Частота колебаний воспринимаемая человеком. Сколько децибел выдерживает человеческое ухо

💖 Нравится? Поделись с друзьями ссылкой

ЭНЦИКЛОПЕДИЯ МЕДИЦИНЫ

ФИЗИОЛОГИЯ

Как ухо воспринимает звуки

Ухо - это орган, преобразующий звуковые волны в нервные импульсы, которые способен воспринимать мозг. Взаимодействуя друг с другом, элементы внутреннего уха дают

нам возможность различать звуки.

Анатомически делится на три части:

□ Наружное ухо - предназначено для направления звуковых волн во внутренние структуры уха. Оно состоит из ушной раковины, представляющей собой эластичный хрящ, покрытый кожей с подкожной клетчаткой, соединенный с кожей черепа и с наружным слуховым проходом - слуховой трубкой, покрытой ушной серой. Эта трубка заканчивается барабанной перепонкой.

□ Среднее ухо - полость, внутри которой находятся мелкие слуховые косточки (молоточек, наковальня, стремя) и сухожилия двух небольших мышц. Расположение стремени позволяет ему ударять по овальному окну, которое является входом в улитку.

□ Внутреннее ухо состоит:

■ из полукружных каналов костного лабиринта и преддверия лабиринта, которые являются частью вестибулярного аппарата;

■ из улитки - собственно органа слуха. Улитка внутреннего уха очень напоминает раковину живой улитки. В поперечном

сечении можно увидеть, что она состоит из трех продольных частей: барабанной лестницы, вестибулярной лестницы и канала улитки. Все три структуры заполнены жидкостью. В канале улитки находится спиральный кортиев орган. Он состоит из 23 500 чувствительных, снабженных волосками клеток, которые фактически улавливают звуковые волны и дальше через слуховой нерв передают их в головной мозг.

Анатомия уха

Наружное ухо

Состоит из ушной раковины и наружного слухового прохода.

Среднее ухо

Содержит три мелкие косточки: молоточек, наковальню и стремя.

Внутреннее ухо

Содержит полукружные каналы костного лабиринта, преддверие лабиринта и улитку.

< Наружная, видимая часть уха называется ушной раковиной. Она служит для передачи звуковых волн в слуховой канал, а оттуда в среднее и внутреннее ухо.

А Наружное, среднее и внутреннее ухо играют важную роль в проведении и передаче звука из внешней среды в головной мозг.

Что такое звукГ

Звук распространяется в атмосфере, перемещаясь из области высокого давления в область низкого.

Звуковая волна

с большей частотой (голубая) соответствует высокому звуку. Зеленым обозначен низкий звук.

Большинство звуков, которые мы слышим, представляют собой комбинацию звуковых волн различной частоты и амплитуды.

Звук - это вид энергии; звуковая энергия передается в атмосфере в виде колебаний молекул воздуха. При отсутствии молекулярной среды (воздушной или какой-либо иной) звук не может распространяться.

ДВИЖЕНИЕ МОЛЕКУЛ В атмосфере, в которой распространяется звук, имеются области высокого давления, в которых молекулы воздуха располагаются ближе друг к другу. Они чередуются с областями низкого давления, где молекулы воздуха находятся на большем расстоянии друг от друга.

Некоторые молекулы при столкновении с соседними передают им свою энергию. Создается волна, которая может распространяться на большие расстояния.

Таким образом происходит передача звуковой энергии.

Когда волны высокого и низкого давления распределяются равномерно, считается, что тон чистый. Такую звуковую волну создает камертон.

Звуковые волны, возникающие при воспроизведении речи, распределяются неравномерно и являются комбинированными.

ВЫСОТА И АМПЛИТУДА Высота звука определяется частотой колебания звуковой волны. Она измеряется в герцах (Гц).Чем больше частота, тем выше звук. Громкость звука определяется амплитудой колебаний звуковой волны. Человеческое ухо воспринимает звуки, частота которых находится в диапазоне от 20 до 20 ООО Гц.

< Полный диапазон слышимости человека составляет от 20 до 20 ООО Гц. Человеческое ухо может дифференцировать примерно 400 ООО различных звуков.

Эти две волы иие-ют од>*«коеую часто- 1 ту, но разную a^vviy-ду (вогна голубого цвета соответствует более громкому звуку).

Человек – это действительно самое умное из животных, населяющих планету. Однако наш ум нередко лишает нас превосходства в таких способностях, как восприятие окружающего посредством обоняния, слуха и других сенсорных ощущений.

Так, большинство животных намного опережают нас, если речь идет о слуховом диапазоне. Диапазон слуха человека – это ряд частот, которые может воспринимать человеческое ухо. Попробуем понять, как работает ухо человека в отношении восприятия звука.

Диапазон слуха человека в нормальных условиях

В среднем человеческое ухо может улавливать и различать звуковые волны в диапазоне от 20 Гц до 20 кГц (20000 Гц). Однако по мере старения слуховой диапазон человека уменьшается, в частности понижается его верхняя граница. У пожилых людей она обычно намного ниже, чем у молодых, при этом максимально высокими слуховыми способностями обладают младенцы и дети. Слуховое восприятие высоких частот начинает ухудшаться с восьмилетнего возраста.

Человеческий слух в идеальных условиях

В лаборатории диапазон слуха человека определяется при помощи аудиометра, который испускает звуковые волны различной частоты, и настроенных соответствующим образом наушников. В таких идеальных условиях человеческое ухо может распознавать частоты в диапазоне от 12 Гц до 20 кГц.


Диапазон слуха у мужчин и женщин

Между слуховым диапазоном мужчин и женщин существует значительная разница. Обнаружено, что женщины по сравнению с мужчинами более чувствительны к высоким частотам. Восприятие низких частот находится у мужчин и женщин на более или менее одинаковом уровне.

Различные шкалы для указания диапазона слуха

Хотя частотная шкала является наиболее распространенной шкалой для измерения диапазона слуха человека, его также нередко измеряют в паскалях (Па) и децибелах (дБ). Однако измерение в паскалях считается неудобным, так как эта единица предполагает работу с очень крупными цифрами. Один мкПа – это расстояние, преодолеваемое звуковой волной во время колебания, которое равно одной десятой диаметра атома водорода. Звуковые волны в человеческом ухе преодолевают намного большее расстояние, что делает указание диапазона слуха человека в паскалях затруднительным.

Самый мягкий звук, который может быть распознан ухом человека, равняется примерно 20 мкПа. Шкала децибел более проста в использовании, так как она представляет собой логарифмическую шкалу, которая напрямую ссылается на шкалу Па. Она принимает 0 дБ (20 мкПа) как точку отсчета и далее продолжает сжимать эту шкалу давления. Таким образом, 20 миллионов мкПа равняются всего 120 дБ. Так получается, что диапазон человеческого уха составляет 0-120 дБ.

Слуховой диапазон значительно разнится от человека к человеку. Поэтому для выявления потери слуха лучше всего измерять диапазон слышимых звуков по отношению к опорной шкале, а не по отношению к обычной стандартизированной шкале. Тесты могут проводиться при помощи сложных инструментов для диагностики слуха, которые позволяют точно определять степень и диагностировать причины потери слуха.

Частоты

Чaстота - физическая величина, характеристика периодического процесса, равна количеству повторений или возникновения событий (процессов) в единицу времени.

Как Мы знаем, человеческое ухо слышит частоты от 16 Гц до 20 000 кГц. Но это очень усреднённо.

Звук возникает по разным причинам. Звук - это волнообразное давление воздуха. Если бы не было воздуха, мы бы не слышали никакого звука. В космосе нет звука.
Мы слышим звук потому, наши уши чувствительны к изменению давления воздуха - звуковым волнам. Наиболее простой звуковой волной является короткий звуковой сигнал - вот такой:

Звуковые волны, проникая в слуховой канал, приводят в колебание барабанную перепонку. Через цепь косточек среднего уха колебательное движение перепонки передаётся жидкости улитки. Волнообразное движение этой жидкости, в свою очередь, передаётся основной мембране. Движение последней влечёт за собой раздражение окончаний слухового нерва. Таков главный путь звука от его источника до нашего сознания. ТЫЦ

Когда вы хлопаете в ладоши, воздух между ладонями выталкивается и создается звуковая волна. Повышенное давление заставляет молекулы воздуха распространяться во все стороны со скоростью звука, который равен 340 м/с. Когда волна достигает уха, она заставляет вибрировать барабанную перепонку, с которой сигнал передается в мозг и вы слышите хлопок.
Хлопок - это короткое одиночное колебание, которое быстро затухает. График звуковых колебаний типичного хлопка выглядит так:

Другой типичный пример простой звуковой волны - периодическое колебание. К примеру, когда звонит колокол, воздух сотрясается от периодических колебаний стенок колокола.

Так с какой же частоты начинает слышать обычное человеческое ухо? Частоту в 1 Гц оно не услышит, а лишь может увидеть на примере колебательной системы. Человеческое ухо именно слышит начиная с частот 16 Гц. То есть когда колебания воздуха воспринимает наше ухо как некий звук.

Сколько звуков слышит человек?

Не все люди с нормальным слухом одинаково слышат. Одни способны различать близкие по высоте и громкости звуки и улавливать в музыке или шуме отдельные тона. Другие же этого сделать не могут. Для человека с тонким слухом существует больше звуков, чем для человека с неразвитым слухом.

Но насколько вообще должна отличаться частота двух звуков, чтобы их можно было слышать как два разных тона? Можно ли, например, отличить друг от друга тона, если разница в частотах равна одному колебанию в секунду? Оказывается, что для некоторых тонов это возможно, а для других нет. Так, тон с частотой 435 можно отличить по высоте от тонов с частотами 434 и 436. Но если брать более высокие тона, то отличие сказывается уже при большей разности частот. Тона с числом колебаний 1000 и 1001 ухо воспринимает как одинаковые и улавливает разницу в звучании только между частотами 1000 и 1003. Для более высоких тонов эта разность в частотах ещё больше. Например, для частот около 3000 она равна 9 колебаниям.

Точно так же не одинакова наша способность отличать звуки, близкие по громкости. При частоте 32 можно расслышать только 3 звука разной громкости; при частоте 125 - уже 94 звука различной громкости, при 1000 колебаний - 374, при 8000 - снова меньше и, наконец, при частоте 16 000 мы слышим только 16 звуков. Всего же звуков, различных по высоте и громкости, наше ухо может уловить более полумиллиона! Это только полмиллиона простых звуков. Прибавьте к этому бесчисленные сочетания из двух и более тонов - созвучия, и вы получите впечатление о многообразии того звукового мира, в котором мы живём и в котором наше ухо так свободно ориентируется. Вот почему ухо считается, наряду с глазом, самым чувствительным органом чувства.

По этому для удобства представления о звуке мы используем не обычную шкалу с делениями в 1 кГц

А логарифмическую. С расширенным представлением частот от 0 Гц до 1000 Гц. Спектр частот, таким образом, можно представить в виде вот такой диаграммы от 16 до 20000 Гц.

Но не все люди, даже с нормальным слухом, одинаково чувствительны к звукам различной частоты. Так, дети обычно без напряжения воспринимают звуки с частотой до 22 тысяч. У большинства взрослых чувствительность уха к высоким звукам уже понижена до 16–18 тысяч колебаний в секунду. Чувствительность же уха у стариков ограничена звуками с частотой в 10–12 тысяч. Они часто совершенно не слышат комариного пения, стрекотания кузнечика, сверчка и даже чириканья воробья. Таким образом от идеального звука (рис. выше) по мере старения человека он уже звуки слышит в более суженом ракурсе

Приведу пример диапазона частот музыкальных инструментов

Теперь применительно к Нашей тематике. Динамику, как колебательной системе, в ввиду ряда его особенностей, не удаётся воспроизвести весь спектр частот с постоянными линейными характеристиками. В идеале это был бы широкополосный динамик, воспроизводящий спектр частот от 16 Гц до 20 кГц с одним уровнем громкости. По этому в автозвуке применяют несколько типов динамиков для воспроизведения конкретных частот.

Выглядит это пока условно вот так (для трёхполосной системы + сабвуфер).

Сабвуфер от 16 Гц до 60 Гц
Мидбас от 60 Гц до 600 Гц
Мидрендж от 600 Гц до 3000 Гц
Твитер от 3000 Гц до 20000 Гц

Представляет собой сложный специализированный орган, состоящий из трех отделов: наружного, среднего и внутреннего уха.

Наружное ухо является звукоулавливающим аппаратом. Звуковые колебания улавливаются ушными раковинами и передаются по наружному слуховому проходу к барабанной перепонке, которая отделяет наружное ухо от среднего. Улавливание звука и весь процесс слушания двумя ушами, так называемый биниуральный слух, имеют значение для определения направления звука. Звуковые колебания, идущие сбоку, доходят до ближайшего уха на несколько десятичных долей секунды (0,0006 с) раньше, чем до другого. Этой предельно малой разницы во времени прихода звука к обоим ушам достаточно, чтобы определить его направление.

Среднее ухо представляет собой воздушную полость, которая через евстахиеву трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают 3 слуховые косточки, соединенные друг с другом, - молоточек, наковальня и стремечко, а последнее через перепонку овального окна передает эти колебания жидкости, находящейся во внутреннем ухе - перилимфе. Благодаря слуховым косточкам амплитуда колебаний уменьшается, а сила их увеличивается, что позволяет приводить в движение столб жидкости во внутреннем ухе. В среднем ухе имеется особый механизм адаптации к изменениям интенсивности звука. При сильных звуках специальные мышцы увеличивают натяжение барабанной перепонки и уменьшают подвижность стремечка. Тем самым снижается амплитуда колебаний, и внутреннее ухо предохраняется от повреждений.

Внутреннее ухо с расположенной в нем улиткой находится в пирамидке височной кости. Улитка у человека образует 2,5 спиральных витка. Улитковый канал разделен двумя перегородками (основной мембраной и вестибулярной мембраной) на 3 узких хода: верхний (вестибулярная лестница), средний (перепончатый канал) и нижний (барабанная лестница). На вершине улитки имеется отверстие, соединяющее верхний и нижний каналы в единый, идущий от овального окна к вершине улитки и далее к круглому окну. Полость их заполнена жидкостью - перилимфой, а полость среднего перепончатого канала заполнена жидкостью иного состава - эндолимфой. В среднем канале расположен звуковоспринимающий аппарат - кортиев орган, в котором находятся рецепторы звуковых колебаний - волосковые клетки.

Механизм восприятия звука. Физиологический механизм восприятия звука основан на двух процессах, происходящих в улитке: 1) разделение звуков различной частоты по месту их наибольшего воздействия на основную мембрану улитки и 2) преобразование рецепторными клетками механических колебаний в нервное возбуждение. Звуковые колебания, поступающие во внутреннее ухо через овальное окно, передаются перилимфе, а колебания этой жидкости приводят к смещениям основной мембраны. От высоты звука зависит высота столба колеблющейся жидкости и, соответственно, место наибольшего смещения основной мембраны. Таким образом, при различных по высоте звуках возбуждаются разные волосковые клетки и разные нервные волокна. Увеличение силы звука приводит к увеличению числа возбужденных волосковых клеток и нервных волокон, что позволяет различать интенсивность звуковых колебаний.
Преобразование колебаний в процесс возбуждения осуществляется специальными рецепторами - волосковыми клетками. Волоски этих клеток погружены в покровную мембрану. Механические колебания при действии звука приводят к смещению покровной мембраны относительно рецепторных клеток и изгибанию волосков. В рецепторных клетках механическое смещение волосков вызывает процесс возбуждений.

Проводимость звука. Различают воздушную и костную проводимость. В обычных условиях у человека преобладает воздушная проводимость: звуковые волны улавливаются наружным ухом, и воздушные колебания передаются через наружный слуховой проход в среднее и внутреннее ухо. В случае костной проводимости звуковые колебания передаются через кости черепа непосредственно улитке. Этот механизм передачи звуковых колебаний имеет значение при погружениях человека под воду.
Человек обычно воспринимает звуки с частотой от 15 до 20 000 Гц (в диапазоне 10-11 октав). У детей верхний предел достигает 22 000 Гц, с возрастом он понижается. Наиболее высокая чувствительность обнаружена в области частот от 1000 до 3000 Гц. Эта область соответствует наиболее часто встречающимся частотам человеческой речи и музыки.

Наш слуховой орган отличается очень высокой чувствительно­стью. При нормальном слухе мы способны различать звуки, вызы­вающие ничтожно малые (исчисляемые в долях микрона) колеба­ния барабанной перепонки.

Чувствительность слухового анализатора к звукам различной вы­соты неодинакова. Человеческое ухо наиболее чувствительно к зву­кам с частотой колебаний от 1000 до 3000. По мере понижения или повышения частоты колебаний чувствительность падает. Особен­но резкое падение чувствительности отмечается в области самых низких и самых высоких звуков.

С возрастом слуховая чувствительность изменяется. Наиболь­шая острота слуха наблюдается у 15-20-летних, а затем она посте­пенно падает. Зона наибольшей чувствительности до 40-летнего воз­раста находится в области 3000 Гц, от 40 до 60 лет -в области 2000 Гц, а старше 60 лет - в области 1000 Гц.

Минимальная сила звука, способная вызвать ощущение едва слы­шимого звука, называется порогом слышимости, или порогом слухово­го огцищения. Чем меньше величина звуковой энергии, необходимая для получения ощущения едва слышимого звука, т. е. чем ниже порог слухового ощущения, тем, стало быть, выше чувствительность уха к данному звуку. Из сказанного вытекает, что в области средних частот (от 1000 до 3000 Гц) пороги слухового восприятия оказываются наибо­лее низкими, а в области низких и высоких частот пороги повышаются.

При нормальном слухе величина порога слухового ощущения равна 0 дБ. Необходимо помнить, что нуль децибел означает не от­сутствие звука (не «нуль звука»), а нулевой уровень, т. е. уровень отсчета при измерении интенсивности воспринимаемых звуков, и соответствует пороговой интенсивности при нормальном слухе.

При увеличении силы звука ощущение громкости звука усили­вается, но при достижении силы звука определенной величины на­растание громкости прекращается и появляется ощущение давле­ния или даже боли в ухе. Сила звука, при которой появляется ощу­щение давления или боли, называется порогом неприятного ощу­щения (болевым порогом), порогом дискомфорта.

Расстояние между порогом слухового ощущения и порогом дис­комфорта оказывается наибольшим в области средних частот (1000-3000 Гц) и достигает здесь 130 дБ, т. е. отношение макси­мальной выносимой для уха силы звука к минимальной ощущае­мой силе равно 10 13 , или 10 000 000 000 000 (десяти триллионам).

Эта способность слухового анализатора поистине удивительна. В технике нельзя найти пример, когда один и тот же прибор мог бы регистрировать воздействия, величина которых разнилась бы на та­кие астрономические цифры. Если бы можно было сконструировать весы, обладающие таким же диапазоном чувствительности, как ухо человека, то на этих весах можно было бы взвешивать тяжести от 1 миллиграмма до 10 000 тонн.

Чувствительность слухового анализатора характеризуется не только величиной порога восприятия, но и величиной разностного, или дифференциального, порога. Разностным порогом частоты на­зывают минимальный, едва заметный для слуха прирост частоты звука к его первоначальной частоте.

Разностные пороги оказываются наименьшими в диапазоне от 500 до 5000 Гц и выражаются здесь цифрой 0,003. Это значит, что изменение, например, частоты 1000 Гц на 3 Гц уже ощущается ухом человека как другой звук.

Разностным порогом силы звука называют минимальный при­рост силы звука, дающий едва заметное усиление громкости перво­начального звука. Разностные пороги силы звука равны в среднем 0,1-0,12, т. е. для того, чтобы звук ощущался как более громкий, его надо усилить на 0,1 первоначальной величины, или на 1 дБ.

Таким образом, область слухового восприятия у нормально слы­шащего человека ограничена по частоте и по силе звука. По частоте эта область охватывает диапазон от 16 до 25 000 Гц (частотный диа­пазон слуха), а по силе - до 130 дБ (динамический диапазон слуха).

Принято считать, что область речи, т. е. частотный и динамичес­кий диапазон, необходимый для восприятия звуков речи, занимает лишь небольшую часть всей области слухового восприятия, а имен­но по частоте от 500 до 600 Гц и по силе от 50 до 90 дБ над порогом слышимости. Такое ограничение области речи по частоте и интен­сивности может быть, однако, принято лишь весьма условно, так оно оказывается действительным только в отношении наиболее важной для понимания речи области воспринимаемых звуков, но далеко не охватывает всех звуков, входящих в состав речи.

В самом деле, целый ряд звуков речи, как, например, согласные с, з, ц, содержит форманты, лежащие значительно выше 3000 Гц, а именно до 8600 Гц. Что касается динамического диапазона, то нуж­но учитывать, что уровень интенсивности тихого шепота соответ­ствует 10-15 дБ, а в громкой речи имеются такие составные эле­менты, интенсивность которых не превышает уровня обычной ше­потной речи, т. е. 25 дБ. К их числу относятся, например, некоторые глухие согласные. Следовательно, для полноценного различения на слух всех звуков речи необходима сохранность всей или почти всей области слухового восприятия как в отношении частоты, так и в от­ношении интенсивности звука.

На рисунке 17 представлена область звуков, воспринимаемых нормальным ухом человека. Верхняя кривая изображает порог слы­шимости звуков различной частоты, нижняя кривая - порог непри­ятного ощущения. Между этими кривыми располагается область слухового восприятия, т. е. весь диапазон слышимых человеком зву­ков. Заштрихованные части диаграммы обнимают область наибо­лее часто встречающихся звуков музыки и речи.

Слуховая адаптация и слуховое утомление. Звуковая травма. При воздействии звуковых раздражений происходит временное по­нижение чувствительности органа слуха. Так, например, выйдя на шумную улицу, человек, обладающий нормальным слухом, ощуща­ет шум улицы как очень громкий, соответственно его действительный интенсивности. Однако через некоторое время уличный шум ощущается уже как менее громкий, хотя фактически интенсивность шума не изменяется. Это снижение ощущения громкости является следствием понижения чувствительности слухового анализатора в результате воздействия сильного звукового раздражителя. После прекращения воздействия шума, когда, например, человек входит с шумной улицы в тихое помещение, чувствительность слухового ор­гана быстро восстанавливается, и, выйдя вновь на улицу, человек опять будет ощущать уличный шум как очень громкий. Такое вре­менное снижение чувствительности получило название адаптации (от лат. adaptare - приспособлять). Адаптация является защитно-приспособительной реакцией организма, предохраняющей нервные элементы слухового анализатора от истощения под воздействием сильного раздражителя. Понижение слуховой чувствительности при адаптации очень кратковременно. После прекращения звукового раздражения чувствительность органа слуха восстанавливается через несколько секунд.

Изменение чувствительности в процессе адаптации происходит и в периферическом, и в центральном концах слухового анализато­ра. Об этом свидетельствует тот факт, что при воздействии звука на одно ухо чувствительность изменяется в обоих ушах.

При интенсивном и длительном (например, в течение несколь­ких часов) раздражении слухового анализатора наступает слуховое утомление. Оно характеризуется значительным понижением слу­ховой чувствительности, которая восстанавливается лишь после бо­лее или менее продолжительного отдыха. Если при адаптации чув­ствительность восстанавливается в течение нескольких секунд, то для восстановления чувствительности при утомлении слухового анализатора требуется время, измеряемое часами, а иногда и сутка­ми. При частом и длительном (в течение нескольких месяцев или лет) перераздражении слухового анализатора в нем могут возник­нуть необратимые патологические изменения, приводящие к стой­кому нарушению слуха (шумовое поражение слухового органа).

При очень большой мощности звука, даже при кратковременном его воздействии, может возникнуть звуковая травма, сопровождаю­щаяся иногда нарушением анатомической структуры среднего и внутреннего уха.

Маскировка звука. Если какой-либо звук воспринимается на фо­не действия другого звука, то первый звук ощущается менее гром­ким, чем в тишине: он как бы заглушается другим звуком.

Так, например, в шумном цехе, в поезде метро отмечается значительное ухудшение восприятия речи, а некоторые слабые зву­ки в условиях шумового фона совсем не воспринимаются.

Это явление называется маскировкой звука. Для звуков разной высоты маскировка выражена неодинаково. Высокие звуки сильно маскируются низкими и, наоборот, сами оказывают очень неболь­шое маскирующее действие на низкие звуки. Наиболее сильно выра­жено маскирующее влияние звуков, близких по высоте к маскируе­мому звуку. На практике приходится часто иметь дело с маскирую­щим действием различных шумов. Так, например, шум городской улицы оказывает заглушающее (маскирующее) действие, достигаю­щее днем 50-60 дБ.

Бинауральный слух. Наличие двух ушей обусловливает способ­ность определять направление источника звука. Эта способность по­лучила название бинаурального (двуушного) слуха, или ототопики (от греч. otos - ухо и topos - место).

Для объяснения этого свойства слухового анализатора высказа­но три суждения 1) ухо, расположенное ближе к источнику звука, воспринимает звук сильнее, чем противоположное; 2) ухо, нахо­дящееся ближе к источнику звука, воспринимает его несколько раньше; 3) звуковые колебания доходят до обоих ушей в разных фа­зах. По-видимому, способность различать направление звука обу­словлена совместным действием всех трех факторов.

Для точного определения направления источника звука необхо­димо, чтобы слух на оба уха были одинаковым. Слух может быть и пониженным, но при одинаковом понижении на оба уха. Если звук будет услышан, то и направление его будет определено правильно. Следует отметить, что и при асимметричном слухе на оба уха и даже при полной глухоте на одно ухо известная способность к опре­делению направления источника звука может быть выработана пу­тем специальной тренировки.

Слуховой анализатор обладает способностью не только различать направление звука, но и определять местоположение его источни­ка, т. е. оценивать расстояние, на котором находится источник звука. Бинауральный слух дает также возможность воспринимать слож­ные звуковые комплексы, когда звук приходит одновременно с раз­ных сторон, и определять при этом положение источников звука в пространстве (стереофония).

Основные этапы развития слуховой функции у ребенка

Слуховой анализатор человека начинает функционировать уже с момента его рождения. При воздействии звуков достаточной громкости у новорожденных можно наблюдать ответные реакции, протекающие по, типу безусловных рефлексов и проявляющиеся в виде изменений дыхания и пульса, задержки сосательных движе­ний и пр. В конце первого и начале второго месяцев жизни у ребен­ка образуются уже условные рефлексы на звуковые раздражители. Путем многократного подкрепления какого-либо звукового сигна­ла (например, звука колокольчика) кормлением можно выработать у такого ребенка условную реакцию в виде возникновения сосатель­ных движений в ответ на звуковое раздражение. Очень рано (на третьем месяце) ребенок уже начинает различать звуки по их качест­ву (по тембру, по высоте). По новейшим исследованиям, первичное различение звуков, резко отличающихся друг от друга по характеру (например, шумов и стуков - от музыкальных тонов, а также раз­личение тонов в пределах смежных октав), можно наблюдать даже у новорожденных. По этим же данным, у новорожденных отмечает­ся также возможность определения направления звука.

В последующем периоде способность к дифференцированию звуков получает дальнейшее развитие и распространяется на голос и элементы речи. Ребенок начинает по-разному реагировать на различные интонации и различные слова, однако последние воспри­нимаются им на первых порах недостаточно расчленено. В течение второго и третьего годов жизни, в связи с формированием у ребенка речи, происходит дальнейшее развитие его слуховой функции, харак­теризующееся постепенным уточнением восприятия звукового состава речи. В конце первого года ребенок обычно различает слова и фразы преимущественно по их ритмическому контуру и интонационной ок­раске, а к концу второго и началу третьего года он обладает уже спо­собностью различать на слух все звуки речи. При этом развитие диф­ференцированного слухового восприятия звуков речи происходит в тесном взаимодействии с развитием произносительной стороны речи. Это взаимодействие носит двусторонний характер. С одной стороны, дифференцированность произношения зависит от состояния слухо­вой функции, а с другой стороны - умение произнести тот или иной звук речи облегчает ребенку различение его на слух. Следует, однако, отметить, что в норме развитие слуховой дифференциации предшест­вует уточнению произносительных навыков. Это обстоятельство на­ходит свое отражение в том, что дети 2-3 лет, полностью различая на слух звуковую структуру слов, не могут ее воспроизвести даже отра­женно. Если предложить такому ребенку повторить, например, слово карандаш, он воспроизведет его как «каландас», но стоит взрослому сказать вместо карандаш «каландас», как ребенок сразу же определит фальшь в произношении взрослого.



Рассказать друзьям