. После этого кДНК подвергают отжигу с помощью pBR322 (изготовленной Бетезда Рисерч), содержащей дезокси G-цепь в сайте P st 1, используя традиционную методику. Смесью, полученной после отжига, трансформируют компетентные клетки HB101 E.coli (изготовленные Такара Шузо Ко., Лтд). В результате получают банк кДНК, состоящий из приблизительно 4000 самостоятельных трансформантов. Эту кДНК подвергают гибридизации колоний с использованием зонда Y, описанного выше, в соответствии с методом Woods (Woods, D., Focus, 6 (3), 1, 1984), изготовлен Бетесда Рисерч Лаб.), получая клоны, взаимодействующие с зондом Y. Среди клонов выявляют pTPA1 клон, содержащий наиболее длинную кДНК АПТ. Затем осуществляют дидезоксиметод (Carlson, J., et al., J. Biotechnoloqy, 1, 253, 1984), используя фаговый вектор M13 и метод 7-DEAZA (Mizusawa S. , et al., Nucleis Acids Res., 14, 1319, 1986). В результате установлено, что плазмида pTPA1 содержит последовательность оснований от T y+441 до A y+2544 для гена АПТ, описанного Pennicaetal. Пример 2. Конструирование усовершенствованного АПТ (II). В плазмиде pTPA1, показанной в примере 1, N-концевая область является недостаточной для построения усовершенствованного АПТ (II), который лишен крингл 1-домена. Поэтому недостаточный ДНК-сегмент синтезируют, как описано выше, с использованием ДНК-синтезатора 380А (изготовленного Applied Biosystems). Последовательность оснований синтезированного олигомера и полная синтезированная последовательность показаны на фиг. 1-4. Специфические методики конструирования усовершенствованного АПТ (II) с использованием этих олигомеров приведены на фиг. 5-6. 2-1). Конструирование блока IV (фрагмент Bql II-Eco R1, около 480 пар оснований). Фрагмент блока IV на фиг. 5 получают следующим образом. Во-первых, в соответствии с лабораторным руководством, 40 пмоль каждого из синтетических олигонуклеотидов 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 и 15, показанных на фиг. 1-2, фосфорилируют 10 единицами Т4-полинуклеотид-киназы (изготовленной Такара Шузо Ко., Лтд) при температуре 37 o C в течение одного часа в 50 мкл реакционного раствора для каждого из них. Реакционный раствор обрабатывают фенолом. После преципитации этанолом осадки сушат при пониженном давлении и растворяют в стерильной дистиллированной воде. После отстаивания 40 пмоль каждого олигомера в 150 мкл раствора, содержащего 6 мМ Трис-HCl (pH 7,5), 20 мМ NaCl, 7 мМ MgCl 2 и 0,1 мМ ЭДТА, при температуре 80 o C в течение 5 минут, при температуре 60 o C в течение 5 минут и при комнатной температуре в течение одного часа, в соответствующих блоках блока I (олигомеры 1, 2, 3 и 4), блока II (олигомеры 5, 6, 7, 8, 9 и 10) и блока III (олигомеры 11, 12, 13, 14, 15 и 16) осуществляют преципитацию этанолом и сушку при пониженном давлении. Остаток растворяют в 40 мкл стерильной дистиллированной воды. Реакцию осуществляют в 400 мкл реакционного раствора при температуре 4 o C в течение 15 часов, используя набор для ДНК-лигирования (изготовленный такара Шузо Ко., Лтд). После преципитации этанолом и сушки при пониженном давлении осадок растворяют с терильной дистиллированной воде: в случае блока I (1) осуществляют гельэлектрофорез в 5%-ном полиакриламиде (лабораторное руководство), отделяют и очищают традиционным способом (лабораторное руководство), фрагмент около 100 пар оснований, а в случае блока II (2) и блока III (3) гель-электрофорез осуществляют в 3%-ном агарозном геле (агароза LMP, изготовлена BRL) (лабораторное руководство) и выделяют и очищают электроэлюцией (лабораторное руководство) фрагменты около 190 пар оснований. Затем 0,1 мкг, 0,2 мкг и 0,2 мкг фрагментов блока I, блока II и блока III соответственно лигируют с использованием вышеуказанного набора для ДНК-лигирования. Осуществляют гель-электрофорез при концентрации агарозы 1,5 % с тем, чтобы выделить фрагмент Bgl II-Eco R1 (блок IV) размером около 480 пар оснований. Затем ДНК выделяют из агарозного геля с помощью электроэлюции. Эту ДНК затем фосфориллируют в 100 мкл реакционного раствора при температуре 37 o C в течение одного часа с использованием 10 единиц вышеуказанной Т4-полинуклеотид-киназы, после чего обрабатывают фенолом, осаждают этанолом и сушат при пониженном давлении. Этот фрагмент синтетического гена и последовательность оснований блока IV подтверждают, определяя последовательность оснований в соответствии с дидезоксиметодом, используя вектор фага М13. Специфические методики показаны на фиг. 6. После лигирования вышеописанного фрагмента Bgl II-Eco R1 блока IV с М13 mp18 ДНК (изготовлена Boehringer Mannheim-Yamanouchi Co., Ltd.), расщепленной рестрикционными ферментами BamH1 (изготовлен Boehringer Mannheim-Yamanouchi Co., Ltd.) и Eco R1 (изготовлен Boehringer Mannheim-Yamanouchi Co. , Ltd.) определяют последовательность его оснований с использованием набора секвенирования M13 (изготовлен Тарака Шузо К., Лтд) и набора секвенирования 7 - DEAZA (изготовлен Такара Шузо Ко., Лтд). Сайт расщепления рестрикционным ферментом Bgl11 и сайт расщепления рестрикционным ферментом BamH1 лигируют изошизомерным расположением через (BamH1 - расщепленный конец Bgl11-сайт расщепления), и лигированный фрагмент можно расщепить рестрикционным ферментом Xho 11, в результате чего появляются естественные концы расщепления Bgl 11 и Bamh1 соответственно. Для более точного определения последовательности оснований фагом M 13mp18 (включающим фрагмент блока IV) заражают штамм E.cjli JM109 в соответствии с методом Messing/Messing J., Methods in Enzymology, 101, 20-78 (1983)), после чего получают двуцепочечную ДНК (репликативного типа). После расщепления данной ДНК (50 мкг) рестрикционными ферментами Xho 11 (изготовлен Boehringer Mannheim-Yamanouchi Co) и Eco R1 осуществляют гель-электрофорез в 1,5%-ном агарозном геле с выделением фрагмента (блок IV) около 480 пар оснований. Эту ДНК экстрагируют электроэлюцией. После лигирования экстрагированной ДНК с M13mp19 ДНК (изготовлена Boehringer Mannheim-Yamanouchi Co., Ltd) расщепленной рестрикционными ферментами Eco R1 и BamH1 аналогичным вышеописанному образом, используя набор для ДНК-лигирования, определяют последовательность оснований. Как описано выше данную последовательность можно проверить более точно, определяя последовательность обеих ДНК с использованием M13mP18 и M13mp19. Кроме того, двуцепочечную репликативную ДНК M13mp19 (с блоком IV) получают описанным методом. После расщепления этой ДНК (50 мкг) рестрикционными ферментами Eco R1 и Xho 11 осуществляют гель-электрофорез в 1,5%-ной агарозе, выделяя при этом фрагмент (блок IV) размером около 480 пар оснований. 2-2). Выделение блока V (фрагмент Eco R1-Bal1, около 1250 пар оснований). Из клона pTRA1, полученного в примере 1, выделяют плазмидную ДНК в больших количествах в соответствии с методом, описанным в лабораторном руководстве, как показано на фиг. 5. После расщепления 70 мкг этой ДНК рестрикционными ферментами Bal1 (изготовлен Такара Шузо Ко. , Лтд) и Nar1 (изготовлен Нирро Ген Ко., Лтд) осуществляют электрофорез в 0,8%-ном агарозном геле, выделяя при этом фрагмент Nar1-Bal1 (около 1540 пар оснований). ДНК выделяют электроэлюированием. После дальнейшего частичного переваривания данной ДНК рестрикционным ферментом Eco R1 осуществляют электрофорез а 0,7%-ном агарозном геле, выделяя фрагмент Eco R1-Bal1 (около 1250 пар оснований). ДНК выделяют электроэлюированием. 2-3). Конструирование гена усовершенствованного АПТ (II) из блока IV и блока V. Как показано на фиг. 5, ген усовершенствованного АПТ получает следующим образом. После легирования блока IV (фрагмент Bgl11-Eco R1, около 480 пар оснований), полученного в примере 2-1, с блоком V (фрагмент Eco R1-Bal1, около 1250 пар оснований), полученным в примере 2-2, с использованием набора для ДНК-легирования, описанного выше, легированный продукт подвергают преципитации этанолом. После сушки при пониженном давлении преципитат расщепляют рестрикционным ферментом Xho 11 традиционным способом. Затем осуществляют электрофорез в 0,8% агарозном геле с тем, чтобы выделить фрагмент Bgl 11-Xho 11 (около 1500 пар оснований, содержит ген усовершенствованного АПТ). Затем электроэлюированием выделяют ДНК. Полная последовательность оснований полученного таким образом гена усовершенствованного АПТ (II), приведена на фиг. 8-13. Выведенная аминокислотная последовательность также приведена на фиг. 14-19. Пример 3. Конструирование гена усовершенствованного АПТ V, VI и VIII. Конструирование гена усовершенствованного АПТ V, VI или VIII, осуществляют на основе гена усовершенствованного АПТ (II) со ссылкой на следующие публикации. Генетическую конверсию осуществляют методом индукции сайт-специфической мутации. Публикации: Золлер М. Дж. и Смит.М., Метод в ферментологии, 100, стр. 468-500 (1983), Золлер М. Дж. и Смит. М. ДНК, 3, стр.479-488 (1984), Моринага Й. и др. Биотехнология, стр. 636-630 (июль 1984), Адельман Дж. П. и др. , ДНК, 2, стр. 183-193 (1983), 6. Руководство по секвенированию M13 (puC) издано Джин Сейенз Рум Ко., Лтд). 3-1). Конструирование гена усовершенствованного АПТ (V). A) Создание M13mp19 (АПТ/П/) для мутирования. Фрагмент гена усовершенствованного АПТ (II), описанный подробно в примере 2, 2-3), лигируют с двуцепочечной ДНК M13mp9, обработанной рестрикционным ферментом BamH1 и щелочной фосфатазой (изготовленной Такара Шузо Ко., Лтд.). Продуктом лигирования трансфецируют компетентные клетки E. cjli JM109 (изготовленные Такара Шузо Ко., Лтд). Каждый клон, дающий бесцветное стерильное пятно, используют для заражения E.Coli JM109. Одноцепочечную ДНК выделяют итз культурального супернатанта, а двуцепочечную (репликативную) ДНК выделяют из клеток E.cjli в соответствии с методом Мессинга (Мессинг Дж. , методы в ферментологии, 101, стр. 20-78, 1983). При анализе характера этих двухцепочечных ДНК после расщепления рестрикционным ферментом Pst1 с помощью электрофореза в агарозном геле получают клон mp9 (усовершенствованный АПТ (II), в котором ген АПТ (II) инсерцирован в ДНК mp9 в желательном направлении, как показано на фиг. 21. После расщепления части этих ДНК рестриктазой Pst осуществляют электрофорез в 0,8%-ном агарозном геле, где клон mp9 (усовершенствованный АПТ (II) показывает простую полоску в положении 7300 пар оснований, 840 пар оснований, 430 пар оснований и 80 пар оснований, приблизительно. Одноцепочечную ДНК данного клона используют в последующем эксперименте на индуцирование сайт-специфической мутации. B) Синтез праймера, способного индуцировать сайт-специфическую мутацию. Синтетический олигонуклеотид, используемый для индуцирования сайт-специфической мутации в гене усовершенствованного АПТ (II), синтезирует -цианоэтилфосфоамидатным методом с использованием ДНК-синтезатора, модель 380 A (изготовленного Applied Biosystems). Синтез ДНК-олигомера, удаление защитной группы, отщепление от смолы и очистку осуществляют в соответствии с инструкцией по эксплуатации ДНК-синтезатора 380 A. Для индуцирования мутации в специфическом сайте получают праймер (1), способный индуцировать сайт-специфическую мутацию и праймер (2) для секвенирования дидезоксиметодом с использованием вектора фага M13 (Карлсон Дж. и др., журнал биотехнологии, 1, стр. 253, 1984). Приведены аминокислотная и нуклеотидная последовательности для усовершенствованного АПТ (II). Праймер (1), способный индуцировать мутацию, отличается подчеркнутым основанием от генной последовательности усовершенствованного АПТ (II) (см. табл.1). C) Индуцирование сайт-специфической мутации. Ниже приводится способ создания клона, содержащего последовательность оснований праймера (1), способного давать мутацию, а именно гена усовершенствованного АПТ (IV). После отжига (ренатурации) одноцепочечной ДНК, описанной в примере 3,3-1), A) клона mp9 (усовершенствованного АПТ (II)и праймера (1) продукт ренатурации превращают в двуцепочечную ДНК, которой затем трансформируют E. coli JM109. Затем, используя праймер для секвенирования, осуществляют скрининг ДНК-последовательностей, выделяя фаговый клон, несущий мутированный ген усовершенствованного АПТ (II), а именно ген усовершенствованного АПТ (V). Из этого клона извлекают двуцепочечную (репликативную) фаговую ДНК и выделяют ген усовершенствованного АПТ (V). 5"-Концевое фосфорилирование синтетического олигомера. ДНК праймера (1) для индуцирования сайт-специфической мутации фосфорилируют методом, описанным в примере 2,2-1). Получение гетеродуплексной ДНЕ. 0,5 мкг одноцепочечной ДНК M13mp9 (усовершенствованного АПТ (II)) и 1,5 мкг двуцепочечной ДНК M13mp9, расщепленной рестрикционным ферментом BamH1, нагревают в 30 мкг раствора, содержащего 2 пмоль фосфорилированного праймера (1) 10 мМ Трис-HCl (pH 7,5), 0,1 мМ ЭДТА и 50 мМ NaCl, при температуре 90 o C (2 мин), 50 o C (5 мин), 37 o C (5 мин) и при комнатной температуре (10 мин). К раствору прибавляют 36 мкл раствора 50 мМ Трис-HCl (pH 8,0), содержащего 4 единицы фермента Кленова, 7 единиц ДНК-лигазы фага T4, 0,1 мМ ЭДТА, 12 мМ MgCl 2 , 10 мМ дитиотрейтола, 0,7 мМ АТФ, 0,07 дАТФ и 0,2 мМ каждого из дГТФ, дТТФ и дЦТФ, с тем, чтобы стимулировать элонгацию праймера. Смесь подвергают взаимодействию при температуре 20 o C в течение 2 часов и при температуре 4 o C в течение 15 часов. Трансформацию осуществляют с использованием раствора, описанного выше, и компетентных клеток E. coli JM109 (изготовленных Такара Шузо Ко., Лтд) до образования пятен лизиса. После отделения бесцветного пятна фагом заражают E. coli JN109 для пролиферации. Затем матричную одноцепочечную ДНК получают из культурального супернатанта относительно каждого клона. Эти одноцепочечные ДНК подвергают только реакции "T" (реакция "A" и "T" в примере 3-2) дидезоксиметода, используя праймер (2) для секвенирования, с последующим электрофорезом в полиакриламидном геле. После сушки гель анализируют радиоавтографией. На основе результатов идентифицируют клон, имеющий искомую мутантную последовательность. Культуральный супернатант клона используют для заражения клеток E.coli JM109 и вновь инокулируют на чашку с тем, чтобы осуществить выделение единственного пятна. Из полученного единственного пятна одноцепочечную ДНК выделяют в соответствии с вышеприведенным способом. Используя эти ДНК, во-первых, определяют последовательность оснований ДНК дидезоксиметодом, используя праймер (2) для секвенирования, получая клон, мутированный в желательную последовательность оснований. После заражения этого фагового клона клетками JM-109 E. coli с использованием метода Мессинга, описанного в примере 2, получают двуцепочечную ДНК. Эту двуцепочечную ДНК расщепляют рестрикционным ферментом Xho 11, осуществляют электрофорез в 0,8%-ном агарозном геле с выделением фрагмента (гена усовершенствованного АПТ (V) размером около 1500 пар оснований, содержащего ген усовершенствованного АПТ. Затем электроэлюированием экстрагируют ДНК. Кроме того, дидезоксиметодом определяют полную последовательность оснований в отношении полученной таким образом ДНК, в результате чего находят, что ДНК представляет собой ген усовершенствованного АПТ (V). Полная последовательность оснований полученного таким образом гена усовершенствованного АПТ (V) (однако содержащая сигнальный пептид от -35 до -1) показана на фиг. 11 - 13. Выведенная из нее аминокислотная последовательность показана также на фиг. 17 - 19. 3-2) Конструирование усовершенствованных АПТ (VI) и (VIII). Методики аналогичны тем, которые описаны в примере 3, 3-1). Во-первых, конструируют M13mp3 (усовершенствованный АПТ (II)), после чего синтезируют праймеры для индуцирования сайт-специфической мутации. Последовательность оснований этих праймеров описана выше, однако для конструирования гена усовершенствованного АПТ (VI) и гена усовершенствованного АПТ (VIII) используют соответственно фосфорилированный с 5"-конца праймер (3) и фосфорилированный с 5"-конца праймер (5) (см. табл. 2). Вслед за индуцированием сайт-специфической мутации определяют дидезоксиметодом полную последовательность оснований. Подтверждено, что они имеют желательные последовательности оснований. Таким образом, получают гены усовершенствованного АПТ (VI) и усовершенствованного АПТ (VIII). Затем эти гены интегрируют в вектор pVY1 в соответствии с методикой, описанной в примерах 4 и 5. Пример 4. Интеграция гена усовершенствованного АПТ (II) в вектор pVY1. 4-1) Конструирование вектора pVY1. Вектор pVY1 получают как показано на фиг. 7. A) Конструирование pAdD26SV (A) N3 (N) и придание тупых концов сайту расщепления Eco R1. Во-первых, ДНК pAdD26SV(A) N3 (приобретена у доктора Хироши Ханда в Токийском университете, известна по тезисам в Mo1, Ce 11. Biol, 2 (11, (1982)) расцепляют рестрикционным ферментом Bgl11 (изготовлен Boehringer Mannheim-Yamanouchi Co. , Ltd.) традиционным способом. Затем ДНК делают тупоконечной традиционным способом с использованием фермента Кленова (изготовлен Boehringer Mannheim-Yamanouchi Co., Ltd). После обработки фенолом, преципитации этанолом и сушки при пониженном давлении преципитеты растворяют в стерильной дистиллированной воде. После дальнейшего лигирования трансформируют реакционной смесью компетентные клетки HB101 E.coli (изготовлены Такра Шузо, Ко. Лтд). Плазмидные ДНК получают из трансформантов, проявляющих устойчивость к тетрациклину, обычным образом. После расщепления части этих ДНК рестрикционным ферментом BgL 1 осуществляют электрофорез в 0,7%-ной агарозе. В результате получают клон, несущий ДНК, которая не расщеплена рестрикционным ферментом BgL 11. После переваривания (pAdD26SV(A) N3 (N)) ДНК этого клона рестрикционным ферментом Eco R1 традиционным способом, ДНК делают тупоконечной с использованием фермента Кленова, как описано выше. После обработки фенолом, преципитации этанолом и сушки при пониженном давлении преципитаты растворяют в дистиллированной стерильной воде. B) Выделение фрагмента Kpn 1-BamH1 (около 2900 пар оснований) из pKSV10 и формирование тупых концов. После расщепления ДНК pKSV10 (изготовлена фармация Файн Кемикалз) рестрикционными ферментами Kpn1 и BamH1 традиционным способом ДНК делают тупоконечной с использованием ДНК-полимеразы T4 (лабораторное руководство, стр. 114 - 121). Затем осуществляют электрофорез в геле 0,7%-ной агарозы с выделением фрагмента размером около 2900 пар оснований. Затем фрагмент подвергают электроилюированию для экстракции ДНК

C) Конструирование pVY1. После лигирования ДНК-фрагмента, полученного в A), и ДНК-фрагмента, полученного в B), осуществляют трансформацию компетентных клеток HB101 E. coli (описаны выше). Из трансформантов, проявляющих устойчивость к тетрациклину, традиционным способом получают плазмидные ДНК. После расщепления части этих плазмидных ДНК рестрикционным ферментом Pst1 (изготовлен Boehringer Mannheim-Yamanouchi Co. , Ltd) осуществляют электрофорез в 1,0%-ном геле агарозы. В результате получают клон (плазмиду pVY1), характеризующийся полосами около 3400 пар оснований, около 3200 пар оснований и около 1400 пар оснований. Этот клон E/coli HB101 (pVY1 депонирован в научном Институте исследований ферментации Агентства по промышленной науке и технике Японии под регистрационным номером P-9625 (FEPM BP 2106). 4-2) Интеграция гена усовершенствованного АПТ (II) в вектор pVY1. После расщепления ДНК плазмиды pVY1, полученной в примере 4-1), рестрикционным ферментом BgL 11 традиционным способом, осуществляют дефосфорилирование с использованием щелочной фосфатазы (изготовлена Такара Шузо. Ко. Лтд). Затем осуществляют обработку фенолом три раза. А после преципитации этанолом и сушки при пониженном давлении осадки растворяют в стерильной дистиллированной воде. После лигирования этой ДНК с фрагментом BgL 11-Xho 11 (около 1500 пар оснований), полученным в примерах 3, 3-1), и компетентные клетки HB101 E.coli трансформируют продуктом лигирования в соответствии с методом, описанным выше. Из транспормантов, имеющих устойчивость к тетрациклину, получают традиционным образом плазмидные ДНК. После расщепления этих ДНК рестрикционными ферментами (BqL 11, Pst 1) выбирают клон, имеющий ген усовершенствованного АПТ (II) в векторе pVY1, интегрированный в требуемом направлении, причем отбор осуществляют на основе анализа картины электрофореза в геле агарозы. Во-первых, часть этих ДНК расщепляют рестрикционным ферментом BqL 11, после чего осуществляют электрофорез в 0,8%-ном геле агарозы, получая клон, имеющий полосу фрагмента размером около 1500 пар оснований, когда фрагмент BqL 11-Xho 11 лигируют с фрагментом BqL 11 плазмиды pVY1, лигированную часть Xho 11 и BqL 11 можно отрезать рестрикционным ферментом BqL 11. Часть плазмидных ДНК этих клонов дополнительно расщепляют рестрикционным ферментом Pst1, и ДНК подвергают электрофорезу в 0,8%-ном геле агарозы с получением клона, имеющего одну полосу размером около 3400 пар оснований, две полосы размером около 2300 пар оснований, одну полосу размером около 1400 пар оснований и одну полосу размером около 80 пар оснований. С использованием этого клона (плазмиды pVY1-АПТ (II) в соответствии с лабораторным руководством получают плазмидные ДНК. Пример 5. Интеграция генов усовершенствованных АПТ (V), (VI) и (VIII) в вектор pVY1. После расщепления ДНК плазмиды pVY1, полученной в примере 4-1), рестрикционным ферментом BqL 11 традиционным образом осуществляют дефосфорилирование с использованием щелочной фосфатазы (изготовленной Такара Шузо, Ко., Лтд) с последующими обработкой (3 раза) фенолом, преципитацией этанолам и сушкой при пониженном давлении. Затем осадок растворяют в стерильной дистиллированной воде. После лигирования данной ДНК с фрагментом BqLII-Xho 11 размером около 1500 пар оснований, полученным в примерах 2, 2-3), продуктом лигирования трансформируют вышеуказанные компетентные клетки HB101 E.coli. Плазмидные ДНК получают из трансформантов, проявляющих устойчивость к тетрациклину, в соответствии с традиционным способом. После расщепления этих ДНК рестрикционными ферментами BqL11 и Pstl осуществляют электрофорез в геле агарозы. Посредством анализа характера разделения в геле агарозы отбирают клоны, в которых ген усовершенствованного АПТ (V) встроен в вектор pVYI в требуемом направлении. Во-первых, после расщепления части этих ДНК рестрикционным ферментом BqL11 осуществляют электрофорез в 0,8%-ном геле агарозы с получением клонов и получают полосу размером около 1500 пар оснований. Когда фрагмент BqL11-Xholl связан с фрагментом BqL11 вектора pVYI, часть Xholl и BqL11 можно отщепить рестрикционным ферментом BqL11 благодаря вышеупомянутой конфигурации изошизомера. После дальнейшего расщепления части плазменных ДНК этих клонов рестрикционным ферментом Pstl осуществляют электрофорез при концентрации геля агарозы, равной 0,8%, с получением клона, дающего полосу размером около 3400 пар оснований, полосу размером около 2300 пар оснований, две полосы размером около 1400 пар оснований, одну полосу размером около 800 пар оснований и одну полосу размером около 80 пар оснований. С использованием клона (плазмиды pVYI-АПТ (V)) плазмидную ДНК получают в больших количествах, основываясь на лабораторном руководстве. Аналогичным образом в вектор pVYI интегрируют гены усовершенствованных АПТ (VI) и (VIII). Пример 6. Экспрессия усовершенствованного АПТ в клетках CHO. Плазмидой pVYI - усовершенствованный АПТ (VI), АПТ (II), АПТ (V) или АПТ (VIII) трансфецируют ДГФР-дефицитные клетки CHO (Urlaub, et al., Proc.Natl., Acad. Sci. USA, 77(7), 4216-4224, 1980) кальцийфосфатным методом (Graham, et al., Viroloqy, 52, 456, 1973). Обнаружено, что трансформатный клон, полученный на селективной среде (MEM A LPHA (-), GIBCO) в присутствии метотрексата (MTX), проявляет активность АПТ на уровне от 50 до 100 единиц/мл (значение, определенное фибрин/агарозным чашечным методом, описанным ниже). Этот клон используют для последующих исследований. В качестве среды для продуцирования используют среду GIT (изготовленную Уако Пьюэ Кемикал Индастри Ко., Лтд), обогащенную 20 международными единицами/мл (SIGMA) апротинина. Пример 7. Очистка усовершенствованного АПТ от культурального супернатанта клеток CHO. Культуральный супернатант, полученный в примере 6, частично очищают на аффинной колонке с анти-АПТ моноклональным антителом. Гибридному, продуцирующую моноклональные антитела, получают для АПТ, имеющего происхождение из клеток меланомы человека, традиционным образом. Антителопродуцирующую гибридному инокулируют мышам, и моноклональное антитело (подкласс: IgGM1), развившееся в асците, экстрагируют и очищают с использованием Целлюлофина Белка A (изготовлен Биокемикал Индастри Ко., Лтд) и буферной системы MAPS для очистки моноклонального антитела, изготовленной Биорад Лабораториз. Антитело связывают с CN3r-активированной сефарозой (производства компании Фармация Файн Кемикалз) в отношении 4 мг на 1 мл геля традиционным способом. Гель с антителом (24 мл) смешивают с четырьмя литрами культурального супернатанта. После осторожного встряхивания в течение ночи при температуре 4 o C гель загружают в колонку (диаметр 1,5 см х 20 см). Затем гель последовательно промывают 125 мл каждого из следующих растворов (1) Трис-HCl буфера pH 7,4 (буфер A), содержащего 25 международных единиц/мл апротинина (производства SIGMA) и 0,01% (масса/объем) Твин 80, (2) буфера A, содержащего 0,5 М NaCl, (3) буфера A, содержащего 4 М мочевины, и (4) буфера A. Усовершенствованный АПТ, связанный с гелем, элюируют 0,2 М глицин-HCl буфером pH 2,5, содержащим 25 международных единиц/мл апротинина и 0,01% (масса/объем) Твин 80. Активные фракции восстанавливают и объединяют. После диализа против 10 мМ Трис-HCl буфера, pH 7,4, содержащего 25 международных единиц/мл апротинина и 0,01% (масса/объема) Твин 80, в течение ночи диализат концентрируют в 20-30 раз вакуумным центробежным концентратом (Speed VAC, производство фирмы SAVANT Инк). Концентрат вновь диализируют против 10 мМ Трис-HCl буфера, pH 7,4, содержащего 0,15 М NaCl, 25 международных единиц/мл апротинина и 0,01% (масса/объем) Твин 80, в течение ночи, и используют для последующей оценки in vitro и in vivo. Окончательно удельная активность повышается в 3700-5000 раз, а выход составляет от 36 до 42% активности АПТ (определено фибрин/агарозным чашечным методом). Эту активную фракцию анализируют электрофорезом с додецилсульфатом натрия и окрашиванием серебром. В восстановительных условиях на уровне 54 килодальтон отмечается очень сильная полоса вместе с несколькими другими полосами. Далее гель после электрофореза обрабатывают 2,5% (масса/объем) Тритон X-100 и помещают на фибрин/агарозную чашку с целью осуществления автографии фибрина при температуре 37 o C, благодаря чему растворенную полосу обнаруживают на уровне около 50 килодальтон. На той же чашке природный АПТ появляется на уровне около 60 килодальтон. Результаты указывают на то, что АПТ, абсорбированный на колонке со сродством к антителу и элюированный указанным методом, соответствует усовершенствованному АПТ, имеющему молекулярную массу, которая примерно на 10000 меньше, чем молекулярная масса встречающегося в природе типа. Пример 8. Измерение удельной активности усовершенствованного АПТ. Количество белка в частично очищенном усовершенствованном АПТ определяют путем измерения всего белка в соответствии с методом BradFord (Bradford, Anal.Bochem., 72, 248 (1976)), используя бычий сывороточный альбумин в качестве эталонного белка. Количество антигена АПТ измеряют иммуноферментным анализом (ELISA). Фибринолитическую активность определяют фибрин/агарозным чашечным методом и методом растворения пленки 125 1-меченого фибрина. Фибрин/агарозную чашку получают путем добавления агара к 95% коагулированному фибриногену. Метод растворения пленки 125 1-меченого фибрина осуществляют в соответствии с описанием Hoyraeerts et al. (J.Biol. Chem. 257, 2912, 1982), используя в качестве эталона АПТ из клеток меланомы человека, изготовленный Биоскотт Инк. и стандартизованный в соответствии с Международным Стандартом АПТ (Gaffuey and Curtis, Thromb. Haemostas, 53, 34, 1985). Значение удельной активности, рассчитанное из значения активности, определенной методом растворения пленки 125 1-фибрина, и количества антигена, определенного иммуноферментным анализом (ELISA), составляла от 300000 до 420000 единиц/мг антигена. Пример 9. Сродство усовершенствованного АПТ к фибрину и активация фибрином

В соответствии с работой Verheijen, et al./EMBOJ, 5, 3525, 1986) исследуют сродство усовершенствованного АПТ к фибрину. К фибриногену при различных концентрациях прибавляют усовершенствованный или встречающийся в природе АПТ (1000 едини/мл), после чего прибавляют одну единицу тромбона с последующей реакцией при комнатной температуре в течение 3 минут. Образованный сгусток фибрина преципицируют центрифугированием со скоростью вращения 16000 об/мин в течение 8 минут и определяют количество АПТ, который не связан с фибрином, путем измерения активности фибрин/агарозным чашечным методом. В результате обнаружено, что усовершенствованный АПТ (VI) проявляет такое же сродство к фибрину, что и природная форма. Для того, чтобы исследовать степень активации плазминогена усовершенствованным АПТ в присутствии или отсутствии фибрина, осуществляют следующий эксперимент. С использованием планшета для титрования встречающийся в природе или усовершенствованный АПТ прибавляют к 0,1 М трис-HCl буферу, pH 7,5, содержащему 0,3 мМ синтетический субстрат п-нироанилид-трипептид S-2251 (H-D-Val-leulys-pNA. HCl, производство Каби Инк), 0,13 мкМ плазминогена без плазмина, 120 мкг/мл DESAFIB TM (производство Американ Диагност ика Инк.) и 0,1% Твин 80, с получением полного объема, равного 200 мкл. Систему поддерживают при температуре 37 o C. По истечении определенного периода времени измеряют поглощение (оптическую плотность) при длине волны 405 нм, используя Titertech Multiscan 310 Model. Кривая "доза-эффект" для амидолитической активности усовершенствованного АПТ (VI) и встречающегося в природе АПТ приведена на фиг. 22. Сдвиг кривой в зависимости "доза-эффект" вследствие прибавления DESAFIB TM для встречающегося в природе АПТ соответствует значению в 158 раз, тогда как для усовершенствованного АПТ достигает 100 раз. Это связано с тем, что активность усовершенствованного АПТ (VI) в отсутствие препарата DESAFIB TM ниже, приблизительно на 1/20, нежели активность натурального АПТ. Пример 10. Анализ усовершенствованного АПТ на фибринолитическую активность в кровотоке кролика. Фармакинетику путем сравнения активности встречающегося в природе АПТ (н-АПТ) и усовершенствованного АПТ настоящего изобретения на кролике. Как явствует из фиг. 23, усовершенствованный АПТ показывает заметное пролонгирование биологического полупериода существования в активном состоянии (натуральный АПТ показывает полупериод существования в течение 1-2 мин, тогда как усовершенствованный АПТ биологически активен в течение 8-15 минут). Кроме того, очевидно, что значение активности, равное 5% (значение через 30 с после введения составляет 100%), все еще остается в усовершенствованном АПТ даже через 60 минут после его введения (природный АПТ через 60 минут проявляет активность, равную 0,1% от начальной). Данный эксперимент осуществляют следующим образом

Для испытания отбирают японского белого кролика весом 2,4 кг. Под анестезией пентобарбиталом АПТ вводят через периферическую вену уха. Доза составляет 15400 единиц (0,8 мл) усовершенствованного АПТ на кролика и 5400 единиц (0,8 мл) н-АПТ на кролика (значения определены фибрин-чашечным методом). Затем собирают 2,5 мл крови из бедренной артерии с использованием катетера в различные временные интервалы (от 0,5 до 60 минут) и добавляют в 1/9 объема лимонно-кислого натрия (3,8%). В течение 30 минут после сбора крови осуществляют центрифугирование при малой скорости, отделяя плазму. С использованием отделенной плазмы измеряют активность АПТ в крови. (1) Измерение активности АПТ. После разбавления 0,2 мл плазмы 3мМ ледяной уксусной кислотой в 16 раз осуществляют центрифугирование разбавленного продукта при малой скорости вращения с получением преципитатов. Преципитаты растворяют 20 мМ Трис-HCl, pH 7,4, с 140мМ NaCl в объеме, эквивалентном объему плазмы, с получением фракции эуглобулина. Активность АПТ определяют путем прибавления этой фракции эуглобулина в чашку фибрин/агарозы. После инкубирования чашки при температуре 37 o C в течение 16 часов активность АПТ наблюдают в виде бляшки. Стандартную кривую для фибрин/агарозного чашечного метода получают путем разбавления АПТ, используемого для введения животному, до 0,1-10000 единиц/мл. Определенную таким образом активность АПТ крови выражают в процентах, используя активность АПТ, полученную сбором крови через 30 с после введения, взятую за 100%. Пример 11. Устойчивость усовершенствованного АПТ (VI) к воздействию тепла и кислот. Для определения устойчивости к воздействию тепла усовершенствованный АПТ (VI) и натуральный АПТ разбавляют 50 мМ Трис-буфером, содержащим 100 мМ NaCl и 0,01% Твин 80, pH 7,4, до концентрации 100 мкг/мл соответственно. Каждый раствор выдерживают в кипящей воде (температура 98 o C) в течение 2-60 минут. После охлаждения определяют остаточную активность методом фибрин-чашки. Как показано на фиг. 24, снижение активности усовершенствованного АПТ (VI) незначительно по сравнению со снижением активности натурального АПТ. Например, после термообработки в течение 2 минут активность натурального АПТ снижается до 25%, тогда как усовершенствованный АПТ (VI) все еще сохраняет активность на уровне 71%. Для исследования кислотоустойчивости усовершенствованный АПТ (VI) и натуральный АПТ растворяют в 0,5н. растворе HCl при концентрации 100 мкг/мл с последующим отстаиванием при комнатной температуре в течение 30 минут. После нейтрализации определяют активность фибрин-чашечным методом. Усовершенствованный АПТ не обнаруживает никакого изменения активности, тогда как активность натурального АПТ снижается на 50%. Пример 12. Ингибирование активного фактора, стимулирующего лимфоциты, усовершенствованным АПТ (VI)

Усовершенствованный АПТ (VI) и натуральный АПТ соответствующим образом разбавляют средой тканевой культуры PPM1 1640, содержащей 7%-ную околоплодную сыворотку теленка и 58 мкМ 2-меркаптоэтанол. 100 мкл разведения загружают в 96-луночный планшет для культуры тканей, после чего прибавляют по 50 мкл клеточной суспензии, содержащей тимоциты (210 7 клеток/мл) от мышей C3H/He J мужского пола в возрасте от 4 до 6 недель, конканавалин A (1,2 мкг/мл), а также по 50 мкл ИЛ-1 (4 единицы/мл, Aenzyme Inc), с последующим культивированием в течение 48 часов в инкубаторе при температуре 37 o C, содержащем 5% двуокись углерода. Затем прибавляют H 3 -тимидин при концентрации 0,5 мк. куб. дюйм /20 мкл/лунку. После культивирования в течение 18 часов клетки собирают на стекловолоконный фильтр и количество 3 H-тимидина, введенное в клетки, измеряют жидкостным сцинтилляционным счетчиком, определяя активность фактора, стимулирующего лимфоциты. Как показано на фиг.25, натуральный АПТ не ингибирует активность фактора, стимулирующего лимфоциты, а усовершенствованный АПТ существенно подавляет ее. При испытании только с растворителем не отмечено никакого воздействия. Пример 13. Противовоспалительная активность, основанная на действии по отношению к денатурированному белку. 1) Получение денатурированного белка. После инкубирования белкового раствора (5 мг/мл) в 0,1 н. растворе HCl или 0,1 н. растворе NaOH при температуре 37 o C в течение 2-3 часов белковый раствор нейтрализуют тем же количеством NaOH или HCl. 2) Сродство усовершенствованного АПТ (VI) к денатурированному белку. Метод: в соответствии с методикой, приведенной ниже, денатурированный белок "сцепляют" с нитроцеллюлозной пленкой. Затем измеряют количество усовершенствованного АПТ, связанного с обработкой белком и нитроцеллюлозной пленкой, оценивая таким образом сродство усовершенствованного АПТ к денатурированному белку. Кусок нитроцеллюлозной пленки погружают в 20 мМ Трис-HCl буферный раствор, pH 7,5, содержащий 140 мМ NaCl. Сушка. Денатурированный белок (50 мкг/10мкл) выпускают по капле на кусок нитроцеллюлозной пленки. Сушка. Блокирование 3%-ным раствором желатины. Промывка. Кусок нитроцеллюлозной пленки погружают в раствор усовершенствованного АПТ /1мкг/мл/. Промывка. Прибавляют плазминоген и синтетический субстрат S-2251, после чего осуществляют инкубирование при температуре 37 o C (количественный анализ на абсорбированный усовершенствованный АПТ). Измерение поглощения при 405 нм. Результаты: как показано в таблице 3, усовершенствованный АПТ показывает сродство к иммуноглобулину G, обработанному HCl, к альбумину, обработанному HCl, к альбумину, обработанному NaOH. С другой стороны, усовершенствованный АПТ не проявляет сродства к интактному иммуноглобулину G и альбумину. 3) Активация усовершенствованного АПТ (VI) денатурированным белком. Метод: плазминоген (0,0078 единицы в 10 мкл), 100 мкл 3 мМ синтетического субстрата S-2251 и различные количества буфера TBS прибавляют в реакционный раствор активатора усовершенствованного АПТ (денатурированного белка, BrCN - обработанного фибриногена и т.п.) при различных концентрациях, получая 0,275 мл реакционного раствора. Усовершенствованный АПТ (2,5 н/г в 25 мкл) прибавляют в реакционный раствор с целью инициации реакции. После взаимодействия в течение определенного периода времени в реакционный раствор прибавляют 2% додецилсульфат натрия (эквимолярное количество) с тем, чтобы остановить реакцию. Путем измерения оптической плотности (OD 405) определяют активность усовершенствованного АПТ. Результаты: как показано на фиг.26, NaOH - обработанный альбумин и HCl - обработанный иммуноглобулин G демонстрируют выраженное активирующее действие усовершенствованного АПТ. В частности, в HCl-обработанном иммуноглобулине G активация является сильной, а активность HCl-обработанного иммуноглобулина G примерно равна активности BrCN-обработанного фибриногена, причем при концентрации, которая в несколько раз меньше. Интактные альбумин и иммуноглобулин G не проявляют активацию. 4) Деградация денатурированного белка под действием усовершенствованного АПТ (VI). Метод: после взаимодействия денатурированного белка с усовершенствованным АПТ при таких же условиях, как и в методе, описанном в предыдущем подпункте, за исключением того, что в реакционную систему не прибавляют синтетический субстрат S - 2251, а количество денатурированного белка составляет 133 мкг/мл, осуществляют электрофорез в полиакриламидном геле с додецилсульфатом натрия в присутствии -меркаптоэтанола. Результаты: как показано на фиг.27, денатурированный обработкой NaOH или обработкой HCL белок приводит к исчезновению на картине эф-белковых полос и образованию продуктов деградации, что указывает на его разложение. С другой стороны, при использовании интактного альбумина не обнаружено никакого изменения в эф-картине после взаимодействия с усовершенствованным АПТ, а следовательно, не обнаружено никакой деградации денатурированного белка.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Рекомбинантный тканевой активатор плазминогена, имеющий аминокислотную последовательность, приведенную на с. где Y - Glu-Ile-Lys;

H 2 N - аминоконец;

СООН - карбоксиконец;

R - прямая связь или аналогичная ей последовательность, содержащая замены, и/или делеции, и/или вставки, не связанные с изменениями активности,

И обладающий следующими свойствами: фибринолитической активностью, определенной методом растворения пленки 1 2 5 I-фибрина, способностью активироваться фибрином и активностью улучшенного tpA в отсутствии фибрина, являющейся более низкой, чем активность природного tpA, увеличенным, по сравнению с природной формой, временем полужизни, повышенной, по сравнению с природным tpA, устойчивостью к кислотам и нагреванию, способностью ингибировать фактор активации лимфоцитов, способностью активироваться денатурированным белком. 2. Способ получения рекомбинантного тканевого активатора плазминогена, включающий культивирование хозяйских клеток, трансформированных рекомбинантной ДНК, содержащей последовательность, кодирующую аналог tpA, и последующую очистку целевого продукта, отличающийся тем, что культивируют хозяйские клетки, трансформированные рекомбинантным вектором, содержащим последовательность ДНК, кодирующую tpA по п.1.

Тканевой активатор плазминогена – белок, относящийся к группе секретируемых протеаз. Превращает плазминоген в активную форму – плазмин.

Альтеплаза (актилизе) – рекомбинантный тканевый активатор плазминогена человека

Лиофилизированный порошок для приготовления раствора: 50 мг во флаконе в комплекте с растворителем (100 мл).

В связи с отсутствием антигенности может вводиться повторно, в том числе после предыдущего лечения стрептокиназой, обладает высокой тропностью к фибрину тромба.

Стандартный режим введения: болюсное введение 15 мг препарата с последующей капельной инфузией 50 мг в течение 30 минут и 35 мг в течение следующего часа.

Ретеплаза - тромболитик третьего поколения. Период полувыведения препарата значительно больше по сравнению с предшественниками, что позволяет вводить его внутривенно струйно в два приема (по 10 МЕ с интервалом 30 минут).

Тенектеплаза (метализе) - тромболитик третьего поколения.

Обладает высокой избирательностью, повышенной устойчивостью к антиактиватору плазминогена-1 большим периодом полувыведения. Благодаря этим свойствам тенектеплазу можно вводить однократно струйно. Доза тенектеплазы зависит от веса и составляет около 30-50 мг (0,53 мг/кг).

В связи с возможностью болюсного введения целесообразно использование препарата на догоспитальном этапе (золотой стандарт догоспитального тромболизиса).

Показания к проведению тромболизиса:

1. На ЭКГ определяются подъем интервала ST более 1 мм в двух и более смежных отведениях (в V 1-3 подъем ST более 2 мм) или наличие острой блокады левой ножки пучка Гиса (вероятно, когда субтотальная окклюзия коронарной артерии прогрессирует в тотальную), или идиовентрикулярный ритм.

2. Первые 6 часов инфаркта миокарда.

3. Первые 12 часов инфаркта миокарда при сохранении боли, подъеме сегмента ST и отсутствии зубца Q, если инфаркт миокарда не завершился и имеется «мозаичность» клинической картины Решение о проведении тромболизиса в сроки после 12 часов принимается на основании клинической картины, анамнеза и ЭКГ.



Противопоказания к проведению тромболизиса:

Абсолютные:

· Перенесенный геморрагический инсульт.

· Структурные церебральные сосудистые повреждения (артериовенозная мальформация)

· Злокачественные новообразования головного мозга (первичные или метастатические).

· Ишемический инсульт в течение предыдущих 3 месяцев.

· Подозрение на расслаивающую аневризму аорты.

· Острое кровотечение или геморрагический диатез.

· Черепно-мозговая травма или нейрохирургическое вмешательство на головном или спинном мозге или лицевом отделе черепа в течение предшествующих 3 месяцев.

· Аллергические реакции на тромболитическую терапию в анамнезе.

Относительные

· Наличие в анамнезе указаний на тяжелую, плохо контролируемую артериальную гипертензию

· Тяжелая неконтролируемая артериальная гипертензия при поступлении (АД более 180/110 мм рт.ст.).

· Нарушения мозгового кровообращения более чем 3 месяца назад, деменция или внутричерепная патология, не указанная в абсолютных противопоказаниях.

· Прием непрямых антикоагулянтов с высоким МНО (3-4).

· Длительное (более 10 минут) проведение реанимационных мероприятий в течение предыдущих 3 недель.

· Хирургическое вмешательство в течение предыдущих 3 недель.

· Внутреннее кровотечение 2-4 недели назад.

· Беременность.

· Язвенная болезнь желудка или двенадцатиперстной кишки в фазе обострения.

· Тяжелые заболевания печени.

Критерии эффективности коронарной реперфузии

Ангиографические:

0 степень – отсутствие кровотока: контрастное вещество не проходит ниже места тромбоза;

I степень – минимальный кровоток: контрастное вещество частично проникает ниже места окклюзии, но не заполняет коронарное русло;

II степень – частичный кровоток: контрастное вещество проходит через место окклюзии, заполняет коронарную артерию, но медленнее, чем в нормальных сосудах;

III степень – полное восстановление проходимости: контрастное вещество заполняет и освобождает коронарную артерию с той же скоростью, как и выше места окклюзии.

Неинвазивные:

Быстрая динамика сегмента ST: снижение сегмента ST в отведении с наибольшим подъемом на 50% и более через 1,5 часа от начала тромболизиса.

Реперфузионные нарушения ритма. Наиболее информативными принято считать ускоренный идиовентрикулярный ритм и поздние желудочковые экстрасистолы в течение 2-3 часов от начала тромболизиса.

Быстрая динамика биохимических маркеров некроза. Биохимическими критериями реперфузии считается многократное повышение содержания в крови маркеров некроза через 90-120 минут от начала тромболизиса (феномен «вымывания») с достижением максимальных уровней общей КФК до 12 часов, КФК-МВ – до 6 часов, миоглобина – до 3 часов от начала тромболизиса.

Быстрое уменьшение интенсивности или полное купирование болевого синдрома к 60-й минуте от начала тромболизиса.

НЕКОТОРЫЕ АСПЕКТЫ МЕДИКАМЕНТОЗНОГО

ЛЕЧЕНИЯ ПАЦИЕНТОВ В ОСТРОМ ПЕРИОДЕ

ИНФАРКТА МИОКАРДА

Лекарственные средства, назначаемые во время ишемии уменьшают потребление миокардом кислорода (снижают частоту сердечных сокращений, артериальное давление и сократимость левого желудочка сердца) и/или вызывают вазодилатацию.

Терапия β-адреноблокаторами

Ведущими в механизмах действий β-адреноблокаторов являются:

Антигипертензивное действие . Ассоциируется с торможением секреции ренина и образования ангиотензина ІІ, блокадой пресинаптических β-адренорецепторов, которые увеличивают высвобождение норадреналина из симпатических нервных окончаний, и уменьшением центральной вазомоторной активности. Уменьшение продукции ренина, а также ангиотензина ІІ и альдостерона происходит также путем блокады β1-адренорецепторов в юкстагломерулярном аппарате почек.

Антиишемическое действие . Бета-адреноблокаторы уменьшают потребность миокарда в кислороде через уменьшение частоты сокращений сердца, сократимости миокарда и систолического артериального давления. Кроме того, удлинение диастолы, вызванное уменьшением частоты ритма сердца, может обеспечить увеличение перфузии миокарда.

Антиаритмическое действие . Результат прямых электрофизиологических эффектов на сердце (уменьшение частоты сокращений сердца, уменьшения спонтанной импульсации эктопических водителей ритма, замедления проведения и повышения рефрактерного периода атриовентрикулярного узла) ведет к уменьшению симпатических влияний и ишемии миокарда, улучшению барорефлекторной функции и предотвращению индуктируемой катехоламинами гипокалиемии.

Улучшение коронарного кровотока происходит засчет удлинения диастолы. Улучшение метаболизма миокарда - за счет торможения индуцируемого катехоламинами выхода свободных жирных кислот из жировой ткани; возобновления чувствительности β-адренергических рецепторов; уменьшения оксидантного стресса в миокарде.

Бета-адреноблокаторы различаются по растворимости в воде и липидах. Жирорастворимые средства (пропранолол, метопролол, окспренолол, бисопролол) легко всасываются в желудочно-кишечном тракте, быстро метаболизируются в печени, имеют большие объемы распределения и хорошо проникают через гематоэнцефалический барьер. Напротив, водорастворимые β-адреноблокаторы (ацебутолол, атенолол, бетаксолол, картеолол, эсмолол, надолол, соталол) всасываются хуже, метаболизируются медленнее и их период полувыведения длиннее. Поэтому водорастворимые препараты можно принимать 1 раз в сутки.

При нарушении функции печени удлиняется период полувыведения жирорастворимых β-адреноблокаторов, а при нарушении функции почек - водорастворимых. На этом основан выбор средств данной группы у пациентов с печеночной и почечной недостаточностью.

При нестабильной гемодинамике (высоком риске плохо контролируемого уровня артериального давления, например, в острейшем или остром периодах инфаркта миокарда) рационально использовать β-адреноблокаторы короткого действия, так как это позволяет контролировать клинические проявления заболевания.

Tab. Anaprilini 20 мг по 1 таблетке 3-4 раза в день.

Sol. Anaprilini 0,25% раствор 1 мл (2,5 мг) в разведении 1:10 на 0,9% растворе NaCl внутривенно медленно дробно, начиная с 1 мг, затем в зависимости от эффекта и переносимости увеличивая дозу до 5-10 мг.

При стабильной гемодинамике в острейшем периоде инфаркта миокарда рекомендуется назначать β-адреноблокаторы длительного действия по следующей схеме:

Sol. Metoprololi 0,1% 5 мл (5 мг) в разведении 1:10 на 0,9% растворе NaCl внутривенно медленно дробно за 2 минуты; повторно 5 мг через 5 минут; последующие 5 мг – еще через 5 минут; через 15 минут после последней дозы 25-50 мг внутрь каждые 12 часов.

В остром и подостром периодах инфаркта миокарда используют ниже перечисленные β-адреноблокаторы длительного действия.

Tab. Atenololi 25 мг (50 мг) по 1 таблетке 1 раз в сутки.

Tab. Bisoprololi 2,5 мг (5 мг, 10 мг) по 1 таблетке 1 раз в сутки.

Tab. Nebivololi 5 мг по 1 таблетке 1 раз в сутки.

В случаях наличия противопоказаний к применению β-блокаторов, показано назначение недигидропиридиновых антагонистов кальция. Единственный антагонист кальция, безопасность которого у пациентов с инфарктом миокарда считается доказанной, - это нисолдипин.

Tab. Nisoldipini 5 мг (10 мг) по 1 таблетке 2 раза в сутки.

Тканевой активатор плазминогена

PDB прорисовано на основе 1a5h.
Доступные структуры
PDB Поиск ортологов: ,
Идентификаторы
Символ ; T-PA; TPA
Внешние ID OMIM: MGI : HomoloGene : ChEMBL : GeneCards :
номер EC
Профиль экспрессии РНК
Ортологи
Вид Человек Мышь
Entrez
Ensembl
UniProt
RefSeq (мРНК)
RefSeq (белок)
Локус (UCSC)
Поиск в PubMed

Тка́невой актива́тор плазминоге́на - белок, относящийся к группе секретируемых протеаз, превращающий профермент плазминоген в активную форму - плазмин , являющийся фибринолитическим ферментом. Синтезируется в виде одной цепи аминокислот, соединяющиейся с плазминогеном при помощи дисульфидных мостиков. Участвует в процессах ремоделирования тканей и миграции клеток. Гиперактивация фермента приводит к повышенной кровоточивости, сниженная активность - к угнетению процессов фибринолиза, что может привести к тромбозам и эмболиям.

Используемые обозначения : PLAT, tPA.

Генетика

В результате альтернативного сплайсинга из одного гена может образоваться три варианта транскриптов .

Применение

Рекомбинантный тканевой активатор плазминогена используется в лечении заболеваний, сопровождающихся тромбообразованием: это (инфаркт миокарда , тромбоэмболия лёгочной артерии и ишемический инсульт). Для полной эффективности препарат необходиомо ввести в течение первых 6 часов. В медицинской практике альтеплаза применяется под названием Актилизе и выпускается немецкой фармацевтической компанией Boehringer Ingelheim .

См. также

Напишите отзыв о статье "Тканевой активатор плазминогена"

Ссылки

  • www.americanheart.org/presenter.jhtml?identifier=4751
  • www.guideline.gov/summary/summary.aspx?doc_id=3422


Отрывок, характеризующий Тканевой активатор плазминогена

О! против страданий нет другого убежища.]
Жюли сказала, что это прелестно.
– II y a quelque chose de si ravissant dans le sourire de la melancolie, [Есть что то бесконечно обворожительное в улыбке меланхолии,] – сказала она Борису слово в слово выписанное это место из книги.
– C"est un rayon de lumiere dans l"ombre, une nuance entre la douleur et le desespoir, qui montre la consolation possible. [Это луч света в тени, оттенок между печалью и отчаянием, который указывает на возможность утешения.] – На это Борис написал ей стихи:
«Aliment de poison d"une ame trop sensible,
«Toi, sans qui le bonheur me serait impossible,
«Tendre melancolie, ah, viens me consoler,
«Viens calmer les tourments de ma sombre retraite
«Et mele une douceur secrete
«A ces pleurs, que je sens couler».
[Ядовитая пища слишком чувствительной души,
Ты, без которой счастье было бы для меня невозможно,
Нежная меланхолия, о, приди, меня утешить,
Приди, утиши муки моего мрачного уединения
И присоедини тайную сладость
К этим слезам, которых я чувствую течение.]
Жюли играла Борису нa арфе самые печальные ноктюрны. Борис читал ей вслух Бедную Лизу и не раз прерывал чтение от волнения, захватывающего его дыханье. Встречаясь в большом обществе, Жюли и Борис смотрели друг на друга как на единственных людей в мире равнодушных, понимавших один другого.
Анна Михайловна, часто ездившая к Карагиным, составляя партию матери, между тем наводила верные справки о том, что отдавалось за Жюли (отдавались оба пензенские именья и нижегородские леса). Анна Михайловна, с преданностью воле провидения и умилением, смотрела на утонченную печаль, которая связывала ее сына с богатой Жюли.
– Toujours charmante et melancolique, cette chere Julieie, [Она все так же прелестна и меланхолична, эта милая Жюли.] – говорила она дочери. – Борис говорит, что он отдыхает душой в вашем доме. Он так много понес разочарований и так чувствителен, – говорила она матери.
– Ах, мой друг, как я привязалась к Жюли последнее время, – говорила она сыну, – не могу тебе описать! Да и кто может не любить ее? Это такое неземное существо! Ах, Борис, Борис! – Она замолкала на минуту. – И как мне жалко ее maman, – продолжала она, – нынче она показывала мне отчеты и письма из Пензы (у них огромное имение) и она бедная всё сама одна: ее так обманывают!
Борис чуть заметно улыбался, слушая мать. Он кротко смеялся над ее простодушной хитростью, но выслушивал и иногда выспрашивал ее внимательно о пензенских и нижегородских имениях.
Жюли уже давно ожидала предложенья от своего меланхолического обожателя и готова была принять его; но какое то тайное чувство отвращения к ней, к ее страстному желанию выйти замуж, к ее ненатуральности, и чувство ужаса перед отречением от возможности настоящей любви еще останавливало Бориса. Срок его отпуска уже кончался. Целые дни и каждый божий день он проводил у Карагиных, и каждый день, рассуждая сам с собою, Борис говорил себе, что он завтра сделает предложение. Но в присутствии Жюли, глядя на ее красное лицо и подбородок, почти всегда осыпанный пудрой, на ее влажные глаза и на выражение лица, изъявлявшего всегдашнюю готовность из меланхолии тотчас же перейти к неестественному восторгу супружеского счастия, Борис не мог произнести решительного слова: несмотря на то, что он уже давно в воображении своем считал себя обладателем пензенских и нижегородских имений и распределял употребление с них доходов. Жюли видела нерешительность Бориса и иногда ей приходила мысль, что она противна ему; но тотчас же женское самообольщение представляло ей утешение, и она говорила себе, что он застенчив только от любви. Меланхолия ее однако начинала переходить в раздражительность, и не задолго перед отъездом Бориса, она предприняла решительный план. В то самое время как кончался срок отпуска Бориса, в Москве и, само собой разумеется, в гостиной Карагиных, появился Анатоль Курагин, и Жюли, неожиданно оставив меланхолию, стала очень весела и внимательна к Курагину. Оглавление темы "Эозинофилы. Моноциты. Тромбоциты. Гемостаз. Система свертывания крови. Противосвертывающая система крови.":
1. Эозинофилы. Функции эозинофилов. Функции эозинофильных лейкоцитов. Эозинофилия.
2. Моноциты. Макрофаги. Функции моноцитов - макрофагов. Нормальное количество моноцитов - макрофагов.
3. Регуляция гранулоцитопоэза и моноцитопоэза. Гранулоцитарные колониестимулирующие факторы. Кейлоны.
4. Тромбоциты. Структура тромбоцитов. Функции тромбоцитов. Функции гликопротеинов. Зона золя - геля гиалоплазмы.
5. Тромбоцитопоэз. Регуляция тромбоцитопоэза. Тромбопоэтин (тромбоцитопоэтин). Мегакариоциты. Тромбоцитопения.
6. Гемостаз. Механизмы свертывания крови. Тромбоцитарный гемостаз. Тромбоцитарная реакция. Первичный гемостаз.
7. Система свертывания крови. Внешний путь активации свертывания крови. Факторы свертывания крови.
8. Внутренний путь активации свертывания крови. Тромбин.
9. Противосвертывающая система крови. Противосвертывающие механизмы крови. Антитромбин. Гепарин. Протеины. Простациклин. Тромбомодулин.
10. Тканевый активатор плазминогена. Эктоэнзимы. Роль эндотелия в противосвертывающей системе. Тканевый фактор. Ингибитор активатора плазминогена. Фактор Виллебранда. Антикоагулянты.

Тканевый активатор плазминогена. Эктоэнзимы. Роль эндотелия в противосвертывающей системе. Тканевый фактор. Ингибитор активатора плазминогена. Фактор Виллебранда. Антикоагулянты.

Тканевый активатор плазминогена - это белок, воспроизводимый и постоянно секретируемый эндотелием сосудов. Обеспечивает прямую локальную тромболитическую активность в отношении образовавшегося тромба. В крови поддерживается постоянный уровень этого фактора, что обеспечивает системную тромболитическую активность крови.

Эктоэнзимы - это образуемые эндотелием АДФаза, АТФаза и аденозинконвертирующий фермент. Эндотелиальная АДФаза быстро расщепляет проагрегант - АДФ, секретируемый активированными тромбоцитами.

Клетки эндотелия сосудов синтезируют и протромботические факторы : тканевый фактор , ингибиторы активатора плазминогена , фактор Виллебранда .

Рис. 7.11. Роль эндотелия кровеносного сосуда в свертывании крови. Под надписью «Антикоагулянты» указаны факторы эндотелия, обладающие антикоагулянтным действием, благодаря ингибиции агрегации тромбоцитов, формирования фибринового сгустка и активации фибринолиза. Под названием «Прокоагулянты» указаны факторы эндотелия, участвующие в образовании тромбоцитарного тромба, фибринового сгустка и подавляющие фибринолиз (

Тканевый фактор - это сложный белок мембраны клеток массой 46 кДа. Часть его молекулы при повреждении клетки плотно связывается с фактором коагуляции Vila, поддерживая его функцию ускорителя во внешнем пути свертывания крови.

Ингибитор активатора плазминогена -I - это белок массой 52 кДа, содержащейся в циркулирующей крови. Тесно связываясь с активатором плазминогена, он инактивирует его, участвуя таким образом в регуляции фибринолиза в организме.

Фактор Виллебранда - это многомерная молекула массой 1-20 млн Да, синтезируется эндотелием и хранится в эндотелиальных секреторных гранулах. Высвобождаясь из них, выполняет функцию адгезивной молекулы для тромбоцитов, поддерживает их агрегацию. Увеличенное высвобождение фактора Виллебранда из эндотелия индуцируется тромбином.

Свертывание крови в сосуде предупреждает и гладкая поверхность эндотелия, препятствующая включению внутреннего пути формирования активной протромбиназы. Мономолекулярный слой белка, адсорбированный на поверхности эндотелия, отталкивает факторы свертывания и тромбоциты, также предупреждает свертывание крови.

Антикоагулянты применяются в клинической практике. Например, для понижения повышенной свертываемости крови у больных с ишемической болезнью сердца, для поддержания крови в жидком состоянии при использовании аппарата искуственного кровообращения, вызывающих трав-матизацию клеток крови, в результате чего активируется внутренний путь свертывания крови.

использование рекомбинантного тканевого активатора плазминогена в лечении окклюзий вен сетчатки

УДК 616.145.154-065.6 ГРНТИ 76.29.56 ВАК 14.01.07

© С. Н. Тульцева

Кафедра офтальмологии с клиникой СПбГМУ им. академика И. П. Павлова, Санкт-Петербург

ф В представленном обзоре проведен анализ литературных данных и результатов собственных исследований о роли рекомбинантного тканевого активатора плазминогена в лечении окклюзии центральной вены сетчатки. Дана характеристика препаратов рТАП, описан механизм действия, показания и возможные осложнения при их использовании в офтальмологической практике.

ф Ключевые слова: окклюзия центральной вены сетчатки; тромболизис; тканевой активатор плаз-миногена.

Распространенность тромбозов ретинальных вен составляет около 2,14 на 1000 человек в возрасте старше 40 лет и 5,36 случаев на 1000 человек в группе старше 64 лет . При этом частота встречаемости окклюзий ветвей ЦВС (4,42 на 1000 человек) значительно превышает распространенность окклюзии центральной вены сетчатки (0,8 на 1000 человек) . Возраст больных колеблется от 14 до 92 лет. Наибольшую группу пациентов с тромбозом ретинальных вен составляют больные 40 лет и старше (в среднем 51,4-65,2 года).

В настоящее время отмечается явная тенденция к «омоложению» заболевания. Так, по нашим данным, в северо-западном регионе России в 2000 году окклюзия вен сетчатки чаще всего наблюдалась у лиц пожилого возраста - 74 % случаев. В возрастной группе до 40 лет заболевание встречалось лишь в 1 % , а в 41 - 60 лет - в 25 % случаев. В 2009 году эти цифры составляли уже 59 %, 2 % и 39 % соответственно.

Примерно 16,4 миллионов взрослого населения стран Европы и Азии имеют окклюзию вен сетчатки, при этом 2,5 миллиона страдают тромбозом ЦВС, а 13,9 миллионов - тромбозом ветвей ЦВС .

Основными причинами развития окклюзии центральной вены сетчатки считаются механическое сдавление вены склерозированной центральной артерией сетчатки в области решетчатой пластинки склеры; локальное нарушение трофики венозной стенки в месте компрессии и как следствие этого - дефект эндотелия и тромбоз. К дополнительным факторам риска относят артериальную гипертензию, гиперлипидемию, гипергликемию, тромбофи-лию, офтальмогипертензию и др.

Для восстановления нормального кровотока в центральной вене сетчатки необходимо воздействовать на две основные причины, вызвавшие ее

окклюзию. Во-первых, произвести декомпрессию сосуда. Во-вторых, произвести тромболизис. Первому направлению в лечении данной патологии посвящено множество экспериментальных и клинических исследований, смысл которых заключается в выполнении декомпрессионной нейротомии . Второе направление в нашей стране развивается медленно, и существуют лишь единичные публикации, освещающие этот вопрос . Основной причиной этого, на наш взгляд, является малодоступность современных тромболитических средств, а также недостаточный уровень теоретической подготовленности врачей первичного медицинского звена и специалистов, оказывающих неотложную помощь больным.

Для того чтобы разобраться, на какое звено гемостаза действует тот или иной тромболитический агент и в какие сроки от начала заболевания следует его применять, необходимо рассмотреть механизмы естественного фибринолиза.

Тромболизис происходит под действием плаз-мина, образующегося в результате активации его предшественника плазминогена под действием активаторов.

Различают два пути активации плазминогена - внутренний и внешний (рис. 1). Ведущий внутренний механизм запускается теми же факторами, какие инициируют свертывание крови, а именно - фактором Х11а, который, взаимодействуя с прекал-ликреином и высокомолекулярным кининогеном плазмы (ВМК), активирует плазминоген . Этот путь фибринолиза - базисный, обеспечивающий активацию плазминовой системы не вслед за свертыванием крови, а одновременно с ним. Он работает по «замкнутому циклу», так как образующиеся первые порции калликреина и плазмина подвергают протеолизу фактор XII, отщепляя фрагменты,

Рис. 1. Внутренний и внешний пути активации фибринолиза

Про-u-PA - проурокиназа; u-PA - урокиназный активатор плазминогена; t-PA - тканевой активатор плазминогена; PAI-1 - ингибитор активаторов плазминогена; КК - калли-креин; Пре-КК - прекалликреин; ВМК - высокомолекулярный кининоген; Cl-ing - ингибитор 1-го компонента комплемента; ПДФ - продукты деградации фибрина

под влиянием которых нарастает трансформация прекалликреина в калликреин.

Активация по внешнему пути осуществляется за счет тканевого активатора плазминогена (ЧРА), который образуется в клетках эндотелия, выстилающего сосуды. Секреция 1РА из клеток эндотелия осуществляется постоянно и усиливается при действии разных стимулов: тромбина, ряда гормонов и лекарственных препаратов, стресса, тканевой гипоксии, травмы.

Плазминоген и 1РА обладают выраженным сродством к фибрину. При появлении фибрина плазминоген и его активатор связываются с ним с образованием тройного комплекса (фибрин+плаз-миноген+1РА), все составляющие которого расположены так, что происходит эффективная активация плазминогена. Таким образом, плазмин образуется прямо на поверхности фибрина, который далее подвергается протеолитический деградации . Вторым природным активатором плазминогена является активатор урокиназного типа, синтезируемый почечным эпителием и макрофагами. Активация плазминогена при этом происходит на специфических рецепторах поверхности клеток эндотелия и ряда форменных элементов крови, непосредственно участвующих в образовании тромба. В норме уровень урокиназы в плазме в несколько раз выше уровня 1РА.

Образующийся под действием активаторов плазминогена плазмин - активный короткоживущий фермент (время полужизни в кровотоке 0,1 с.), приводит к протеолизу не только фибрина, но и фибриногена, факторов свертывания V, VIII и других белков плазмы. Контролируют действие плазмина несколько ингибиторов, основным из которых является быстродействующий a2-антиплазмин, син-

тезируемый в печени, а2-макроглобулин и ингибитор С1-эстеразы .

Вторым механизмом ограничения фибриноли-за является ингибиция активаторов плазминогена. Наиболее физиологически значимым является ингибитор активатора плазминогена РАЬ1. Он инактивирует как тканевой, как и урокиназный типы активаторов, синтезируется в клетках эндотелия, тромбоцитах и моноцитах. Секреция его усиливается при действии тканевого активатора плазминогена, тромбина, цитокинов, медиирующих воспаление, бактериальных эндотоксинов.

Тромболитические (от греч. thгombos - сгусток крови, lytikos - растворять) лекарственные средства подразделяют на прямые и непрямые тромбо-литики (фибринолитики). К первой группе относят вещества, непосредственно влияющие на фибрин. Представителем этой фармакологической группы является фибринолизин. Ко второй группе относят препараты, стимулирующие фибринолиз благодаря активации плазминогена (рис. 2). К ним относятся различные активаторы плазминогена - стрепто-киназа, урокиназа и др. Это первые непрямые тром-болитики, с которых началась история тромболити-ческой терапии.

Стрептокиназа получена из р-гемолитических стрептококков группы С, а урокиназа - из мочи человека. Наряду с положительными качествами эти вещества имели целый ряд недостатков: давали аллергическую реакцию, в связи с трудностью очистки представляли опасность вирусной контаминации, производство их было нерентабельным в связи с высокой стоимостью. В 80-е годы прошлого столетия на смену им пришли непрямые тромбо-литики второго поколения. К ним относятся рекомбинантный тканевой активатор плазминогена (рТАП) и рекомбинантная проурокиназа. Эти препараты созданы путем генной инженерии и, по сути, являются природными сериновыми протеазами,

Рис. 2. Принцип действия непрямых тромболитических препаратов

иТАП - ингибитор тканевого активатора плазминогена;

ПДФ - продукты деградации фибрина

т. е. веществами, участвующими в процессе тром-болизиса в естественных условиях. Представителями тромболитиков второго поколения являются актилизе, гемаза и т. д.

В настоящее время путем изменения нативной молекулы рТАП удалось улучшить свойства данной протеазы. Так появились непрямые тромболитики третьего поколения - ретеплаза, монтеплаза, ла-нетеплаза и тенектеплаза.

В офтальмологии чаще всего используются непрямые тромболитики, относящиеся ко второму (актилизе, гемаза) и третьему (тенектеплаза) поколению.

Тканевой активатор плазминогена (ТАП) в норме содержится во всех структурах глазного яблока. По мнению некоторых ученых основными источниками ТАП в глазном яблоке являются трабекулярная сеть, цилиарное тело и пигментный эпителий сетчатки . Всего 10 % тканевого активатора плазминогена, присутствующего в камерной влаге, находится в активном состоянии, остальные 90 % связаны с ингибитором PAI-1 . Какие функции выполняет тканевой активатор плазминогена, выделяемый внутриглазными структурами, и в каких процессах он участвует? На эти вопросы в настоящее время нет точных ответов.

Недостаток ТАП в слезной жидкости, влаге передней камеры, плазме крови часто ассоциируется с заболеваниями органа зрения, сопровождающимися нарушением кровообращения в венозном русле сетчатки . В связи с этим применение препаратов, созданных на основе ТАП, представляется наиболее естественным способом лечения данной патологии. По сути, такое лечение можно назвать заместительной терапией.

С 1986 года офтальмологами США, а в последствии и учеными всего мира, включая Россию, изучается влияние препарата Актилизе (Boehringer Ingelheim Pharma), содержащего рекомбинантный тканевой активатор плазминогена (рТАП) на течение различных глазных заболеваний. Основными показаниями использования рТАП в офтальмологии является патология, сопровождающаяся появлением фибринозного экссудата, сгустков крови и формированием тромбов.

Вопросы о дозах и оптимальных способах введения данного лекарственного вещества активно обсуждаются по сей день. Как и любой другой фермент, ТАП имеет высокий молекулярный вес. В связи с этим предполагалось, что его проникновение через фиброзную оболочку глазного яблока может быть затруднительным. Однако экспериментальные исследования показали, что рекомбинантный тканевой активатор плазминогена хорошо проникает

внутрь глаза через роговицу и склеру при эпибуль-барном и субконъюнктивальном способах введения . Уже через 10 минут после введения 25 мкг рТАП в субконъюнктивальное пространство происходит десятикратное повышение концентрации фермента во влаге передней камеры (с 0,8 нг/ мл до 7,5 нг/мл). Активность ТАП остается достаточной для лизиса патологического субстрата не менее 6 часов .

При лечении патологии заднего отрезка глазного яблока для достижения более быстрого тромболи-тического эффекта используют интравитреальные инъекции. Последнее время офтальмологи склоняются к мнению, что для интравитреального тромбо-лизиса целесообразно использовать минимальные дозы рТАП. Этот вывод сделан после изучения влияния различных доз фермента на сетчатку. Гистологическое исследование, выполненное после введения

25, 50, 75 и 100 мкг рТАП (Актилизе) в стекловидное тело лабораторных животных (крысы, кролики, кошки, свиньи), доказало наличие токсического эффекта при использовании дозы, превышающей 50 мкг . Наши исследования показали, что введение рТАП в стекловидное тело кролика в дозах, превышающих 20 мкг, вызывает изменения в слое пигментного эпителия сетчатки (ПЭС). Изменяется форма клеток, происходит миграция клеток ПЭС в другие слои, нарушается целостность отдельных клеток с выходом пигмента .

Является ли токсичным сам ТАП или наполнители, содержащийся в Актилизе остается не выясненным. Данные о токсичности рТАП, полученные при исследовании животных, могут только косвенно помочь выбрать адекватную и безопасную дозу препарата при лечении человека. Во-первых, несоизмеримы параметры глазного яблока (объем стекловидного тела, архитектоника сетчатки и т. д.). Во-вторых, наличие патологического субстрата в стекловидном теле (сгустки крови, фибрин) уменьшает количество свободного рТАП и тем самым могут снижать его токсичность. В-третьих, доказано, что при заболеваниях, связанных с ишемией сетчатки (диабетическая ретинопатия, ишемическая окклюзия ЦВС), доза рТАП должна быть еще меньше, так как даже при введении 50 мкг препарата происходит апоптоз клеток наружного слоя сетчатки . Особый случай - использование рТАП после витректомии и при заполнении стекловидной полости газовоздушными смесями. При этом даже небольшие дозы лекарственного вещества могут вызвать токсический эффект.

В рамках клинического исследования с 1986 года препараты рТАП используется офтальмологами в разных клинических ситуациях. Наиболее распространенными показаниями являются наличие

фибрина и сгустков крови в передней камере гла-

за, фибринозный экссудат и кровь в стекловидном теле, фибрин в области фильтрационной подушки и фистулы после антиглаукомных вмешательств, пре- и субретинальные кровоизлияния, окклюзии вен сетчатки. Используемые дозы и способы введения препарата несколько разнятся. Ранние исследования были посвящены внутривенному введению Актилизе по схеме, разработанной для лечения острого инфаркта миокарда . Однако в связи с риском развития геморрагических осложнений, а также проблемой, связанной с коротким периодом полураспада рТАП в крови (около 5 минут) от данной методики отказались. В настоящее время препараты рТАП в офтальмологической практике вводят только местно.

Для субконъюнктивального введения рекомендуемой дозой рТАП является 25 мкг, внутрикамер-ной инъекции - от 3 до 10 мкг, интравитреальных инъекций - 50 мкг препарата . В ряде работ доказан хороший тромболитический эффект от введения раствора рТАП (20 мкг/мл) в ветвь ЦВС при окклюзии основного венозного ствола . Большинство офтальмологов описывают быстрый тромболизис, отсутствие аллергических реакций и каких-либо системных осложнений при местном использовании препарата. Имеется лишь одно сообщение, свидетельствующее о токсичности рТАП, дважды введенного в стекловидную полость в дозе 50 мкг после витрэктомии и использования газовоздушной смеси с целью дислокации субретинального кровоизлияния .

Рекомбинантный тканевой активатор плазмино-гена значительно превосходит по своим качествам другие тромболитические препараты - гемазу, плазминоген, стрептокиназу и др. Он является практически незаменимым средством в лечении острой окклюзии вен сетчатки.

В условиях повышенной проницаемости сосудистой стенки, возникающей при окклюзии ЦВС, рТАП способен проникать в венозный кровоток из стекловидного тела . Именно это его свойство принято за основу при разработке нового способа лечения данной патологии - интавитреально-го введения препаратов, имеющих в основе рТАП (Актилизе - аИерІазе, Метализе - 1епеС;ер^е, Монтеплазе). Так как данные препараты, воздействуют на плазминоген, фиксированный на фибриновом сгустке (основе «свежего» тромба) при лечении заболеваний, сопровождающихся артериальным тромбозом (острого инфаркта миокарда и ОНМК) их используют в первые 6 часов от начала заболевания. В более поздние сроки тромболити-ческий эффект минимален. При лечении венозных

тромбозов срок начала лечения может быть продлен до нескольких суток.

По данным гистологического исследования на 7-14 сутки после окклюзии ЦВС начинается организация тромба . В связи с этим наилучший эффект от тромболитической терапии можно ожидать в первую неделю от начала проявлений заболевания.

Большинство зарубежных исследований, посвященных изучению тромболитического эффекта рТАП при тромбозе ЦВС, не учитывают данный факт. Так J. M. Lahey , D. S. Fong, J. Kearney (1999) , A. Glacet-Bernard, D. Kuhn, A. K. Vine с соавт. (2000) , M. J. Elman, R. Z. Raden с соавт. (2001) , J. S. Weizer, S. Fekrat (2003) , K. Suzuma, T. Murakami, D. Watanabe с соавт. (2009) вводили рТАП в стекловидное тело в среднем спустя 21 сутки от первых проявлений венозной окклюзии. Вероятно, этим объясняется сомнительный лечебный эффект, полученный авторами. Через 6 месяцев после инъекции зрение улучшалось примерно у 36 % больных. В основном это касалось пациентов с неишемическим типом окклюзии. Является это следствием применения рТАП или проявлением естественного течения заболевания - неясно, так как группа контроля и статистический анализ отсутствовали.

В литературе представлено лишь одно сообщение, свидетельствующее об интравитреальном введении рТАП в первые 3 суток от начала проявления ретинальной венозной окклюзии. N. G. Ghazi, B. Noureddine, R. S. Haddad с соавт. (2003) применяли интравитреальное введение рТАП 12 больным с окклюзией ЦВС, 4 из которых протекало по ишемическому типу. Во всех случаях, кроме ишемической окклюзии ЦВС наблюдалось значительное улучшение зрительных функций. У 55 % пациентов с исходной остротой зрения менее 20/200 в конце наблюдения зрение улучшилось до 20/50 .

В 2009 году нами было выполнено подобное исследование. Отличительными характеристиками работы являлись достаточное для оценки достоверности полученных данных количество пациентов; наличие контрольной группы; использование минимальной дозы рТАП (50 мкг); адекватные проводимой терапии сроки начала лечения. Оригинальностью лечения являлось сочетание интрави-треального введения рТАП с системным введением Вессел дуэ Ф (Alfa Wassermann). Данный препарат относится к группе гепариноидов и обладает свойством восстанавливать функцию эндотелия сосудов. Одним из известных эффектов, полученных при использовании Вессел дуэ Ф, является увеличение выработки собственного тканевого актива-

тора плазминогена и снижение активности PAI-1. Это позволяет уменьшить явления гиперкоагуляции и гипофибринолиза, имеющееся в большинстве случаев у пациентов с венозной окклюзией сетчатки .

Как показало наше исследование, острота зрения после интравитравитреальной инъекции рТАП повышалась неравномерно: максимальный скачок наблюдался через сутки после введения фермента практически у всех больных (в среднем на 0,08 -

0,1). Затем у большинства пациентов с неишемической окклюзией ЦВС происходило медленное повышение зрения в течение последующих 6 месяцев. В случаях ишемической окклюзии ЦВС острота зрения либо стабилизировалась, либо со временем ухудшалась.

Результаты оптической когерентной томографии сетчатки показали связь улучшения зрения в ближайшие сутки после интравитреальной инъекции рТАП с регрессией макулярного отека. Возможно, этот эффект объяснялся стимулированием отслойки задней гиалоидной мембраны стекловидного тела.

Все данные о клинических исследованиях, посвященных изучению влияния рТАП, введенного в стекловидное тело, на течение тромбоза вен сетчатки представлены в сводной таблице (табл. 1).

Еще одним методом лечения окклюзий ЦВС является эндоваскулярная тромболитическая терапия. Впервые эндоваскулярный тромболизис был выполнен пациентке с ишемической окклюзией ЦВС N. J. Weiss в 1998 году . В основе предложенной операции лежала стандартная трехпортовая ви-трэктомия с последующей канюлизацией одной из ветвей вены сетчатки и болюсным введением рТАП в дозе 20 мкг/0,1 мл. В дальнейшем J. N. Weiss и L. A. Bynoe опубликовали результаты лечения 28 пациентов, перенесших окклюзию ЦВС, которым лечение проводилось аналогичным способом . Учитывая отсутствие опыта проводимого хирургического вмешательства, а также непредсказуемость конечного результата лечения, операцию выполняли только в тяжелых, практически бесперспективных в плане восстановления зрительных функций случаях. Все пациенты имели полную окклюзию ЦВС давностью в среднем 4,9 месяцев (от 0,25 до 30 месяцев). Через 12 месяцев после операции у 22 пациентов острота зрения улучшилась как минимум на 1 строчку. Осложнения в виде кровоизлияния в стекловидное тело наблюдались у 7 человек, при этом лишь у одного пациента пришлось выполнить дополнительные хирургические манипуляции. Авторы утверждали, что этот метод обладает рядом преимуществ перед другими способами введения

тромболитиков: препарат доставляется точно туда, где он нужен, - к месту локализации тромба; имеется визуальный контроль при введении; введение очень небольшой дозы может обеспечить достаточную концентрацию вблизи тромба; в зависимости от скорости тока препарата его введение может иметь «смывающий» эффект, сместить тромб и позволить расширить ЦВС.

Параллельно с клиническими исследованиями в 2002 - 2008 годах продолжались экспериментальные работы, направленные на отработку техники операции, разработку специальной стеклянной канюли, используемой для катетеризации перипа-пиллярной венулы. Также с помощью гистологического исследования подбиралась необходимая для тромболизиса доза препарата и рассчитывалась безопасная для сосудов сетчатки скорость введения раствора.

Y. T. Hu, Z. Z. Ma, X. L. Zhang с соавт. (2003) экспериментально доказали эффективность эндо-васкулярного тромболизиса при лечении окклюзий ЦВС. При этом было отмечено, что лечебное воздействие оказывается не «смывающим эффектом» вводимого раствора, как предполагали J. N. Weiss и L. A. Bynoe, а именно тромболитическим действием рТАП. Авторы пришли к выводу, что наиболее оптимальной скоростью введения раствора рТАП является 60 мл/час, а время инфузии не должно превышать 20 минут . M. K. Tameesh, R. R. Lakhanpal, G. Y. Fujii с соавт. (2004) для достижения хорошего тромболитического эффекта потребовалось введение 200-1000 мкг рТАП, со скоростью 0,05 мл/мин в течение 25-45 минут . Основная сложность при катетеризации венулы ЦВС заключается в выполнении прокола стенки сосуда. Также в связи с прозрачностью вводимого раствора существует трудность в оценке точности попадания и направления движения жидкости. Наличие эффекта обратного тока при удалении канюли иногда приводит к излитию крови в стекловидное тело. Для облегчения манипуляции K. Suzuki, Y. Suzuki, S. Mizukochi с соавт. (2008) предложили использовать смесь рТАП, сбалансированного солевого раствора (BSS) и индоцианина зеленого (ICG) в соотношении 50 мкг/1 мл/0,5 мг. Благодаря флюоресценции в инфракрасном диапазоне краситель позволяет полностью контролировать манипуляцию, а использование специальной стеклянной микроканюли диаметром 30-40 мкм сводит травму сосуда к минимуму .

В настоящее время во всем мире большое внимание уделяется исследованию роли рекомбинантного тканевого активатора плазминоге-на в фармакологическом витреолизисе. Понятие «фармакологический витреолизис» подразумева-

Таблица 1

Клинические исследования, посвященные изучению влияния рТАП

Интравитреальное введение рТАП Тип и вид окклюзии Количество пациентов; сроки наблюдения; количество рТАП Начало лечения Результаты и осложнения

Lahey J. M., Fong D. S., Kearney J. (1999) окклюзия ЦВС - 23; гемиретинальная окклюзия - 3 Всего 26 пациентов; срок наблюдения 6 месяцев До 21 суток включительно У 69,6% пациентов острота зрения улучшилась или стабилизировалась; у 30,4% - ухудшилась; у 1 пациента развилось кровоизлияние в стекловидное тело; неоваскулярных осложнений не было

Glacet-Bernard A., Kuhn D., Vine A. K. с соавт. (2000) Неишемическая окклюзия ЦВС - 10; ишемическая окклюзия ЦВС - 3; неишемическая окклюзия ЦВС и окклюзией цилиоретинальной артерии - 2 Всего 15 пациентов; срок наблюдения - 6 месяцев; 75-100 мкг рТАП 1-е сутки - 1 пациент; 2-е сутки - 1 пациент; 4-6 сутки - 7 пациентов; 8 сутки - 2 пациента; 14-е сутки - 2 пациента; 21-е сутки - 2 пациента В 2 случаях неишемическая окклюзия перешла в ишемическую; в 4 случаях первоначальная ишемия сетчатки усугубилась; в 1 случае развилась неоваскуляризация радужки; в 1 случае - неоваскуля-ризация сетчатки; у всех больных исходная острота зрения < 20/40; в конце наблюдения в 36% случаев острота зрения > 20/30; в 36% - не изменилась; в 28% < 20/200; между 1-7 сутками после инъекции произошла отслойка задней гиалоидной мембраны стекловидного тела

Elman M. J., Robert Z. с соавт. (2001) Неишемическия окклюзия ЦВС - 5; ишемическая окклюзия ЦВС - 4 Всего 9 пациентов; срок наблюдения - 6 месяцев; 100 мкг рТАП Не менее 1 месяца после проявления заболевания Улучшение зрения у всех пациентов с неишемической окклюзией и незначительное улучшение зрения у 2 пациентов с ишемической окклюзией; в 1 случае развилась неоваску-ляризация радужки (у больного с сахарным диабетом)

Weizer J. S., Fekrat S. (2003) Неишемическая окклюзия ЦВС - 1 Всего 1 пациент; срок наблюдения - 14 дней; 50 мкг рТАП 21 день от начала заболевания Через 14 дней - улучшилась острота зрения; полная резорбция макулярного отека; восстановление кровотока в вене

Ghazi N. G., Noureddine B., Haddad R. S. с соавт. (2003) Неишемическая и ишемическая окклюзия ЦВС Всего 12 пациентов; срок наблюдения 6 месяцев 1-3 сутки от начала заболевания Исходная острота зрения у 9 пациентов 20/200; у остальных - менее 20/50; к концу наблюдения у 8 (67 %) пациентов зрение равно или выше 20/50; у 4 (33 %) пациентов зрение не изменилось или ухудшилось (ишемическая окклюзия)

Suzuma K., Murakami T., Watanabe D. с соавт. (2009) Окклюзия ЦВС - 37; окклюзия ЦВС и диабетическая ретинопатия - 5 Всего 42 пациента; срок наблюдения не указан Начало лечения не указано Лучшая острота зрения наблюдалась у больных без диабетической ретинопатии; у 62 % больных с окклюзией ЦВС развилась задняя отслойка стекловидного тела; при наличии диабетической ретинопатии положительной динамики не наблюдалось

Варганова Т. С., Астахов Ю. С., Тульцева С. Н. (2009) Неишемическая окклюзия ЦВС - 24; ишемическая окклюзия ЦВС - 28; группа контроля - 52 Всего 52 пациента; срок наблюдения 6 месяцев; 50 мкг рТАП 1 -3 сутки - 17 пациентов; 4-7 сутки - 20 пациентов; 8-14 сутки - 15 пациентов Повышение зрения с 0,2 до 0,4 на 10 сутки и до 0,6 через 6 месяцев после инъекции при неишемической окклюзии; с 0,04 до 0,1 на 10 сутки и до 0,3 через 6 месяцев при ишемической окклюзии; осложнений нет; неоваскуляриза-ция на ДЗН у 2 пациентов, сетчатки - у 1 пациента с ишемической окклюзией

ет стимулирование отслойки задней гиалоидной мембраны (ЗГМ) стекловидного тела путем ин-травитреального введения различных фармакологических препаратов. Доказано, что в глазах с ишемической окклюзией ЦВС, имеющих полную отслойку ЗГМ стекловидного тела, практически не развивается неоваскуляризация сетчатки и ДЗН и значительно реже наблюдается персистирующий макулярный отек . В связи с этим лечение, направленное на удаление или стимулирование отслойки ЗГМ, сведет перечисленные осложнения к минимуму.

Экспериментальные исследования доказали, что введение в стекловидное тело даже небольших доз рТАП (25 мкг) в 100 % случаев приводит к полной отслойке ЗГМ в глазах подопытных животных. По-видимому, этот эффект связан с резким повышением концентрации плазмина в стекловидном теле. Концентрация других веществ (гиалуроновой кислоты, трансглутаминазы, витронектина) после введения рТАП не меняется . Тканевой активатор плазминогена разжижает стекловидное тело и, по-видимому, повышая количество плазмина, воздействует на вещества, играющие роль биоклея между ЗГМ и передней пограничной пластинкой. К таким веществам относятся фибронектин, ламинин и коллаген IV типа .

Клинические исследования доказали факт появления отслойки ЗГМ стекловидного тела у больных с тромбозом ЦВС после интравитреальной инъекции рТАП. По данным Murakami T., Takagi H., Ohashi H. с соавт. (2007), в 16 из 21 глаза после введения рТАП наблюдалось отслоение ЗГМ, быстрое повышение остроты зрения и уменьшение макулярного отека . Suzuma K., Murakami T., Watanabe D. с соавт. (2009), используя данный вид витреолизиса, получили ожидаемый эффект в 64 % случаев. Однако авторы обращают внимание на то, что при сочетании тромбоза вен сетчатки и диабетической ретинопатии после введения рТАП в стекловидное тело ни в одном из случаев ЗГМ не отслаивалась .

Использование препаратов рТАП при лечении окклюзий вен сетчатки представляется очень перспективным направлением. Чтобы определить показания, противопоказания, оптимальный срок начала лечения и способ введения рТАП, необходимо провести многоцентровое рандомизированное исследование.

СПИСОК ЛИТЕРАТУРЫ

1. Варганова Т. С. Оптимизация патогенетического лечения окклюзии центральной вены сетчатки: Автрореф. дисс. ... к. м. н.,

СПб, 2009. - 21 стр.

2. Петрачков Д. В. Новый комплексный способ лечения тромбоза центральной вены сетчатки и ее ветвей // Бюллетень сибирской медицины. - 2008. - № 1. - С. 99-101.

3. Тульцева С. Н., Астахов Ю. С. Этиологические факторы развития тромбоза вен сетчатки у пациентов молодого возраста // Регионарное кровообращение и микроциркуляция. - 2004. - № 4 (12). - С. 39-42.

4. Тульцева С. Н., Астахов Ю. С., Умникова Т. С. Современные способы лечения тромбозов ретинальных вен // Сборник тезисов. VIII съезд офтальмологов России. Москва, 1-4 июня 2005 г. Тезисы докладов. - М., 2005. - С. 372-373.

5. Тульцева С. Н. Эндотелиальные регуляторы фибринолиза у больных с тромбозом вен сетчатки // Офтальмологические ведомости. - 2009. - Т. II, № 1. - С. 4-11.

6. Тульцева С. Н., Варганова Т. С., Рахманов В. В. Тромболитиче-ская терапия при лечении тромбозов вен сетчатки // Офтальмологические ведомости. - 2009. - Т. II, № 2. - С. 6-14.

7. Тульцева С. Н. Лечение внутриглазных кровоизлияний и фибриновых экссудатов рекомбинантным тканевым активатором плаз-миногена: Автореф. дисс. ... к. м. н. - СПб., 1995. - 14 с.

8. Berker N., Batman C. Surgical treatment of central retinal vein occlusion // Acta Ophthalmol. - 2008. - Vol. 86. - P. 245-252.

9. Chen S. N., Yang T. C., Ho C. L. et al. Retinal toxicity of intravitreal tissue plasminogen activator: case report and literature review // Ophthalmology. - 2003. - Vol. 110, N 4. - P. 704-708.

10. Collen D., Lijen H. R. Tissue-type plasminogen activator: a historical perspective and personal account // J. Thromb. Haemost. - 2004. - Vol. 2. - P. 541-546.

11. Dabbs C. K., Aaberg T. M., AguilarH. E. et al. Complications of tissue plasminogen activator therapy after vitrectomy for diabetes // Am. J. Ophthalmol. - 1990. - Vol. 110. - P. 354-360.

12. David R., Zangwill L., Badarna M. et al. Epidemiology of retinal vein occlusion and its association with glaucoma and increased intraocular pressure // Ophthalmologica - 1988. - Vol. 197. - P. 69-74.

13. Diaz-Llopis M, Cervera E. Posterior vitreous detachment and pharmacologic vitreolysis: the new age of enzymatic vitrectomy // Arch. Soc. Esp. Oftalmol. - 2007. - Vol. 82, N 8. - P. 465-466.

14. Elman M. J., Raden R. Z., Carrigan A. Intravitreal injection of tissue plasminogen activator for central retinal vein occlusion // Trans. Am. Ophthalmol. Soc. - 2001. - Vol. 99. - P. 219-221; discussion 222-223.

15. Elman M. J. Thrombolytic therapy for central retinal vein occlusion: results of a pilot study // Trans. Am. Ophthalmol. Soc. - 1996. - Vol. 94. - P. 471-504.

16. Geanon J. D., Tripathi B. J., Tripathi R. C. et al. Tissue plasminogen activator in avascular tissues of the eye: a quantitative study of its activity in the cornea, lens, and aqueous and vitreous humors of dog, calf, and monkey // Exp. Eye Res. - 1987. - Vol. 44. - P. 55-63.

17. Ghazi N. G., Noureddine B., Haddad R. S. et al. Intravitreal tissue plasminogen activator in the management of central retinal vein occlusion // Retina. - 2003. - Vol. 23, N 6. - P. 780-784.

18. Glacet-Bernard A., Kuhn D., Vine A. K. et al. Treatment of recent onset central retinal vein occlusion with intravitreal tissue plas-

minogen activator: a pilot study // Br. J. Ophthalmol. - 2000. - Vol. 84, N 6. - P. 609-613.

19. Hesse L., Nebeling B., Schroeder B. et al. Induction of posterior vitreous detachment in rabbits by intravitreal injection of tissue plasminogen activator following cryopexy // Exp. Eye Res. - 2000. - Vol. 70, N 1. - P. 31-39.

20. Hikichi T., Konno S., Trempe C. L. Role of the vitreous in central retinal vein occlusion // Retina. - 1995. - Vol. 15, N 1. - P. 29-33.

21. Hrach C. J., Johnson M. W., Hassan A. S. et al. Retinal toxicity of commercial intravitreal tissue plasminogen activator solution in cat eyes // Arch Ophthalmol. - 2000. - Vol. 118, N 5. - P. 659-663.

22. Hu Y. T., Ma Z. Z, Zhang X. L. et al. Experiment study of infusing tPA in retinal vein for treatment of retinal vein occlusion // Zhong-hua Yan Ke Za Zhi. - 2003. - Vol. 39, N 11. - P. 645-649.

23. Jaffe G. J., Green G. D., McKay Bs. et al. Intravitreal clearance of tissue plasminogen activator in the rabbit // Arch Ophthalmol. - 1988. - Vol. 106, N 7. - P. 969-972.

24. Johnson M. W., Olsen K. R., Hernandez E. et al. Retinal Toxicity of Recombinant Tissue Plasminogen Activator in the Rabbit // Arch. Ophthalmol. - 1990. - Vol. 108. - P. 259-263

25. Kwaan H. C., Samama M. M., Nguyen G. Fibrinolytic systems // Clinical thrombosis / Kwaan H. C., Samama M. M. eds. - Boca Raton: CRC Press, 1989. - P. 23-31.

26. Lahey J. M., Fong D. S., Kearney J. Intravitreal tissue plasminogen activator for acute central retinal vein occlusion // Ophthalmic Surg Lasers. - 1999. - Vol. 30, N 6. - P. 427-434.

27. Lam H. D., Blumenkranz M. S. Treatment of central retinal vein occlusion by vitrectomy with lysis of vitreopapillary and epipap-illary adhesions, subretinal peripapillary tissue plasminogen activator injection, and photocoagulation // Am. J. Ophthalmol. - 2002. - Vol. 134, N 4. - P. 609-611.

28. Lim J. I., Fiscella R., Tessler H. et al. Intraocular penetration of topical tissue plasminogen activator // Arch. Ophthalmol. - 1991. - Vol. 109. - P. 714-717.

29. Lim J. I., Maguire A. M., John G. et al. Intraocular tissue plasminogen activator concentrations after subconjunctival delivery // Ophthalmology. - 1993. - Vol. 100. - P. 373-376.

30. Mahmoud T. H., Peng Y. W., Proia A. D. et al. Recombinant tissue plasminogen activator injected into the vitreous cavity may penetrate the retinal veins of a porcine model of vascular occlusion // Br. J. Ophthalmol. - 2006. - Vol. 90, N 7. - P. 911-915.

31. Murakami T., Takagi H., Kita M. et al. Intravitreal tissue plasminogen activator to treat macular edema associated with branch retinal vein occlusion // Am. J. Ophthalmol. - 2006. - Vol. 142, N 2. - P. 318-320.

32. Murakami T., Takagi H., Ohashi H. et al. Role of posterior vitreous detachment induced by intravitreal tissue plasminogen activator in macular edema with central retinal vein occlusion // Retina. - 2007. - Vol. 27, N 8. - P. 1031-1037.

33. Murakami T., Tsujikawa A., Ohta M. et al. Photoreceptor status after resolved macular edema in branch retinal vein occlusion treated with tissue plasminogen activator // Am. J. Ophthalmol. - 2007. - 143. - P. 171-173.

34. Opremcak E. M., Bruce R. A., Lomeo M. D. et al. Radial optic neurotomy for central retinal vein occlusion: a retrospective pilot study of 11 consecutive cases // Retina. - 2001. - Vol. 21, N 5. - P. 408-415.

35. Osterloh M. D., Charles S. Surgical decompression of branch retinal vein occlusions // Arch Ophthalmol. - 1988. - Vol. 106, N 10. - P. 1469-1471.

36. Park J. K., Tripathi R. C., Tripathi B. J. et al. Tissue plasminogen activator in the trabecular endothelium // Invest. Ophthalmol. Vis. Sci. - 1987. - Vol. 28. - P. 1341-1345.

37. Rijken D. C., Otter M., Kuiper J. et al. Receptor-mediated endocy-tosis of tissue-type plasminogen activator (t-PA) by liver cells // Thromb. Res. - 1990. - Vol. 10, Suppl. - P. 63-71.

38. Rogers S., McIntosh R. L., Cheung N. et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia // Ophthalmology. - 2010. - Vol. 117, N 2. - P. 313-319.

39. Rowley S. A., Vijayasekaran S., Yu P. K. et al. Retinal toxicity of intravitreal tenecteplase in the rabbit // Br. J. Ophthalmol. - 2004. - Vol. 88, N 4. - P. 573-578.

40. Suzuki K., Suzuki Y., Mizukoshi S. et al. Indocyanine green as useful guide for retinal vein cannulation and injection of tissue plasminogen activator in rabbits // Tohoku J. Exp. Med. - 2008. - Vol. 214. N 4. - P. 351-358.

41. Suzuma K., Murakami T., Watanabe D. et al. Intravitreal tissue plasminogen activator for treatment of central retinal vein occlusion associated with diabetic retinopathy // Nippon Ganka Gakkai Zasshi. - 2009. - Vol. 113. N 4. - P. 492-497.

42. Tameesh M. K., Lakhanpal R. R., Fujii G. Y., Javaheri M. Retinal vein cannulation with prolonged infusion of tissue plasminogen activator (t-PA) for the treatment of experimental retinal vein occlusion in dogs // Am. J. Ophthalmol. - 2004. - Vol. 138, N 5. - P. 829-839.

43. Textorius O, Stenkula S. Toxic ocular effects of two fibrinolytic drugs: an experimental electroretinographic study on albino rabbits // Arch. Ophthalmol. - 1983. - Vol. 61. - P. 322-331.

44. Tripathi R. C., Park J. K., Tripathi B. J. et al. Tissue plasminogen activator in human aqueous humor and its possible therapeutic significance // Am. J. Ophthalmol. - 1988. - Vol. 106. - P. 719-722.

45. Weiss J. N., Bynoe L. A. Injection of tissue plasminogen activator into a branch retinal vein in eyes with central retinal vein occlusion // Ophthalmology. - 2001. - Vol. 108, N 12. - P. 2249-2257.

46. Weiss J. N. Treatment of central retinal vein occlusion by injection of tissue plasminogen activator into a retinal vein // Am. J. Ophthalmol. - 1998. - Vol. 126, N 1. - P. 142-144.

47. Weitz J. I., Stewart R. J., Fredenburgh J. C. Mechanism of action of plasminogen activators // Thromb. Haemost. - 1999. - Vol. 82. - P. 974-982.

48. Weizer J. S., Fekrat S. Intravitreal tissue plasminogen activator for the treatment of central retinal vein occlusion // Ophthalmic Surg. Lasers Imaging. - 2003. - Vol. 34, N 4. - P. 350-352.

49. Yamamoto T., Kamei M., Kunavisaruet P. et al. Increased retinal toxicity of intravitreal tissue plasminogen activator in a central retinal vein occlusion model // Graefes Arch. Clin. Exp. Ophthalmol. - 2008. - Vol. 246. - P. 509-514.

THE USE OF RECOMBINANT TISSUE PLASMINOGEN ACTIVATOR IN TREATMENT OF RETINAL VEIN OCCLUSIONS

G Summary. In the present review, a comparative analysis is performed of literature data and of own studies results concerning the recombinant tissue plasminogen activator’s role in treatment of central retinal vein occlusion. A specification of rTPA preparations is given, their mechanism of action, indications, and possible complications of their use in ophthalmologic practice are described.

G Key words: central retinal vein occlusion; thrombolysis; tissue plasminogen activator.

Тульцева Светлана Николаевна - к. м. н., доцент, кафедра офтальмологии СПбГМУ им. акд. И. П. Павлова,

197089, Санкт-Петербург, ул. Л. Толстого, д. 6-8. корпус 16. E-mail: [email protected]

Tultseva Svetlana Nikolaevna - candidate of medical science, assistant professor, Department of Ophthalmology of the I. P. Pavlov State Medical University of St.Petersburg, 197089, Saint-Petersburg, Lev Tolstoy st., 6-8, building 16. E-mail: [email protected]



Рассказать друзьям