Единицей уровня интенсивности силы звука является. Энергия звуковой волны

💖 Нравится? Поделись с друзьями ссылкой

Основные свойства звука

Источник звука

Звук - распространяющиеся в упругих средах, газах, жидкостях и твердых телах механические колебания, воспринимаемые ухом.

Источник звука - различные колеблющиеся тела, например туго натянутая струна или тонкая стальная пластина, зажатая с одной стороны. Как возникают колебательные движения? Достаточно оттянуть и отпустить струну музыкального инструмента или стальную пластину, зажатую одним концом в тисках, как они будут издавать звук. Колебания струны или металлической пластинки передаются окружающему воздуху. Когда пластинка отклонится, например в правую сторону, она уплотняет (сжимает) слои воздуха, прилегающие к ней справа; при этом слой воздуха, прилегающий к пластине с левой стороны, разредится. При отклонении пластины в левую сторону она сжимает слои воздуха слева и разрежает слои воздуха, прилегающие к ней с правой стороны, и т.д. Сжатие и разрежение прилегающих к пластине слоев воздуха будет передаваться соседним слоям. Этот процесс будет периодически повторяться, постепенно ослабевая, до полного прекращения колебаний (рис. 1.1).

Рис. 1.1. Распространение звуковых волн от колеблющейся пластинки.

Таким образом колебания струны или пластинки возбуждают колебания окружающего воздуха и, распространяясь, достигают уха человека, заставляя колебаться его барабанную перепонку, вызывая раздражение слухового нерва, воспринимаемое нами как звук.

Колебания воздуха, источником которых является колеблющееся тело, называют звуковыми волнами, а пространство, в котором они распространяются, звуковым полем.

Скорость распространения звуковых колебаний зависит от упругости среды, в которой они распространяются. В воздухе скорость распространения звуковых колебаний в среднем равна 330 м/с, однако она может изменяться в зависимости от его влажности, давления и температуры. В безвоздушном пространстве звук не распространяется.

При распространении звука, вследствие колебаний частиц среды, в каждой точке звукового поля происходит периодическое изменение давления. Среднее квадратичное значение величины этого давления, обозначаемое буквой P, называют звуковым давлением. За единицу звукового давления принята величина, равная силе в один ньютон (Н), действующей на площадь в один квадратный метр (Н/м 2).

Чем больше звуковое давление, тем громче звук. При средней громкости человеческой речи звуковое давление на расстоянии 1м от рта говорящего находится в пределах 0,0064-0,64.

Звуковые колебания

Рис. 1.2. График простого (синусоидального) колебания

Форма звуковых колебаний зависит от свойств источника звука. Наиболее простыми колебаниями являются равномерные или гармонические колебания, которые можно представить в виде синусоиды (рис. 1.2). Такие колебания характеризуются частотой f, периодом Т и амплитудой А.

Частотой колебаний называют количество полных колебаний в секунду. За единицу измерения частоты принят 1 герц (Гц). 1 герц соответствует одному полному (в одну и другую сторону) колебанию, происходящему за одну секунду.

Периодом называют время (с), в течение которого происходит одно полное колебание. Чем больше частота колебаний, тем меньше их период, т.е. f=1/T. Таким образом, частота колебаний тем больше, чем меньше их период, и наоборот.

Рис. 1.3. График звуковых колебаний при произношении звуков а, о и у.

Амплитудой колебаний называют наибольшее отклонение колеблющегося тела от его первоначального (спокойного) положения. Чем больше амплитуда колебания, тем громче звук. Звуки человеческой речи представляют собой сложные звуковые колебания, состоящие из того или иного количества простых колебаний, различных по частоте и амплитуде. В каждом звуке речи имеется только ему свойственное сочетание колебаний различной частоты и амплитуды. Поэтому форма колебаний одного звука речи заметно отличается от формы другого, что видно на рис. 1.3, на котором изображены графики колебаний при произношении звуков а, о и у.

Любые звуки человек характеризует в соответствии со своим восприятием по уровню громкости и высоте.

Громкость тона какой-либо данной высоты определяется амплитудой колебаний. Высота тона определяется частотой колебания. Колебания высокой частоты воспринимаются как звуки высокого тона, низкой частоты - как звуки низкого тона (рис. 1.4).

Рис. 1.4. Два музыкальных тона одной высоты и разной громкости (а) и одинаковой громкости, но разной высоты (б).

Интенсивность звука

Тело, являющееся источником звуковых колебаний, излучает энергию, переносимую звуковыми колебаниями в пространство (среду), окружающее источник звука. Количество звуковой энергии, проходящей в одну секунду через площадь в 1 м 2 , расположенную перпендикулярно направлению распространения звуковых колебаний, называют интенсивностью (силой) звука.

Величину ее можно определить по формуле:

I=P 2 /Cp 0 [Вт/м 2 ] (1.1)

где: Р - звуковое давление, н/м 2 ; С – скорость звука, м/с; р 0 – плотность среды.

Из приведенной формулы видно, что при увеличении звукового давления интенсивность звука возрастает и, следовательно, увеличивается его громкость.

Когда мы ведем обычный разговор с кем-нибудь из друзей, поток энергии в 1 сек равен ~10 мкВт. Звуковой поток от оратора, выступающего перед публикой, лежит в пределах от 200 до 2000 мкВт. Мощность самых громких звуков скрипки может составлять приблизительно 60 мкВт, а мощности звуков органных труб составляют от 140 до 3200 мкВт. Интенсивность самого слабого звука, который еще можно услышать, составляет приблизительно одну миллионную микроватта на 1м 2 , самого громкого – около одного миллиона микроватт.

Интенсивность звукового колебания и громкость восприятия находятся в определенной зависимости. Прирост ощущения (громкости) пропорционален логарифму отношения раздражений (интенсивностей), т.е. при восприятии двух звуков с интенсивностями I 1 и I 2 ощущается разница в их громкости, равная логарифму отношения интенсивностей этих звуков. Эта зависимость определяется формулой:

где: S – приращение громкости, Б; К – коэффициент пропорциональности, зависящий от выбора единиц измерения, I 1 и I 2 – начальное и конечное значения интенсивности звука. Бел – единица приращения громкости, соответствующая изменению силы звука в 10 раз.

Если коэффициент К принять равным 1, а отношение I 1 /I 2 =10, то

Слух человека различает приращение громкости на 0,1 Б. Поэтому в практике используют более мелкую единицу измерения – децибел (дБ), равный 0,1 Б. В этом случае формула запишется так:

Таблица 1.1. Интенсивности и уровни различных звуков.

Звук Интенсивность, мкВт/м 2 Уровень звука, Б Уровень звука, дБ
Порог слышимости 0,000001
Спокойное дыхание 0,00001
Шум спокойного сада 0,0001
Перелистывание страниц газеты 0,001
Обычный шум в доме 0,01
Пылесос 0,1
Обычный разговор 1,0
Радио
Оживленное уличное движение 100,0
Поезд на эстакаде 1000,0
Шум в вагоне метро 10000,0
Гром 100000,0
Порог ощущений 1000000,0

Если ухо человека воспринимает одновременно два или несколько звуков различной громкости, то более громкий звук заглушает (поглощает) слабые звуки. Происходит так называемая маскировка звуков, и ухо воспринимает только один, более громкий звук. Сразу после воздействия на ухо громкого звука снижается восприимчивость слуха к слабым звукам. Эта способность называется адаптацией (приспособлением) слуха.

Тембр звука

Негармоническое периодическое воздействие с периодом Т равносильно одновременному действию гармонических сил с различными частотами, а именно с частотами, кратными наиболее низкой частоте n=1/T.

Это заключение является частным случаем общей математической теоремы, которую доказал в 1822 г. Жан Батист Фурье. Теорема Фурье гласит: всякое периодическое колебание периода Т может быть представлено в виде суммы гармонических колебаний с периодами, равными Т, T/2, T/3, T/4 и т.д., т.е. с частотами n=(1/T), 2n, 3n, 4n и т.д. Наиболее низкая частота n называется основной частотой. Колебание с основной частотой n называется первой гармоникой или основным тоном (тоном), а колебания с частотами 2n, 3n, 4n и т.д. называются высшими гармониками или обертонами (первым - 2n, вторым - 3n и т.д.).

Каждый звук, издаваемый различными музыкальными инструментами, голосами различных людей и т.п., имеет свои характерные особенности - своеобразную окраску или оттенок. Эти особенности звука называют тембром. На рис. 1.5 показаны осциллограммы звуковых колебаний, создаваемых роялем и кларнетом для одной и той же ноты. Осциллограммы показывают, что период у обоих колебаний одинаков, но они сильно отличаются друг от друга по своей форме и, следовательно, различаются своим гармоническим составом. Оба звука состоят из одних и тех же тонов, но в каждом из них эти тоны - основной и его обертоны - представлены с разными амплитудами и фазами.

Рис. 1.5. Осциллограммы звуков рояля и кларнета.

Для нашего уха существенны только частоты и амплитуды тонов, входящих в состав звука, т.е. тембр звука определяется его гармоническим спектром. Сдвиги отдельных тонов по времени никак не воспринимаются на слух, хотя и могут очень сильно менять форму результирующего колебания.

На рис. 1.6 изображены спектры тех звуков, осциллограммы которых показаны на рис. 1.5. Так как высоты звуков одинаковы, то и частоты тонов - основного и обертонов - одни и те же. Однако амплитуды отдельных гармоник в каждом спектре сильно различаются.

Рис. 1.6. Спектры звуков рояля и кларнета.


Интенсивность звука (абсолютная) - величина, равная отношению потока звуковой энергии dP через поверхность, перпендикулярную направлению распространения звука, к площади dS этой поверхности:

Единица измерения - ватт на квадратный метр (Вт/м 2).

Для плоской волны интенсивность звука может быть выражена через амплитуду звукового давления p 0 и колебательную скорость v :

где Z S - удельное акустическое сопротивление среды.

Тело, являющееся источником звуковых колебаний, излучает энергию, которая переносится звуковыми колебаниями в пространство (среду), окружающее источник звука. Количество звуковой энергии, проходящей в одну секунду через площадь в 1 м 2 , расположенную перпендикулярно направлению распространения звуковых колебаний, называют интенсивностью (а также, силой) звука.

Величину ее можно определить по формуле:

I=P 2 /Cp 0 [Вт/м 2 ] (1.1)

где: Р - звуковое давление, н/м 2 ; С – скорость звука, м/с; р 0 – плотность среды.

Из приведенной формулы видно, что при увеличении звукового давления интенсивность звука возрастает и, следовательно, увеличивается его громкость.

9. Какие виды частотных спектров звука вы знаете?

Частотный спектр звука - график зависимости относительной энергии звуковых колебаний от частоты. Существуют два основных типа таких спектров: дискретный и непрерывный . Дискретный спектр состоит из отдельных линий для частот, разделенных пустыми промежутками. В непрерывном спектре в пределах его полосы присутствуют все частоты.

На практике звуковые волны одной-единственной частоты встречаются редко. Но сложные звуковыеволны можно разлагать на гармоники. Такой метод называется фурье-анализом по имени французского математика Ж.Фурье (1768-1830), который первым применил его (в теории теплоты).

ДВА ТИПА ПЕРИОДИЧЕСКИХ ВОЛН: а - прямоугольные колебания; б - пилообразные колебания. Амплитуда обеих волн равна А, а период колебаний Т - величина, обратная частоте f.

10. Какая полоса частот называется октавой?

Октава - полоса частот, в которой верхняя граничная частота в два раза больше нижней

Октава - единица частотного интервала, равна интервалу между двумя частотами (f2 и f1), логарифм отношения которых (при основании 2) log2(f2/f1)=1, что соответствует f2/f1=2;

11. Что понимают вод порогом слышимости?

Порог слышимости - минимальная величина звукового давления, при которой звук данной частоты может быть ещё воспринят ухом человека. Величину порога слышимости принято выражать в децибелах, принимая за нулевой уровень звукового давления 2·10 −5 Н/м 2 или 20·10 −6 Н/м 2 при частоте 1 кГц (для плоской звуковой волны). Порог слышимости зависит от частоты звука. При действии шумов и других звуковых раздражителей порог слышимости для данного звука повышается, причём повышенное значение порога слышимости сохраняется некоторое время после прекращения действия мешающего фактора, а затем постепенно возвращается к исходному уровню. У разных людей и у одних и тех же лиц в разное время порог слышимости может различаться. Он зависит от возраста, физиологического состояния, тренированности. Измерения порога слышимости обычно производят методами аудиометрии.

12. В каких единицах измеряется уровень звукового давления?

Звуково́е давле́ние - переменное избыточное давление, возникающее в упругой среде при прохождении через неё звуковой волны. Единица измерения - паскаль (Па).

Мгновенное значение звукового давления в точке среды изменяется как со временем, так и при переходе к другим точкам среды, поэтому практический интерес представляет среднеквадратичное значение данной величины, связанное с интенсивностью звука:

где - интенсивность звука, - звуковое давление, - удельное акустическое сопротивление среды, - усреднение по времени.

При рассмотрении периодических колебаний иногда используют амплитуду звукового давления; так, для синусоидальной волны

где - амплитуда звукового давления.

Силой, или интенсивностью, звука в проходящей (т. е. нестоячей) волне называется количество энергии, ежесекундно протекающей через площадки, перпендикулярной к направлению распространения волны.

Интенсивность (силу) звука измеряют в или же в единицах, в 10 раз больших, а именно в (микроватт - миллионная доля ватта).

Вычисления показывают, что интенсивность звука равна отношению квадрата амплитуды избыточного давления к удвоенному акустическому сопротивлению среды:

Это справедливо как для плоских, так и для сферических волн. В случае плоских волн, если пренебречь потерями, связанными с внутренним трением, сила звука не должна изменяться с расстоянием. В случае сферических волн амплитуды смещения, скорости частиц и избыточного давления убывают как величины, обратные первой степени расстояния от источника звука. Следовательно, в случае сферических волн сила звука убывает обратно пропорционально квадрату расстояния от источника звука.

Для измерения силы звука обычно применяют микрофоны (их устройство описано во втором томе курса, в главе об электрических колебаниях). Для измерения силы звука применяют также диск Рэлея - это тонкий небольшой диск (изготовленный из пластинки слюды толщиной в 2-3 сотых миллиметра) диаметром в подвешенный на тончайшей нити. В поле звуковых волн на диск

действует вращающая пара, момент которой пропорционален силе звука и не зависит от частоты звука. Эта вращающая пара стремится повернуть диск так, чтобы плоскость его была перпендикулярна к направлению распространения звуковых волн. Обычно диск Рэлея подвешивают в звуковом поле под углом в 45° к направлению распространения волн и измеряют силу звука, определяя угол поворота диска.

Для определения силы звука можно также измерять давление которое звуковые волны оказывают на твердую стенку. Это давление пропорционально силе звука:

здесь есть отношение теплоемкости среды при постоянном давлении к теплоемкости при постоянном объеме, с - скорость звука.

Сопоставляя приведенную формулу с формулой (6), мы видим, что давление, оказываемое звуковыми волнами на твердую стенку, пропорционально квадрату амплитуды избыточного давления и обратно пропорционально плотности среды.

Определение интенсивности звука, данное в начале настоящего параграфа, утрачивает смысл для стоячей волны. Действительно, если амплитуды давления в прямой и отраженной волнах равны между собой, то через площадку, поставленную перпендикулярно к оси волны, протекают в противоположных направлениях равные количества энергии. Поэтому результирующий поток энергии через площадку равен нулю. В этом случае интенсивность звука характеризуют плотностью звуковой энергии, т. е. энергией, содержащейся в звукового поля.

Для вычисления плотности звуковой энергии в поле плоской проходящей волны представим себе цилиндрический объем сечением в и длиной, численно равной скорости звука ось цилиндра пусть совпадает с направлением распространения волны. Ясно, что общее количество энергии, содержащейся внутри цилиндра, численно равно интенсивности звука С другой стороны, при сечении в объем цилиндра численно равен таким образом, плотность звуковой энергии оказывается равной

Представление о движении энергии и важнейшие в настоящее время понятия о плотности энергии в точке среды и о скорости движения энергии были введены в науку в 1874 г. Н. А. Умовым в его докторской диссертации, где, в частности, дано строгое обоснование уравнения (7). Десятью годами позже идеи Умова были развиты английским физиком Пойнтингом в применении к электромагнитным волнам.

Поясним, как вычисляется интенсивность звука в отраженной звуковой волне и в преломленной волне.

Законы отражения и преломления звуковых волн подобны законам отражения и преломления света. При отражении звуковой волны угол, образуемый направлением врлны с нормалью к отражающей поверхности (угол падения), равен углу, образуемому направлением отраженной волны с той же нормалью (углу отражения).

При переходе звуковой волны из одной среды в другую угол падения и угол преломления связаны между собой соотношением

где - скорости звука в первой и во второй средах.

Если интенсивность звука в первой среде, то при нормальном падении волн на поверхность раздела интенсивность звука во второй среде будет:

где, как было доказано Рэлеем, коэффициент проникновения звука определяется формулой

Очевидно, что коэффициент отражения равен

Из формулы Рэлея мы видим, что чем больше различаются акустические сопротивления сред тем меньшая доля звуковой энергии проникает через поверхность раздела сред. Нетрудно сообразить, что когда акустическое сопротивление второй среды весьма велико в сравнении с акустическим сопротивлением первой среды, то

Такой случай имеет место при переходе звука из воздуха в массу воды или в толщу бетона, дерева; акустическое сопротивление этих сред в несколько тысяч раз больше акустического сопротивления воздуха. Стало быть, при нормальном падении звука из воздуха на массивы воды, бетона, дерева в эти среды проникает не более тысячной доли интенсивности звука. Тем не менее бетонная или деревянная стена может оказаться весьма звукопроводной, если она тонка; в этом случае стена воспринимает и передает упругие колебания, как большая мембрана. Приведенная выше формула для такого случая неприменима.

Отдельные слои атмосферного воздуха вследствие неодинакового температурного состояния могут обладать различным акустическим сопротивлением; от поверхности раздела таких слоев воздуха происходит отражение звука. Этим объясняется, что дальность слышимости звуков в атмосфере подвержена значительным колебаниям. Дальность слышимости в зависимости от степени однородности воздуха может изменяться в 10 и более раз. Погода (дождь, снег, туман) не влияет на звукопроводность воздуха. В ясный день и во время густого тумана слышимость может быть одинаковой. И, напротив, в дни, когда погода видимым образом одинакова, звукопроводность воздуха может оказаться весьма различной, если степень однородности слоев воздуха неодинакова.

Одной из важных задач акустики является выяснение условий, влияющих на интенсивность звука акустических излучателей. Когда колеблющееся тело-излучатель отдает звуковую энергию во внешнюю среду, это тело совершает работу против реакции звукового поля т. е. против сил, обусловленных избыточным давлением в излучаемой волне и тормозящих колебательное движение излучателя.

Вычисление показывает, что когда излучатель имеет размеры, большие сравнительно с длиной волны, он излучает плоскую волну, причем мощность звукового излучения равна половине произведения амплитуды скорости колебательного движения излучателя на площадь излучателя 5 и на акустическое сопротивление среды:

Если же излучатель мал сравнительно с длиной волны, то он излучает сферическую волну, причем мощность излучения в этом случае определяется формулой

Для какого-либо излучателя заданных размеров (например, для колеблющегося диска площадью первая из двух приведенных формул для мощности определяет мощность излучения высоких частот (коротких волн), вторая - мощность излучения низких частот (длинных волн).

Часто требуется чтобы в области высоких, средних и низких частот излучатель имел одинаковую мощность (этим качеством должны обладать мембраны патефонов, диффузоры громкоговорителей). Но при заданной амплитуде колебательного движения излучатели малого размера при удовлетворительной мощности излучения высоких звуков имеют весьма малую мощность излучения низких звуков. Это делает их в музыкальном отношении неполноценными.

Из сказанного ясны недостатки излучателей малого размера. Излучатели большого размера обладают тем существенным неудобством, что их масса значительна и, стало быть, для сообщения им колебательного движения с требуемой амплитудой необходимо прилагать очень большие силы. Поэтому с технической точки зрения желательно поставить излучатель малого размера в условия наиболее выгодного акустического режима.

Эта задача может быть решена с помощью специального устройства, соединяющего излучатель с открытым пространством, а именно с помощью рупора. Рупор представляет собой постепенно расширяющуюся трубу, в узком конце которой (в горле) колеблется излучатель. Жесткие стенки рупора не дают звуковой волне «расползаться» в стороны. Таким образом, фронт волны сохраняет более или менее плоскую форму, что делает первую из приведенных выше формул

для мощности излучения применимой не только в области высоких, но также и в области низких частот.

Обычно изучение интенсивности звука приходится проводить для замкнутых помещений. Исследование звука в замкнутых помещениях важно для проектирования аудиторий, театров, концертных залов и т. п. и для исправления акустических дефектов помещений, построенных без предварительного акустического расчета. Отрасль техники, занимающаяся этими вопросами, носит название архитектурной акустики.

Основной особенностью акустических процессов в замкнутых помещениях является наличие многократных отражений звука от ограничивающих поверхностей (стен, потолка). В помещении средних размеров звуковая волна претерпевает несколько сот отражений, прежде чем энергия ее уменьшится до порога слышимости В больших помещениях звук достаточной силы может быть слышен после выключения источника в течение нескольких десятков секунд за счет существования отраженных волн, движущихся во всевозможных направлениях. Совершенно очевидно, что такое постепенное замирание звука, с одной стороны, выгодно, так как звук усиливается за счет энергии отраженных волн; однако, с другой стороны, чрезмерно медленное замирание может существенно ухудшить восприятие связного звучания (речи, музыки) вследствие того, что каждая новая часть связного контекста (например, каждый новый слог речи) перекрывается еще не отзвучавшими предыдущими. Уже из этих беглых рассуждений понятно, что для создания хорошей слышимости время отзвука в аудитории должно иметь некоторую оптимальную величину.

При каждом отражении часть энергии теряется вследствие поглощения. Отношение поглощенной энергии звука к падающей называют коэффициентом поглощения звука. Приводим его значения для ряда случаев:

Очевидно, что чем больше коэффициент поглощения звука, характерный для стен какого-либо помещения, и чем меньше размеры этого помещения, тем короче время отзвука.

Рис. 162. Оптимальная реверберация для помещений различного объема.

Время отзвука, в течение которого интенсивность звука убывает до порога слышимости, зависит не только от свойств помещения, но и от начальной силы звука. Чтобы внести определенность в расчет акустических свойств аудиторий, принято (совершенно условно) рассчитывать время, в течение которого плотность звуковой энергии уменьшается до одной миллионной доли начального значения. Это время называют временем стандартной реверберации, или просто реверберацией.

Оптимальное значение реверберации, при котором слышимость может считаться наилучшей, многократно определялось экспериментально. В малых

помещениях (объемом не свыше оптимальной является реверберация 1,06 сек. При дальнейшем увеличении объема оптимальная реверберация растет пропорционально как это представлено на рис. 162. В помещениях с плохими акустическими свойствами (слишком «гулких») реверберация вместо оптимального значения в 1-2 сек. составляет 3-5 сек.

I = \frac{1}{T}\int\limits_t^{t+T}\frac{dP}{dS}dt,

где T - время усреднения, dP - поток звуковой энергии, переносимый через площадку dS .

Используется также физическая величина мгновенная интенсивность звука , представляющая собой мгновенное значение потока звуковой энергии через единичную площадку, расположенную перпендикулярно направлению распространения звука :

I(t) = \frac{dP(t)}{dS}.

Для плоской волны интенсивность звука может быть выражена через амплитуду звукового давления p 0 и колебательную скорость v :

I = {p_0v \over 2} = {v^2Z_S \over 2} = {p_0^2 \over 2Z_S},

См. также

Напишите отзыв о статье "Интенсивность звука"

Примечания

Литература

  • Интенсивность звука (сила звука) // Большая Советская энциклопедия (в 30 т.) / А. М. Прохоров (гл. ред.). - 3-е изд. - М .: Сов. энциклопедия, 1972. - Т. X. - С. 315–316. - 592 с.

Отрывок, характеризующий Интенсивность звука

Кутузов отступил к Вене, уничтожая за собой мосты на реках Инне (в Браунау) и Трауне (в Линце). 23 го октября.русские войска переходили реку Энс. Русские обозы, артиллерия и колонны войск в середине дня тянулись через город Энс, по сю и по ту сторону моста.
День был теплый, осенний и дождливый. Пространная перспектива, раскрывавшаяся с возвышения, где стояли русские батареи, защищавшие мост, то вдруг затягивалась кисейным занавесом косого дождя, то вдруг расширялась, и при свете солнца далеко и ясно становились видны предметы, точно покрытые лаком. Виднелся городок под ногами с своими белыми домами и красными крышами, собором и мостом, по обеим сторонам которого, толпясь, лилися массы русских войск. Виднелись на повороте Дуная суда, и остров, и замок с парком, окруженный водами впадения Энса в Дунай, виднелся левый скалистый и покрытый сосновым лесом берег Дуная с таинственною далью зеленых вершин и голубеющими ущельями. Виднелись башни монастыря, выдававшегося из за соснового, казавшегося нетронутым, дикого леса; далеко впереди на горе, по ту сторону Энса, виднелись разъезды неприятеля.
Между орудиями, на высоте, стояли спереди начальник ариергарда генерал с свитским офицером, рассматривая в трубу местность. Несколько позади сидел на хоботе орудия Несвицкий, посланный от главнокомандующего к ариергарду.
Казак, сопутствовавший Несвицкому, подал сумочку и фляжку, и Несвицкий угощал офицеров пирожками и настоящим доппелькюмелем. Офицеры радостно окружали его, кто на коленах, кто сидя по турецки на мокрой траве.
– Да, не дурак был этот австрийский князь, что тут замок выстроил. Славное место. Что же вы не едите, господа? – говорил Несвицкий.
– Покорно благодарю, князь, – отвечал один из офицеров, с удовольствием разговаривая с таким важным штабным чиновником. – Прекрасное место. Мы мимо самого парка проходили, двух оленей видели, и дом какой чудесный!
– Посмотрите, князь, – сказал другой, которому очень хотелось взять еще пирожок, но совестно было, и который поэтому притворялся, что он оглядывает местность, – посмотрите ка, уж забрались туда наши пехотные. Вон там, на лужку, за деревней, трое тащут что то. .Они проберут этот дворец, – сказал он с видимым одобрением.
– И то, и то, – сказал Несвицкий. – Нет, а чего бы я желал, – прибавил он, прожевывая пирожок в своем красивом влажном рте, – так это вон туда забраться.

Акустика – область физики, изучающая упругие колебания и волны, методы получения и регистрации колебаний и волн, их взаимодействие с веществом.

Звук в широком смысле – упругие колебания и волны, распространяющиеся в газообразных, жидких и твердых веществах; в узком смысле – явление, субъективно воспринимаемое органом слуха человека и животных. В норме ухо человека слышит звук в диапазоне частот от 16 Гц до 20 кГц.

Звук с частотой ниже 16 Гц называется инфразвуком , выше 20 кГц – ультразвуком , а самые высокочастотные упругие волны в диапазоне от 10 9 до 10 12 Гц – гиперзвуком .

Существующие в природе звуки разделяют на несколько видов.

Звуковой удар – это кратковременное звуковое воздействие (хлопок, взрыв, удар, гром).

Тон – это звук, представляющий собой периодический процесс. Основной характеристикой тона является частота. Тон может быть простым, характеризующимся одной частотой (например, издаваемый камертоном, звуковым генератором), и сложным (издаваемым, например, аппаратом речи, музыкальным инструментом).

Сложный тон можно представить в виде суммы простых тонов (разложить на составляющие тона). Наименьшая частота такого разложения соответствует основному тону , а остальные – обертонам , или гармоникам . Обертоны имеют частоты, кратные основной частоте.

Акустический спектр тона – это совокупность всех его частот с указанием их относительных интенсивностей или амплитуд.

Шум – это звук, имеющий сложную, неповторяющуюся временную зависимость, и представляет собой сочетание беспорядочно изменяющихся сложных тонов. Акустический спектр шума – сплошной (шорох, скрип).

Физические характеристики звука:

а) Скорость (v ). Звук распространяется в любой среде, кроме вакуума. Скорость его распространения зависит от упругости, плотности и температуры среды, но не зависит от частоты колебаний. Скорость звука в воздухе при нормальных условиях равна примерно 330 м/с (» 1200 км/ч). Скорость звука в воде равна 1500 м/с; близкое значение имеет скорость звука и в мягких тканях организма.

б) Интенсивность (I ) – энергетическая характеристика звука – это плотность потока энергии звуковой волны. Для уха человека важны два значения интенсивности (на частоте 1 кГц):

порог слышимости I 0 = 10 –12 Вт/м 2 ; такой порог выбран на основе объективных показателей – это минимальный порог восприятия звука нормальным человеческим ухом; встречаются люди у которых интенсивность I 0 может составлять 10 –13 или 10 –9 Вт/м 2 ;

порог болевого ощущения I max – 10 Вт/м 2 ; звук такой интенсивности человек перестает слышать и воспринимает его как ощущение давления или боли.

в) Звуковое давление (Р ). Распространение звуковой волны сопровождается изменением давления.

Звуковое давление (Р ) – это давление, дополнительно возникающее при прохождении звуковой волны в среде; оно является избыточным над средним давлением среды.

Физиологически звуковое давление проявляется как давление на барабанную перепонку. Для человека важны два значения этого параметра:

– звуковое давление на пороге слышимости – P 0 = 2×10 –5 Па;

– звуковое давление на пороге болевого ощущения – Р m ах =

Между интенсивностью (I ) и звуковым давлением (Р ) существует связь:

I = P 2 /2rv ,

где r – плотность среды, v – скорость звука в среде.

г) Волновое сопротивление среды (R a) – это произведение плотности среды (r )на скорость распространения звука (v ):

R a = rv .

Коэффициент отражения (r ) – величина, равная отношению интенсивностей отраженной и падающей волн:

r = I отр /I пад.

r рассчитывается по формуле:

r = [(R a 2 – R a 1)/(R a 2 + R a 1)] 2 .

Интенсивность преломленной волны зависит от коэффициента пропускания.

Коэффициент пропускания (b ) – величина, равная отношению интенсивностей прошедшей (преломленной) и падающей волн:

b = I прош /I пад.

При нормальном падении коэффициент b рассчитывается по формуле

b = 4(R a 1 /R a 2)/( R a 1 /R a 1 + 1) 2 .

Отметим, что сумма коэффициентов отражения и преломления равна единице, а их значения не зависят от того порядка, в котором звук проходит данные среды. Например, для перехода звука из воздуха в воду значения коэффициентов такие же, как для перехода в обратном направлении.

д) Уровень интенсивности . При сравнении интенсивности звука удобно пользоваться логарифмической шкалой, то есть сравнивать не сами величины, а их логарифмы. Для этого используется специальная величина – уровень интенсивности (L ):

L = lg (I /I 0); L = 2lg (P /P 0). (1.3.79)

Единицей измерения уровня интенсивности является – бел , [Б].

Логарифмический характер зависимости уровня интенсивности от самой интенсивности означает, что при увеличении интенсивности в 10 раз уровень интенсивности возрастает на 1 Б.

Один бел большая величина, поэтому на практике используют более мелкую единицу уровня интенсивности – децибел [дБ]: 1 дБ = 0,1 Б. Уровень интенсивности в децибелах выражается следующими формулами:

L ДБ = 10lg (I /I 0); L ДБ = 20lg (P /P 0).

Если в данную точку приходят звуковые волны от нескольких некогерентных источников , то интенсивность звука равна сумме интенсивностей всех волн:

I = I 1 + I 2 + ...

Для нахождения уровня интенсивности результирующего сигнала используется следующая формула:

L = lg (10 L l +10 L l + ...).

Здесь интенсивности должны быть выражены в белах . Формула для перехода имеет вид

L = 0,l×L ДБ.

Характеристики слухового ощущения:

Высота тона обусловлена, прежде всего, частотой основного тона (чем больше частота, тем более высоким воспринимается звук). В меньшей степени высота зависит от интенсивности волны (звук большей интенсивности воспринимается более низким).

Тембр звука определяется его гармоническим спектром. Различные акустические спектры соответствуют разному тембру, даже в том случае, когда основной тон у них одинаков. Тембр – это качественная характеристика звука.

Громкость звука – это субъективная оценка уровня его интенсивности.

Закон Вебера-Фехнера:

Если увеличивать раздражение в геометрической прогрессии (то есть в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (то есть на одинаковую величину).

Для звука с частотой 1 кГц вводят единицу уровня громкости – фон , которая соответствует уровню интенсивности 1 дБ. Для других частот уровень громкости также выражают в фонах по следующему правилу:

громкость звука равна уровню интенсивности звука (дБ) на частоте 1 кГц, вызывающего у «среднего» человека такое же ощущение громкости, что и данный звук, причем

Е = klg (I/I 0). (1.3.80)

Пример 32. Звук, которому на улице соответствует уровень интенсивности L 1 = 50 дБ, слышен в комнате как звук с уровнем интенсивность L 2 = 30 дБ. Найти отношение интенсивностей звука на улице и в комнате.

Дано: L 1 = 50 дБ = 5 Б;

L 2 = 30 дБ = 3 Б;

I 0 = 10 –12 Вт/м 2 .

Найти: I 1 /I 2 .

Решение. Для того чтобы найти интенсивность звука в комнате и на улице, запишем формулу (1.3.79) для двух рассматриваемых в задаче случаев:

L 1 = lg (I 1 /I 0); L 2 = lg (I 2 /I 0),

откуда выразим интенсивности I 1 и I 2:

5 = lg (I 1 /I 0) Þ I 1 = I 0 ×10 5 ;

3 = lg (I 2 /I 0) Þ I 2 = I 0 ×10 3 .

Очевидно: I 1 /I 2 = 10 5 /10 3 = 100.

Ответ: 100.

Пример 33. Для людей с нарушенной функцией среднего уха слуховые аппараты сконструированы так, чтобы передавать колебания непосредственно на кости черепа. Для костной проводимости порог слухового восприятия на 40 дБ выше, чем для воздушной. Чему равна минимальная интенсивность звука, которую способен воспринимать человек с дефектом слуха?

Дано: L к = L в + 4.

Найти: I min .

Решение. Для костной и воздушной проводимости, согласно (1.3.79),

L к = lg (I min /I 0); L в = lg (I 2 /I 0), (1.3.81)

где I 0 – порог слышимости.

Из условия задачи и (1.3.81) следует, что

L к = lg (I min /I 0) = L в + 4 = lg (I 2 /I 0) + 4, откуда

lg (I min /I 0) – lg (I 2 /I 0) = 4, то есть,

lg [(I min /I 0) : (I 2 /I 0)] = 4 Þ lg (I min /I 2) = 4, имеем:

I min /I 2 = 10 4 Þ I min = I 2 ×10 4 .

При I 2 = 10 –12 Вт/м 2 , I min = 10 –8 Вт/м 2 .

Ответ: I min = 10 –8 Вт/м 2 .

Пример 34. Звук с частотой 1000 Гц проходит через стенку, при этом его интенсивность уменьшается с 10 –6 Вт/м 2 до 10 –8 Вт/м 2 . На сколько уменьшился уровень интенсивности?

Дано: n = 1000 Гц;

I 1 = 10 –6 Вт/м 2 ;

I 2 = 10 –8 Вт/м 2 ;

I 0 = 10 –12 Вт/м 2 .

Найти: L 2 – L 1 .

Решение. Уровни интенсивности звука до и после прохождения стенки найдем из (1.3.79):

L 1 = lg (I 1 /I 0); L 2 = lg (I 2 /I 0), откуда

L 1 = lg (10 –6 /10 –12) = 6; L 2 = lg (10 –8 /10 –12) = 4.

Тогда L 2 – L 1 = 6 – 4 = 2 (Б) = 20 (дБ).

Ответ: уровень интенсивности уменьшился на 20 дБ.

Пример 35. Для людей с нормальным слухом изменение уровня громкости ощущается при изменении интенсивности звука на 26 %. Какому интервалу громкости соответствует указанное изменение интенсивности звука? Частота звука составляет 1000 Гц.

Дано: n = 1000 Гц;

I 0 = 10 –12 Вт/м 2 ;

DI = 26 %.

Найти: DL .

Решение. Для частоты звука, равной 1000 Гц, шкалы интенсивностей и громкостей звука совпадают согласно формуле (1.3.80), так как k = 1,

Е = klg (I/I 0) = lg (I/I 0) = L , откуда

DL = lg (DI/I 0) = 11,4 (Б) = 1 (дБ) = 1 (фон).

Ответ: 1 фон.

Пример 36. Уровень интенсивности приемника составляет 90 дБ. Чему равен максимальный уровень интенсивности трех приемников, работающих одновременно?



Рассказать друзьям