Функции и строение нефрона. Строение нефрона Из чего состоит нефрон почечное тельце

💖 Нравится? Поделись с друзьями ссылкой

Нефрон является не только основной структурной, но также и функциональной единицей почки. Именно здесь проходят самые важные этапы Поэтому информация о том, как выглядит строение нефрона, и какие именно функции он выполняет, будет весьма интересной. Кроме того, особенности функционирования нефронов могут прояснить нюансы работы почечной системы

Строение нефрона: почечное тельце

Интересно, что в зрелой почке здорового человека находится от 1 до 1,3 миллиардов нефронов. Нефрон — это функциональная и структурная единица почки, которая состоит из почечного тельца и так называемой петли Генле.

Само почечное тельце состоит из мальпигиевого клубочка и капсулы Боумена - Шумлянского. Для начала стоит отметить, что клубочек на самом деле представляет собой совокупность мелких капилляров. Кровь попадает сюда через приносную артерию — здесь фильтруется плазма. Остаток крови выводится выносящей артериолой.

Капсула Боумена - Шумлянского состоит из двух листков — внутреннего и внешнего. И если внешний лист представляет собой обыкновенную ткань из то строение внутреннего листа заслуживает большего внимания. Внутренняя часть капсулы покрыта подоцитами — это клетки, которые выполняют роль дополнительного фильтра. Они пропускают глюкозу, аминокислоты и прочие вещества, но препятствуют движению больших протеиновых молекул. Таким образом, в почечном тельце образуется первичная моча, которая отличается от лишь отсутствием крупных молекул.

Нефрон: строение проксимального канальца и петли Генле

Проксимальный каналец представляет собой образование, которое соединяет почечное тельце и петлю Генле. Внутри каналец имеет ворсинки, которые увеличивают общую площадь внутреннего просвета, тем самым увеличивая показатели реабсорбции.

Проксимальный каналец плавно переходит в нисходящую часть петли Генле, которая характеризируется небольшим диаметром. Петля опускается в мозговой слой, где огибает собственную ось на 180 градусов и поднимается вверх — здесь начинается восходящая часть петли Генле, которая имеет гораздо большие размеры и, соответственно, диаметр. Восходящая петля поднимается примерно до уровня клубочка.

Строение нефрона: дистальные канальцы

Восходящая часть петли Генле в корковом веществе переходит в так называемый дистальный извилистый каналец. Он соприкасается с клубочком и контактирует с приносной и выносной артериолами. Здесь осуществляется конечная абсорбция полезных веществ. Дистальный каналец переходит в конечный отдел нефрона, который в свою очередь впадает в собирательную трубку, несущую жидкость в

Классификация нефронов

В зависимости от места расположения принято выделять три основных типа нефронов:

  • кортикальные нефроны составляют примерно 85% от количества всех структурных единиц в почке. Как правило, они расположены во внешней коре почки, о чем, собственно, и свидетельствует их название. Строение нефрона этого типа немного отличается — петля Генле здесь небольшая;
  • юкстамедуллярные нефроны — такие структуры находятся как раз между мозговым и корковым слоем, имеют длинные петли Генле, которые глубоко проникают в мозговой слой, иногда даже достигая пирамид;
  • субкапсулярные нефроны — структуры, которые расположены непосредственно под капсулой.

Можно заметить, что строение нефрона полностью соответствует его функциям.

Осуществляют большое количество полезной функциональной работы в организме, без которой нельзя представить нашу жизнь. Главная из них – это ликвидация из организма лишней воды и заключительных продуктов метаболизма. Происходит это в мельчайших структурах почки – нефронах.

Для того, чтобы перейти к мельчайшим единицам почки, нужно разобрать общее ее строение. Если рассмотреть почку в разрезе, то по своей форме она напоминает боб или фасоль.

Человек рождается с двумя почками, но, правда, бывают исключения, когда присутствует всего одна почка. Расположены они у задней стенки брюшины, на уровне I и II поясничных позвонков.

Весит каждая почка примерно 110-170 грамм, ее длина составляет 10-15 см, ширина — 5-9 см, а толщина – 2-4 см.

Почка имеет заднюю и переднюю поверхности. Задняя поверхность располагается в почечном ложе. Это напоминает большую и мягкую кровать, которая выстелена поясничной мышцей. А вот передняя поверхность соприкасается с другими соседними органами.

Левая почка контактирует с левым надпочечником, ободочной кишкой, и поджелудочной железой, а правая сообщается с правым надпочечником, толстым и тонким кишечником.

Ведущие структурные компоненты почки:

  • Почечная капсула – это ее оболочка. Она включает в себя три слоя. Фиброзная капсула почки — по своей толщине довольно неплотная, имеет очень прочное строение. Защищает почку от различных повреждающих воздействий. Жировая капсула – слой жировой ткани, которая по своей структуре нежная, мягкая и рыхлая. Предохраняет почку от сотрясений и ударов. Наружная капсула – почечная фасция. Состоит из тонкой соединительной ткани.
  • Паренхима почки – ткань, которая состоит из нескольких слоев: коркового и мозгового вещества. Последнее складывается из 6-14 почечных пирамид. А вот сами пирамидки формируются из собирательных канальцев. В корковом веществе располагаются нефроны. Эти слои четко различимы по цвету.
  • Лоханка почки – углубление, похожее на воронку, которое получает от нефронов. Состоит она из чашечек разного калибра. Самые маленькие – это чашечки I порядка, в них проникает моча из паренхимы. Соединяясь, маленькие чашечки, образуют более крупные – чашечки II порядка. Насчитывают таких чашечек в почке около трех. При слиянии этих трех чашечек образуется почечная лоханка.
  • Почечная артерия – крупный кровеносный сосуд, ответвляясь от аорты, он доставляет зашлакованную кровь в почку. Примерно 25% всей крови поступает ежеминутно в почки для очищения. В течение дня почечная артерия снабжает почку примерно 200 литрами крови.
  • Почечная вена – по ней уже очищенная кровь из почки попадает в полую вену.

Каналец, выходящий из капсулы, именуется извитым канальцем I порядка. Он правда не ровный, а извитой. Проходя по мозговому слою почки, этот каналец формирует петлю Генле и вновь поворачивается в сторону коркового слоя. На своем пути извитой каналец делает несколько витков и в обязательном порядке соприкасается с основанием клубочка.

В корковом слое образуется каналец II порядка, он вливается в собирательную трубочку. Небольшое количество собирательных трубочек, соединяясь вместе, объединяются в выводные протоки, переходящие в почечную лоханку. Именно эти трубочки, двигаясь к мозговому веществу, формируют мозговые лучи.

Типы нефронов

Выделяют эти типы из-за специфичности местонахождения клубочков в коре почек, канальцев и особенностей состава и локализации кровеносных сосудов. К ним относят:

  • корковые – занимают примерно 85% от общего числа всех нефронов
  • юкстамедуллярные – 15% из всего количества

Корковые нефроны самые многочисленные и тоже имеют внутри себя классификацию:

  1. Суперфициальные или их еще называют поверхностными. Главная особенность их в расположении почечных тел. Они находятся во внешнем слое коркового вещества почки. Их количество примерно 25%.
  2. Интракортикальные. У них мальпигиевые тельца располагаются в средней части коркового вещества. Преобладают по численности — 60% всех нефронов.

Корковые нефроны имеют сравнительно укороченную петлю Генле. Из-за своих маленьких размеров она способна проникнуть только во внешнюю часть мозгового вещества почек.

Образование первичной мочи — вот главная функция таких нефронов.

У юкстамедуллярных нефронов мальпигиевые тельца обнаруживаются в основании коркового вещества, находятся практически на линии начала мозгового слоя. Петля Генле у них более продолжительна, чем у корковых, она инфильтрируется настолько глубоко в мозговой слой, что достигает вершин пирамид.

Эти нефроны в мозговом веществе формируют высокое осмотическое давление, которое необходимо, чтобы происходило сгущение (увеличение концентрации), и сокращение объемов конечной мочи.

Функция нефронов

Функция их заключается в образовании мочи. Процесс этот стадийный и состоит из 3 фаз:

  • фильтрация
  • реабсорбция
  • секреция

В начальную фазу формируется первичная моча. В капиллярных клубочках нефрона плазма крови очищается (ультрафильтруется). Совершается очищение плазмы из-за разности давления в клубочке (65 мм рт. ст.) и в оболочке нефрона (45 мм рт. ст.).

Около 200 л первичной мочи образуется в организме человека за сутки. Эта моча имеет схожий с плазмой крови состав.

Во вторую фазу – реабсорбции происходит повторное поглощение нужных для организма веществ из первичной мочи. В эти вещества входят: , вода, различные полезные соли, растворенные аминокислоты и глюкоза. Происходит это в проксимальных извитых канальцах. Внутри которых находится большое количество ворсинок, они увеличивают площадь и скорость всасывания.

Из 150 л первичной мочи образуется всего 2 л вторичной мочи. В ней отсутствуют важные питательные вещества для организма, но сильно увеличивается концентрация токсичных веществ: мочевины, мочевой кислоты.

Третья фаза характеризуется выделением вредных веществ в мочу, которые не прошли почечный фильтр: , различные красители, лекарственные средства, яды.

Структура нефрона очень сложная, несмотря на его маленькие размеры. Удивительно, но практически каждая составляющая нефрона выполняет свою функцию.

Ноя 7, 2016 Виолетта Лекарь

(с греческого νεφρ?ς- переводится как « почка»)- основная структурная и функциональная единица почки. Нефрон выполняет функцию концентрирования жидкости и солевых растворов путем фильтрации их из крови, реабсорбцию необходимых веществ из мочи.

Удаляет из организма продукты обмена, регулирует объем циркулирующей крови, кровяное давление, уровень электролитов, кислотно-щелочное равновесие. Его функциноирование жизненно важно для организма и регулируется эндокринной системой, в этой регуляции принимают участие такие гормоны как антидиуретический гормон, альдостерон, гормон паращитовидной железы. У здоровых людей почка содержит от 800 000 до 1.5 миллионов нефронов.

Типы нефронов:

Существует два основных типа нефронов: корковые и юкстамедуллярные нефроны, которые классифицированы согласно месту их расположения. Корковые нефроны относятся к определенному почечному тельцу, в то время, как югстамедулярные нефроны располагаются около мозгового вещества.

Анатомия нефрона

Каждый нефрон состоит из фильтрационного элемента - почечного тельца и системы трубочек, в которой происходит реабсорбция. В почечном тельце происходит фильтрация растворов из крови, затем эти растворы поступают в почечные трубочки и там преобразуются.

Почечное тельце нефрона

Состоит из клубочка и Боуменовой капсулы, почечного клубочка (мальпигиевого тельца), является начальной частью нефрона, несущей фильтрационную функцию. Клубочек - это сеть капилляров, которые получают кровоснабжение от центростремительной артерии.

Давление крови в клубочке обеспечивает движение жидкости и растворов, которые будут фильтроваться в пространство Боуменовой капсулы. Плазма крови, проходящая через почку проходит через сеть капилляров, которые переплетаются вокруг трубочек, а между ними находится промежуточное пространство. Затем вены соединяются и образуют почечную вену, воссоединяясь с основным кровотоком.

Боуменова капсула, так же называется капсулой клубочка, окружает клубочек. Она состоит из внутреннего висцерального листка, образованного специальными клетками, называемыми подоцитами и париетального листка, состоящего из одного слоя эпителиальных клеток. Из клубочкового фильтрата формируется моча.

Почечная трубочка нефрона

Почечная трубочка является частью нефрона, она содержит жидкость, которая проходя через нее, поступает в собирательую систему, не являющуюся частью нефрона.

Компоненты почечной трубочки:

  • Проксимальная часть
  • Петля Генле
  • Нисходящее колено петли Генле
  • Восходящее колено петли Генле
  • Дистальная петля

Функции нефронов

Нефрон, как функциональная единица, выполняет почти все функции почки. Большинство этих функций касается реабсорбции различных растворов, ионов, углеводов (например глюкоза), аминокислот (например глутамат).

У каждого сегмента нефрона есть узкоспециализированная функция.

Проксимальная трубочка и часть нефрона может быть разделена на извитую и нисходящую часть.

Жидкость повторно поступает в перитубулярные капилляры, включая примерно две трети фильтруемой жидкости и солей.

Петля Генле состоит из восходящего и нисходящего колена. Она начинается в корковом слое, затем идет в мозговое вещество, в последующем возвращаясь обратно в корковое вещество. Основная роль петли Генле состоит в концентрировании солей в интерстициальной ткани.

Есть существенные различия между нисходящей и восходящей петлей Генле. Нисходящая петля проницаемая для воды, но абсолютно непроницаема для солей, таким образом происходит концентрирование в интерстиции. Фильтрат свободно проникает глубже в интерстиций. Нисходящие части петли позволяют жидкости в течение длительного времени вытекать из фильтрата, он становится гипертоническим. В отличие от нисходящей петли, восходящая петля Генле непроницаема для воды. В нисходящей петле натрий активно поступает из фильтрата, создавая в интрестиции гипертоническую концентрацию. Через восходящую петлю фильтрат становится гипотоническим, так как теряет большую часть состоящего в нем натрия. Этот гипотонический фильтрат переходит в извитой каналец.

Существуют различия в функциях между дистальной и проксимальной извитыми трубочками. Клетки, выстилающие трубочку имеют множество митохондрий, чтобы производить достаточно энергии для активного транспорта. Большая часть транспорта ионов, происходящая в дистальной замысловатой трубочке включает в себя реабсорбцию кальция и выделение фосфора.

При наличии альдостерона повторно поглощается большее количество натрия, выделяется большее количество калия. Натрийуретический пептид заставляет дистальную извитую трубочку выделять большее количество натрия. Кроме того, трубочки так же выделяют водород и аммоний, чтобы отрегулировать pH среды. После прохождения дистальной замысловатой трубочки остается приблизительно только 1% воды.

Собирательная система нефрона

Каждая дистальная извитая трубочка поставляет свой фильтрат в собирательную систему, первым сегментом этой системы является собирательная трубочка. Собирательная система начинается в коре почки и идет в мозговое вещество. Моча перемещается вниз по собирательной системе.

Хотя собирательная система обычно непроницаема для воды, в присутствие антидиуретического гормона она становится проницаемой. Антидиуретический гормон приводит к реабсорбции молекул воды, поскольку они проходят через собирательный канал посредством аквапор.

Аквапоры - это мембранные белки, которые выборочно проводят молекулы воды, предотвращая прохождение ионов и других растворов. Таким образом три четверти воды повторно реабсорбируются из мочи. Таким образом, уровень антидиуретического гормона определяет, будет ли моча сконцентрирована или не концентрированна. Повышения уровня АДГ является индикатором обезвоживания, в то время как при достаточном количестве воды уровень его снижается.

Нисходящие колена собирательных трубочек являются так же проницаемыми для мочевины.

В последующем моча проходит через почечный сосочек, проходит в почечные чашечки, почечную лоханку, а затем в мочевой пузырь через мочеточник.

Собирательный канал иногда не считают частью нефрона, т.к. он происходит не из метонефрогенной бластемы, а из зачатков мочеточника.

Югстагломерулярный аппарат нефрона

Югстагломерулярный аппарат является специализированной частью нефрона, ответственной за синтез и хранение гормона ренина, который включен в ренин-ангиотензиновую систему.

Югстагломерулярный аппарат содержит три компонента: плотное пятно, югстагломерулярные клетки, экстрагломерулярные мезангиальные клетки.

Клиническая значимость:

Из-за своей важной функции в регуляции водного баланса в организме, нефрон является точкой приложения антигипертензивных препаратов и препаратов диуретиков.

Эти препараты называются мочегонными и влияют на водно-солнвой обмен в нефроне, таким образом увеличивая количество выделяемой мочи.

Статья носит информационный характер. При любых проблемах со здоровьем - не занимайтесь самодиагностикой и обратитесь к врачу!

В.А. Шадеркина - врач уролог, онколог, научный редактор

Почки расположены ретроперитонеально по обе стороны позвоночного столба на уровне Th12–L2. Масса каждой почки взрослого мужчины - 125–170 г, взрослой женщины - 115–155 г, т.е. суммарно менее 0,5% общей массы тела.

Паренхима почки подразделяется на расположенное кнаружи (у выпуклой поверхности органа) корковое и находящееся под ним мозговое вещество . Рыхлая соединительная ткань образует строму органа (интерстиций).

Корковое вещество расположено под капсулой почки. Зернистый вид корковому веществу придают присутствующие здесь почечные тельца и извитые канальцы нефронов.

Мозговое вещество имеет радиально исчерченный вид, поскольку содержит параллельно идущие нисходящую и восходящую части петли нефронов, собирательные трубочки и собирательные протоки, прямые кровеносные сосуды (vasa recta ). В мозговом веществе различают наружную часть, расположенную непосредственно под корковым веществом, и внутреннюю часть, состоящую из вершин пирамид

Интерстиций представлен межклеточным матриксом, содержащим отростчатые фибробластоподобные клетки и тонкие ретикулиновые волокна, тесно связанные со стенками капилляров и почечных канальцев

Нефрон как морфо-функциональная единица почки.

У человека каждая почка состоит примерно из одного миллиона структурных единиц, называемых нефронами. Нефрон является структурной и функциональной единицей почки потому, что он осуществляет всю совокупность процессов, в результате которых образуется моча.


Рис.1. Мочевыделительная система. Слева : почки, мочеточники, мочевой пузырь, мочеиспускательный канал (уретра) Справа6 строение нефрона

Строение нефрона:

    Капсула Шумлянского-Боумена, внутри которой расположен клубочек капилляров – почечное (мальпигиево) тельце. Диаметр капсулы – 0,2 мм

    Проксимальный извитой каналец. Особенность его эпителиальных клеток: щеточная каемка – микроворсинки, обращенные в просвет канальца

    Петля Генле

    Дистальный извитой каналец. Его начальный отдел обязательно прикасается к клубочку между приносящей и выносящей артериолами

    Связующий каналец

    Собирательная трубка

Функционально различают 4 сегмента :

1. Гломерула;

2. Проксимальный – извитая и прямая части проксимального канальца;

3. Тонкий отдел петли – нисходящий и тонкая часть восходящего отдела петли;

4. Дистальный – толстая часть восходящего отдела петли, дистальный извитой каналец, связующий отдел.

Собирательные трубки в процессе эмбриогенеза развиваются самостоятельно, но функционируют вместе с дистальным сегментом.

Начинаясь в коре почки, собирательные трубки сливаются, образуют выводные протоки, которые проходят через мозговое вещество и открываются в полость почечной лоханки. Общая длина канальцев одного нефрона – 35-50 мм.

Типы нефронов

В различных сегментах канальцев нефрона имеются существенные отличия в зависимости от их локализации в той или иной зоне почки, величине клубочков (юкстамедулярные крупнее суперфициальных), глубине расположения клубочков и проксимальных канальцев, длине отдельных участков нефрона, особенно петель. Большое функциональное значение имеет зона почки, в которой расположен каналец, независимо от того, находится ли он в корковом или мозговом веществе.

В корковом слое находятся почечные клубочки, проксимальные и дистальные отделы канальцев, связующие отделы. В наружной полоске наружного мозгового вещества находятся тонкие нисходящие и толстые восходящие отделы петель нефронов, собирательные трубки. Во внутреннем слое мозгового вещества располагаются тонкие отделы петель нефрона и собирательные трубки.

Такое расположение частей нефрона в почке неслучайно. Это важно в осмотическом концентрировании мочи. В почке функционирует несколько различных типов нефронов:

1. с уперфициальные (поверхностные,

короткая петля);

2. и нтракортикальные (внутри коркового слоя);

3.Юкстамедуллярные (у границы коркового и мозгового слоя).

Одним из важных отличий, перечисленных трех типов нефронов, является длина петли Генле. Все поверхностные - корковые нефроны обладают короткой петлей, в результате чего колено петли располагается выше границы, между наружной и внутренней частями мозгового вещества. У всех юкстамедуллярных нефронов длинные петли проникают во внутренний отдел мозгового вещества, часто достигая верхушки сосочка. Интракортикальные нефроны могут иметь и короткую и длинную петлю.


ОСОБЕННОСТИ КРОВОСНАБЖЕНИЯ ПОЧКИ

Почечный кровоток не зависит от системного артериального давления в широком диапазоне его изменений. Это связано с миогенной регуляцией , обусловленной способностью гладкомышечных клетокvasafferensсокращаться в ответ на растяжение их кровью (при повышении артериального давления). В результате количество протекающей крови остается постоянным.

В одну минуту через сосуды обеих почек у человека проходит около 1200 мл крови, т.е. около 20-25% крови, выбрасываемой сердцем в аорту. Масса почек составляет 0,43% массы тела здорового человека, а получают они ¼ часть объема крови, выбрасываемой сердцем. Через сосуды коры почки протекает 91-93% крови, поступающей в почку, остальное ее количество снабжает мозговое вещество почки. Кровоток в коре почки в норме составляет 4-5 мл/мин на 1 г. ткани. Это наиболее высокий уровень органного кровотока. Особенность почечного кровотока состоит в том, что при изменении артериального давления (от 90 до 190 мм.рт.ст) кровоток почки остается постоянным. Это обусловлено высоким уровнем саморегуляции кровообращения в почке.

Короткие почечные артерии - отходят от брюшного отдела аорты и представляют собой крупный сосуд с относительно большим диаметром. После вхождения в ворота почек они делится на несколько междолевых артерий, которые проходят в мозговом веществе почки между пирамидами до пограничной зоны почек. Здесь от междольковых артерий отходят дуговые артерии. От дуговых артерий в направлении коркового вещества идут междольковые артерии, которые дают начало многочисленным приносящим клубочковым артериолам.

В почечный клубочек входит приносящая (афферентная) артериола, в нем она распадается на капилляры, образуя мальпегиев клубочек. При слиянии они образуют выносящую (эфферентную) артериолу, по которой кровь оттекает от клубочка. Эфферентная артериола, затем снова распадаются на капилляры, образуя густую сеть вокруг проксимальных и дистальных извитых канальцев.

Две сети капилляров – высокого и низкого давления .

В капиллярах высокого давления (70 мм рт.ст.) – в почечном клубочке – происходит фильтрация. Большое давление связано с тем, что:1) почечные артерии отходят непосредственно от брюшного отдела аорты; 2) их длина невелика; 3) диаметр приносящей артериолы в 2 раза больше, чем выносящей.

Таким образом, большая часть крови в почке дважды проходит через капилляры - вначале в клубочке, затем вокруг канальцев, это так называемая «чудесная сеть». Междольковые артерии образуют многочисленные аностомозы, которые играют компенсаторную роль. В образовании околоканальцевой капиллярной сети существенное значение имеет артериола Людвига, которая отходит от междольковой артерии, либо от приносящей клубочковой артериолы. Благодаря артериоле Людвига возможно экстрагломерулярное кровоснабжение канальцев в случае гибели почечных телец.

Артериальные капилляры, создающие околоканальцевую сеть, переходят в венозные. Последние образуют звездчатые венулы, расположенные под фиброзной капсулой - междольковые вены, впадающие в дуговые вены, которые сливаются и образуют почечную вену, которая впадает в нижнюю половую вену.

В почках различают 2-а круга кровообращения: большой корковый - 85-90% крови, малый юкстамедулярный - 10-15% крови. В физиологических условиях 85-90% крови циркулирует по большому (корковому) кругу почечного кровообращения, при патологии кровь движется по малому или укороченному пути.

Отличие кровоснабжения юкстамедулярного нефрона - диаметр приносящей артериолы примерно равен диаметру выносящей артериолы, эфферентная артериола не распадается на околоканальцевую капиллярную сеть, а образует прямые сосуды, которые спускаются в мозговое вещество. Прямые сосуды образуют петли на различных уровнях мозгового вещества, поворачивая обратно. Нисходящие и восходящие части этих петель образуют противоточную систему сосудов, называемых сосудистым пучком. Юкстамедулярный путь кровообращения является своеобразным «шунтом» (шунт Труэта), в котором большая часть крови поступает не в корковое, а в мозговое вещество почек. Это так называемая дренажная система почек.

Нефроном является структурная единица почки, отвечающая за формирование урины. Работая 24 часа, органы пропускают до 1700 л плазмы, образуя немногим больше литра урины.

Оглавление [Показать]

Нефрон

От работы нефрона, которым является структурно-функциональная единица почки, зависит, насколько успешно осуществляется поддержание баланса, выводятся отработанные продукты. За сутки два миллионов нефронов почек, столько, сколько их в организме, вырабатывают 170 л первичной мочи, сгущают до суточного количества, доходящего до полутора литров. Суммарная площадь выделительной поверхности нефронов составляет почти 8 м2, что в 3 раза превышает площадь кожи.

У выделительной системы высокий резерв прочности. Создается он благодаря тому, что одновременно работает лишь третья часть нефронов, что позволяет выжить при удалении почки.

Очищается в почках артериальная кровь, идущая по приносящей артериоле. Выходит очищенная кровь по выходящей артериоле. Поперечник приносящей артериолы больше, чем у артериолы, за счет чего создается перепад давления.

Строение

Отделы нефрона почки такие:

  • Начинаются в корковом слое почки капсулой Боумена, которая располагается над клубочком капилляров артериолы.
  • Капсула нефрона почки сообщается с проксимальным (ближайшим) канальцем, направляемым в мозговое вещество - это и является ответом на вопрос в какой части почки находятся капсулы нефронов.
  • Каналец переходит в петлю Генле – сначала в проксимальный отрезок, затем – дистальный.
  • Окончанием нефрона принято считать место, где начинается собирательная трубочка, куда поступает вторичная моча из множества нефронов.

Схема нефрона

Капсула

Клетки подоциты, окружают клубочек капилляров подобием шапочки. Образование называют почечным тельцем. В его поры проникает жидкость, которая оказывается в пространстве Боумена. Здесь собирается инфильтрат – продукт фильтрации кровяной плазмы.

Проксимальный каналец

Этот вид состоит из клеток, покрытых снаружи базальной мембраной. Внутренняя часть эпителия снабжена выростами – микроворсинками, как щеточка, выстилающими каналец по всей длине.

Снаружи находится базальная мембрана, собранная в многочисленные складки, которые при наполнении канальцев распрямляются. Каналец при этом приобретает округлую форму в поперечнике, а эпителий уплощается. При отсутствии жидкости поперечник канальца становится узким, клетки приобретают призматический вид.

К функциям относится реабсорбция:

  • Na – 85%;
  • ионов Ca, Mg, K, Cl;
  • солей - фосфатов, сульфатов, бикарбоната;
  • соединений - белков, креатинина, витаминов, глюкозы.

Из канальца реабсорбенты попадают в кровеносные сосуды, которые густой сетью оплетают каналец. На этом участке в полость канальца всасывается желчная кислота, поглощаются щавелевая, парааминогиппуровая, мочевая кислоты, происходит всасывание адреналина, ацетилхолина, тиамина, гистамина, транспортируются лекарственные средства – пенициллина, фуросемида, атропина и др.

Здесь происходит расщепление гормонов, идущих из фильтрата, при помощи ферментов каймы эпителия. Инсулин, гастрин, пролактин, брадикинин разрушаются, их концентрация в плазме понижается.

Петля Генле

После вхождения в мозговой луч проксимальный каналец переходит в начальный отдел петли Генле. Каналец переходит в нисходящий отрезок петли, которая спускается в мозговое вещество. Затем восходящая часть поднимается в корковое вещество, сближаясь с капсулой Боумена.

Внутреннее устройство петли сначала не отличается от строения проксимального канальца. Затем просвет петли сужается, через него проходит фильтрация Na в межтканевую жидкость, которая становится гипертонической. Это имеет значение для работы собирательных трубочек: благодаря высокой концентрации соли в омывающей жидкости, в них происходит всасывание воды. Восходящий отдел расширяется, переходит в дистальный каналец.

Петля Гентле

Дистальный каналец

Этот участок уже, короче, состоит из низких эпителиальных клеток. Ворсинки внутри канала отсутствуют, с наружной стороны хорошо выражена складчатость базальной мембраны. Здесь идет реабсорбция натрия, продолжается реабсорбция воды, секреция в просвет канальца ионов водорода, аммиака.

На видео схема строения почки и нефрона:

Виды нефронов

По особенностям строения, функциональному назначению различают такие типы нефронов, которые функционируют в почке:

  • корковые - суперфициальные, интракортикальные;
  • юкстамедуллярные.

Корковые

В корковом слое находятся две разновидности нефронов. Суперфициальные составляют около 1% от общего числа нефронов. Отличаются поверхностным расположением клубочков в коре, самой короткую петлей Генле, небольшим объемом фильтрации.

Количество интракортикальных - более 80% нефронов почки, располагаются в середине коркового слоя, играют основную роль в фильтрации урины. Кровь в клубочке интракортикального нефрона проходит под давлением, так как приводящая артериола значительно шире выводящей.

Юкстамедуллярные

Юкстамедуллярные - малочисленная часть нефронов почки. Их число не превышает 20% от числа нефронов. Капсула находится на границе коркового и мозгового слоя, остальная его часть расположена в мозговом слое, петля Генле спускается почти к самой почечной лоханке.

Этот вид нефронов имеет определяющее значение в способности концентрировать мочу. У особенности юкстамедуллярного нефрона относится то, что выводящая артериола этого вида нефрона имеет тот же диаметр, что и приносящая, а петля Генле самая длинная из всех.

Выносящие артериолы образуют петли, которые движутся в мозговой слой параллельно петле Генле, впадают в венозную сеть.


Функции

В функции нефрона почки входит:

  • концентрирование урины;
  • регуляция тонуса сосудов;
  • контроль над давлением крови.

Моча образуется в несколько этапов:

  • в клубочках фильтруется плазма крови, поступающая по артериоле, образуется первичная моча;
  • реабсорбция из фильтрата полезных веществ;
  • концентрация мочи.

Корковые нефроны

Основная функция - образование урины, реабсорбция полезных соединений, белков, аминокислот, глюкозы, гормонов, минералов. Корковые нефроны участвуют в процессах фильтрации, реабсорбции за счет особенностей кровоснабжения, а реабсорбированные соединения сразу проникают в кровь через близко расположенную капиллярную сеть выносящей артериолы.

Юкстамедуллярные нефроны

Основная работа юкстамедуллярного нефрона заключается в концентрировании мочи, что возможно, благодаря особенностям движения крови в выходящей артериоле. Артериола не переходит в капиллярную сеть, а переходит в венулы, впадающие в вены.

Нефроны этого вида участвуют в формировании структурного образования, регулирующего кровяное давление. Этот комплекс секретирует ренин, необходимый для выработки ангиотензина 2 – сосудосуживающего соединения.

Нарушение функций нефрона и как восстановить

Нарушение работы нефрона приводит к изменениям, которые отражаются на всех системах организма.

К расстройствам, вызванным дисфункцией нефронов, относятся нарушения:

  • кислотности;
  • водно-солевого баланса;
  • обмена веществ.

Заболевания, которые вызываются нарушением транспортных функций нефронов, называются тубулопатиями, среди которых различают:

  • первичные тубулопатии – врожденные дисфункции;
  • вторичные – приобретенные нарушения транспортной функции.

Причинами появления вторичной тубулопатии служит повреждение нефрона, вызванное действием токсинов, в том числе лекарств, злокачественных опухолей, тяжелых металлов, миеломы.

По месту локализации тубулопатии:

  • проксимальные – повреждение проксимальных канальцев;
  • дистальные – повреждение функций дистальных извитых канальцев.

Виды тубулопатии

Проксимальная тубулопатия

Повреждение проксимальных участков нефрона приводит к формированию:

  • фосфатурии;
  • гипераминоацидурии;
  • почечного ацидоза;
  • глюкозурии.

Нарушение реабсорбции фосфатов приводит к развитию рахитоподобного строения костей – состояния, устойчивого к лечению витамином D. Патологию связывают с отсутствием белка-переносчика фосфата, нехваткой рецепторов, связывающих кальцитриол.

Почечная глюкозурия связана со снижением способности всасывать глюкозу. Гипераминоацидурия – это явления, при котором нарушается транспортная функция аминокислот в канальцах. В зависимости от вида аминокислоты, патология приводит к различным системным заболеваниям.

Так, если нарушена реабсорбция цистина, развивается заболевание цистинурия – аутосомно-рецессивное заболевание. Болезнь проявляется отставанием в развитии, почечной коликой. В моче при цистинурии возможно появление цистиновых камней, которые легко растворяются в щелочной среде.

Проксимальный канальцевый ацидоз вызывается неспособностью поглощать бикарбонат, из-за чего он выделяется с мочой, а в крови его концентрация понижается, а ионов Cl, напротив, повышается. Это приводит к метаболическому ацидозу, при этом происходит усиление выведения ионов K.

Дистальная тубулопатия

Патологии дистальных отделов проявляются почечным водным диабетом, псевдогипоальдостеронизмом, канальцевым ацидозом. Почечный диабет - повреждение наследственное. Врожденное нарушение вызвано отсутствием реакции клеток дистальных канальцев на антидиуретический гормон. Отсутствие реакции приводит к нарушению способности к концентрации урины. У больного развивается полиурия, в день может выделяться до 30 л мочи.

При комбинированных нарушениях развиваются сложные патологии, одна из которых называется синдромом де Тони-Дебре-Фанкони. При этом нарушена реабсорбция фосфатов, бикарбонатов, не всасываются аминокислоты, глюкоза. Синдром проявляется задержкой развития, остеопорозом, патологией строения костей, ацидозом.

Нормальную фильтрацию крови гарантирует правильное строение нефрона. Он осуществляет процессы обратного захвата химических веществ из плазмы и выработку ряда биологических активных соединений. В почке содержится от 800 тысяч до 1,3 млн нефронов. Старение, неправильный образ жизни и увеличение количества заболеваний приводят к тому, что с возрастом число клубочков постепенно снижается. Для понимания принципов работы нефрона стоит разбираться в его строении.

Описание нефрона

Основной структурной и функциональной единицей почки является нефрон. Анатомия и физиология структуры отвечает за образование мочи, обратный транспорт веществ и выработку спектра биологических субстанций. Схема строения нефрона представляет собой эпителиальную трубку. Дальше формируются сети капилляров различного диаметра, которые впадают в собирательный сосуд. Полости между структурами заполнены соединительной тканью в виде интерстициальных клеток и матрикса.

Развитие нефрона закладывается еще в эмбриональном периоде. Разные типы нефронов отвечают за разные функции. Общая длинна канальцев обеих почек составляет до 100 км. В нормальных условиях не все число клубочков задействовано, работает только 35%. Нефрон состоит из тельца, равно как и из системы каналов. Имеет следующее строение:

  • капиллярный клубочек;
  • капсула почечного клубочка;
  • ближний каналец;
  • нисходящий и восходящий фрагменты;
  • дальние прямые и извитые канальцы;
  • соединительный путь;
  • собирательные протоки.

Вернуться к оглавлению

Функции нефрона у человека

В день в 2 млн клубочков образуется до 170 л первичной мочи.

Понятие нефрона ввел итальянский врач и биолог Марчелло Мальпиги. Так как нефрон считается целостной структурной единицей почки, то и отвечает за выполнение следующих функций в организме:

  • очистка крови;
  • формирование первичной мочи;
  • возвратный капиллярный транспорт воды, глюкозы, аминокислот, биоактивных веществ, ионов;
  • образование вторичной мочи;
  • обеспечение солевого, водного и кислотно-щелочного баланса;
  • регулирование уровня артериального давления;
  • секреция гормонов.

Вернуться к оглавлению

Почечный клубочек

Схема строения почечнго клубочка и капсулы Боумена.

Нефрон начинается капиллярным клубочком. Это - тело. Морфофункциональная единица - сеть капиллярных петель, общим числом до 20, которые окружает капсула нефрона. Кровоснабжение тело получает от приносящей артериолы. Стенка сосудов представляет собой слой эндотелиальных клеток, между которыми находятся микроскопические промежутки диаметром до 100 нм.

В капсулах выделяют внутренний и внешний эпителиальные шары. Между двумя слоями остается щелевидный промежуток - мочевое пространство, где содержится первичная моча. Она окутывает каждый сосуд и формирует цельный шар, таким образом разделяя кровь, расположенную в капиллярах, от пространств капсулы. Базальная мембрана служит поддерживающей базой.

Устроен нефрон по типу фильтра, давление в котором не постоянное, оно изменяется в зависимости от разницы ширины просветов приносящего и выносящего сосудов. Фильтрация крови в почках происходит в клубочке. Форменные элементы крови, белки, обычно не могут проходить сквозь поры капилляров, так как их диаметр значительно больше и они задерживаются базальной мембраной.

Вернуться к оглавлению

Подоциты капсулы

В состав нефрона входят подоциты, образующие внутренний слой в капсуле нефрона. Это звездчатые эпителиоциты большого размера, которые окружают почечный клубочек. У них овальное ядро, которое включает рассеянный хроматин и плазмосому, прозрачная цитоплазма, вытянутые митохондрии, развитый аппарат Гольджи, укороченные цистерны, мало лизосом, микрофиламенты и несколько рибосом.

Три типа ответвлений подоцитов образуют педикулы (цитотрабекулы). Выросты тесно врастают друг в друга и лежат на внешнем слое базальной мембраны. Структуры цитотрабекул в нефронах формируют решетчатую диафрагму. Эта часть фильтра имеет негативный заряд. Для их нормальной работы также требуются белки. В комплексе происходит фильтрация крови в просвет капсулы нефрона.

Вернуться к оглавлению

Базальная мембрана

Строение базальной мембраны нефрона почки имеет 3 шара толщиной около 400 нм, состоит из коллагеноподобного белка, глико- и липопротеидов. Между ними расположены слои плотной соединительной ткани - мезангия и шар мезангиоцититов. Здесь также располагаются щели размером до 2 нм - поры мембраны, они имеют значение в процессах очищения плазмы. С обеих сторон отделы соединительнотканных структур покрыты системами гликокаликса подоцитов и эндотелиоцитов. Фильтрация плазмы задействует часть вещества. Базальная мембрана клубочков почек функционирует как барьер, через который не должны проникать крупные молекулы. Также и отрицательный заряд мембраны предотвращает прохождение альбуминов.

Вернуться к оглавлению

Мезангиальный матрикс

Кроме того, состоит нефрон из мезангия. Он представлен системами элементов соединительной ткани, которые располагаются между капиллярами мальпигиевого клубочка. Также это отдел между сосудами, где отсутствуют подоциты. В его основной состав входят рыхлая соединительная ткань, содержащая мезангиоциты и юкставаскулярные элементы, которые располагаются между двумя артериолами. Основная работа мезангия - поддерживающая, сократительная, а также как обеспечение регенерации компонентов базальной мембраны и подоцитов, так и поглощение старых составляющих компонентов.

Вернуться к оглавлению

Проксимальный каналец

Проксимальные капиллярные почечные канальцы нефронов почки разделяются на изогнутые и прямые. Просвет небольшого размера, его формируют цилиндрический или кубический тип эпителия. На верхушке помещается щеточная кайма, которая представлена длинными ворсинками. Они составляют поглощающий слой. Обширная площадь поверхности проксимальных трубочек, большое число митохондрий и близкое расположение перитубулярных сосудов предназначены для селективного захвата веществ.

Отфильтрованная жидкость поступает из капсулы в другие отделы. Мембраны близко расположенных клеточных элементов разделяются промежутками, через которые происходит циркуляция жидкости. В капиллярах извитых клубочков производится процесс реабсорбции 80% компонентов плазмы, среди них: глюкоза, витамины и гормоны, аминокислоты, а кроме того, мочевина. Функции канальцев нефрона включают выработку кальцитриола и эритропоэтина. В сегменте вырабатывается креатинин. Посторонние субстанции, которые попадают в фильтрат из межклеточной жидкости, экскретируются с мочой.

Вернуться к оглавлению

Петля Генле

Структурно-функциональная единица почки имеет в составе тонкие отделы, также называемые петлей Генле. Она состоит из 2 сегментов: нисходящего тонкого и восходящего толстого. Стенка нисходящего участка диаметром 15 мкм образована плоским эпителием со множественными пиноцитозными пузырьками, а восходящей - кубическим. Функциональное значение канальцев нефрона петли Генле охватывает ретроградное перемещение воды в нисходящей части колена и ее пассивный возврат в тонком поднимающемся сегменте, обратный захват ионов Na, Cl и K в толстом отрезке восходящего сгиба. В капиллярах клубочков этого сегмента молярность мочи повышается.

20530 0

Особенности и специфика функций почек объясняются своеобразием специализации их структуры. Функциональная морфология почек изучается на разных структурных уровнях — от макромолекулярного и ультраструктурного до органного и системного. Так, гомеостатические функции почек и их нарушения имеют морфологический субстрат на всех уровнях структурной организации этого органа. Ниже рассматривается своеобразие тонкой структуры нефрона, строения сосудистой, нервной и гормональной систем почек, позволяющее понять особенности функций почек и их нарушения при важнейших почечных заболеваниях.

Нефрон, состоящий из сосудистого клубочка, его капсулы и почечных канальцев (рис. 1), имеет высокую структурно-функциональную специализацию. Эта специализация определяется гистологическими и физиологическими особенностями каждого составного элемента клубочковой и канальцевой части нефрона.

Рис. 1. Строение нефрона. 1 - сосудистый клубочек; 2 - главный (проксимальный) отдел канальцев; 3 - тонкий сегмент петли Генле; 4 - дистальный отдел канальцев; 5 - собирательные трубки.

В каждой почке содержится приблизительно 1,2-1,3 млн. клубочков . Сосудистый клубочек имеет около 50 капиллярных петель, между которыми найдены анастомозы , что позволяет клубочку функционировать как «диализирующая система». Стенка капилляра представляет собой клубочковый фильтр, состоящий из эпителия, эндотелия и располагающейся между ними базальной мембраны (БМ) (рис. 2).

Рис. 2. Гломерулярный фильтр. Схема строения стенки капилляра почечного клубочка . 1 - просвет капилляра; эндотелий; 3 - БМ; 4 - подоцит; 5 - малые отростки подоцита (педикулы).

Эпителий клубочка, или подоцит , состоит из крупного клеточного тела с ядром в его основе, митохондриями, пластинчатым комплексом, эндоплазматической сетью, фибриллярными структурами и другими включениями. Строение подоцитов и их взаимоотношения с капиллярами хорошо изучены в последнее время с помощью растрового электронного микрофона . Показано, что большие отростки подоцита отходят из перинуклеарной зоны; они напоминают «подушки», охватывающие значительную поверхность капилляра. Малые отростки, или педикулы, отходят от больших почти перпендикулярно, переплетаются между собой и закрывают все свободное от больших отростков пространство капилляра (рис. 3, 4). Педикулы тесно прилежат друг к другу, межпедикулярное пространство составляет 25-30 нм .

Рис. 3. Электронограмма фильтра

Рис. 4. Поверхность капиллярной петли клубочка покрыта телом подоцита и его отростками (педикулами), между которыми видны межпедикулярные щели . Сканирующий электронный микроскоп. Х6609.

Подоциты связаны между собой пучковыми структурами - peculiar junction» , образующимися из ининмолеммы. Фибриллярные структуры особенно отчетливо ни ряжены между малыми отростками подоцитов, где они обра¬тит так называемую щелевую диафрагму - slit diaphragma

Подоциты связаны между собой пучковыми структурами - "peculiar junction" , образующимися из плазмолеммы. Фибриллярные структуры особенно отчетливо выряжены между малыми отростками подоцитов, где они образуют так называемую щелевую диафрагму - slit diaphragma (см. рис. 3), которой отводится большая роль в гломерулярной фильтрации. Щелевая диафрагма, имея филаментарное строение (толщина 6 нм, длина 11 нм), образует своеобразную решетку, или систему пор фильтрации, диаметр которых у человека 5-12 нм . Снаружи щелевая диафрагма покрыта гликокаликсом, т. е. сиалопротеиновым слоем цитолеммы подоцита, внутри она граничит с lamina rara externa БМ капилляра (рис. 5).


Рис. 5. Схема взаимоотношений элементов гломерулярного фильтра. Подоциты (Р), содержащие миофиламенты (MF), окружены плазматической мембраной (РМ). Филаменты базальной мембраны (ВМ) образуют между малыми отростками подоцитов щелевую диафрагму (SM), покрытую снаружи гликокаликсом (GK) плазматической мембраны; те же филаменты ВМ связаны с эндотелиальными клетками (Еn), оставляя свободными лишь его поры (F) .

Функцию фильтрации осуществляет не только щелевая диафрагма, но и миофиламенты цитоплазмы подоцитов , с помощью которых происходит их сокращение. Так, «субмикроскопические насосы» перекачивают ультрафильтрат плазмы в полость капсулы клубочка. Той же функции транспорта первичной мочи служит и система микротрубочек подоцитов . С подоцитами связана не только функция фильтрации, но и продукция вещества БМ . В цистернах гранулярной эндоплазматической сети этих клеток находят материал, аналогичный веществу базальной мембраны, что подтверждается авторадиографической меткой .

Изменения подоцитов чаще всего бывают вторичными и обычно наблюдаются при протеинурии, нефротическом синдроме (НС). Они выражаются в гиперплазии фибриллярных структур клетки, исчезновении педикул, вакуолизации цитоплазмы и нарушений щелевой диафрагмы. Эти изменения связаны как с первичным повреждением базальной мембраны, так и с самой протеинурией [Серов В. В., Куприянова Л. А., 1972]. Инициальные и типичные изменения подоцитов в виде исчезновения их отростков характерны лишь для липоидного нефроза, который хорошо воспроизводится в эксперименте с помощью аминонуклеозида .

Эндотелиальные клетки капилляров клубочка имеют поры размером до 100-150 нм (см. рис. 2) и снабжены специальной диафрагмой . Поры занимают около 30% эндотелиальной выстилки, покрытой гликокаликсом. Поры рассматривают как основной путь ультрафильтрации, но допускают и трансэндотелиальный путь, минующий поры; в пользу этого допущения говорит высокая пиноцитозная активность гломерулярного эндотелия. Помимо ультрафильтрации, эндотелий гломерулярных капилляров участвует в образовании вещества БМ .

Изменения эндотелия капилляров клубочка разнообразны: набухание, вакуолизация, некробиоз, пролиферация и десквамация, однако преобладают деструктивно-пролиферативные изменения, столь характерные для гломерулонефрита (ГН).

Базальная мембрана клубочковых капилляров, в образовании которой участвуют не только подоциты и эндотелий , но и мезангиальные клетки , имеет толщину 250-400 нм и в электронном микроскопе выглядит трехслойной; центральный плотный слой (lamina densa) окружен более тонкими слоями с наружной (lamina rara externa) и внутренней (lamina rara interna) стороны (см. рис. 3). Собственно БМ служит lamina densa, состоящая из филаментов белка, подобного коллагену, гликопротеинов и липопротеинов ; наружный и внутренний слои, содержащие мукосубстанции, являются по существу гликокаликсом подоцитов и эндотелия . Филаменты lamina densa толщиной 1,2-2,5 нм входят в «подвижные» соединения с молекулами окружающих их веществ и образуют тиксотропный гель . Неудивительно, что вещество мембраны тратится на осуществление функции фильтрации; БМ полностью обновляет свою структуру в течение года .

С присутствием в плотной пластинке коллагеноподобных филаментов связана гипотеза о порах фильтрации в базальной мембране. Показано, что средний радиус пор мембраны равен 2,9±1 нм и определяется расстоянием между нормально расположенными и неизмененными филаментами коллагеноподобного белка . При падении гидростатического давления в капиллярах клубочков первоначальная «упаковка» коллагеноподобных филаментов в БМ изменяется, что ведет к увеличению размера пор фильтрации .

Предполагают, что при нормальном кровотоке поры базальной мембраны гломерулярного фильтра достаточно велики и могут пропускать молекулы альбумина, IgG, каталазы, но проникновение этих веществ ограничено высокой скоростью фильтрации. Фильтрация ограничена также дополнительным барьером гликопротеинов (гликокаликс) между мембраной и эндотелием, причем этот барьер в условиях нарушенной гломерулярной гемодинамики повреждается.

Для объяснения механизма протеинурии при повреждении базальной мембраны большое значение имели методы с применением маркеров, в которых учтен электрический заряд молекул .

Изменения БМ клубочка характеризуются ее утолщением, гомогенизацией, разрыхлением и фибриллярностью. Утолщение БМ встречается при многих заболеваниях с протеинурией. При этом наблюдаются увеличение промежутков между филаментами мембраны и деполимеризация цементирующего вещества, с чем связывают повышенную порозность мембраны для белков плазмы крови. Кроме того, к утолщению БМ гломерул ведут мембранозная трансформация (по J. Churg), в основе которой лежит избыточная продукция вещества БМ подоцитами, и мезангиальная интерпозиция (по М. Arakawa, P. Kimmelstiel), представленная «выселением» отростков мезангиоцитов на периферию капиллярных петель, отслаивающих эндотелий от БМ.

При многих заболеваниях с протеинурией, помимо утолщения мембраны, методом электронной микроскопии выявляются различные отложения (депозиты) в мембране или в непосредственной близости от нее. При этом каждому отложению той или иной химической природы (иммунные комплексы, амилоид, гиалин) соответствует своя ультраструктура. Наиболее часто в БМ выявляются депозиты иммунных комплексов, что ведет не только к глубоким изменениям самой мембраны, но и к деструкции подоцитов, гиперплазии эндотелиальных и мезангиальных клеток.

Капиллярные петли связывает друг с другом и подвешивает наподобие брыжейки к гломерулярному полюсу соединительная ткань клубочка, или мезангий, структура которого подчинена в основном функции фильтрации. С помощью электронного микроскопа и методов гистохимии внесено много нового в прежние представления о волокнистых структурах и клетках мезангия. Показаны гистохимические особенности основного вещества мезангия, приближающие его к фибромуцину фибрилл, способных воспринимать серебро, и клеток мезангия, отличающихся ультраструктурной организацией от эндотелия, фибробласта и гладкомышечного волокна.

В мезангиальных клетках, или мезангиоцитах, хорошо выряжены пластинчатый комплекс, гранулярная эндоплазматическая сеть, в них много мелких митохондрий, рибосом. Цитоплазма клеток богата основными и кислыми белками, тирозином, триптофаном и гистидином, полисахаридами, РНК, гликогеном. Своеобразие ультраструктуры и богатство пластического материала объясняют высокие секреторные и гиперпластические потенции мезангиальных клеток .

Мезангиоциты способны реагировать на те или иные повреждения гломерулярного фильтра продукцией вещества БМ , в чем проявляется репаративная реакция в отношении основного компонента гломерулярного фильтра. Гипертрофия и гиперплазия мезангиальных клеток ведут к расширению мезангиума, к его интерпозиции , когда отростки клеток, окруженные мембраноподобным веществом, или сами клетки выселяются на периферию клубочка, что вызывает утолщение и склероз стенки капилляра, а в случае прорыва эндотелиальной выстилки - облитерацию его просвета. С интерпозицией мезангия связано развитие гломерулосклероза при многих гломерулопатиях (ГН, диабетический и печеночный гломерулосклероз и т. д.).

Мезангиальные клетки как один из компонентов юкстагломерулярного аппарата (ЮГА) [Ушкалов А. Ф., Вихерт А. М., 1972; Зуфаров К. А., 1975; Rouiller С., Orci L., 1971] способны в определенных условиях к инкреции ренина . Этой функции служат, видимо, взаимоотношения отростков мезангиоцитов с элементами гломерулярного фильтра: определенное количество отростков перфорирует эндотелий клубочковых капилляров, проникает в их просвет и имеет непосредственные контакты с кровью .

Помимо секреторной (синтез коллагеноподобного вещества базальной мембраны) и инкреторной (синтез ренина) функций, мезангиоциты выполняют и фагоцитарную функцию - «очищения» клубочка, его соединительной ткани. Считают, что мезангиоциты способны к сокращению, которое подчинено фильтрационной функции. Это предположение основано на том, что в цитоплазме мезангиальных клеток найдены фибриллы, обладающие актиновой и миозиновой активностью .

Капсула клубочка представлена БМ и эпителием. Мембрана , продолжающаяся в главный отдел канальцев, состоит из ретикулярных волокон. Тонкие коллагеновые волокна закрепляют клубочек в интерстиции . Эпителиальные клетки фиксированы на базальной мембране с помощью филаментов, содержащих актомиозин . На этом основании эпителий капсулы рассматривают как разновидность миоэпителия, изменяющего объем капсулы, что служит функции фильтрации. Эпителий имеет кубическую форму, но в функциональном отношении близок к эпителию главного отдела канальцев ; в области полюса клубочка эпителий капсулы переходит в подоциты.


Клиническая нефрология

под ред. Е.М. Тареева



Рассказать друзьям