История появления гмо. История создания ГМО: с чего всё начиналось Использование ГМО в научных целях

💖 Нравится? Поделись с друзьями ссылкой

А начиналось всё в далёком 72-м году. Американский инженер, учёный Пол Берг, смог соединить два чужеродных гена в один, который самостоятельно в природе никак образоваться не смог бы. Это дало «зелёный свет» для экспериментов с различными живыми организмами. Полученным трансгенетическим организмам стали давать различные названия: уже знакомое – «ГМО», «рекомбинантные», «генно-инженерные», «живые изменённые» и даже «химерные».

Однако учёной среде это открытие не принесло большой радости. Экспериментаторы стали задумываться над последствиями. И совершенно справедливо. Не был выяснен до конца уровень опасности созданных организмов. Как они поведут себя дальше в природе, обмениваясь «химерными» генами? К чему это может привести? Сомнения были столь серьёзны, что учёные, в числе которых был и предприимчивый П. Берг, составили коллективный документ, с просьбой приостановить трансгенные разработки. Напечатанное в СМИ прошение сделало своё дело, и проект был временно заморожен. Но история создания ГМО на этом не закончилась. Целых 3 года учёные разрабатывали правила безопасной работы с трансгенными организмами.

В 76-м проект был разморожен и коллектив исследователей продолжил свою научную деятельность. Прошло три десятилетия, эксперименты не принесли никакого ущерба и некоторые меры предосторожности были упразднены.

Через 2 года Герберт Бойер открывает компанию, которая создаёт, трансгенный продукт, производящий инсулин человека. Спустя 14 лет, в 92-м, в Китае приступили к выращиванию табака, устойчивого к насекомым. Прошло ещё 2 года и в 94-м году, благодаря фирме «Monsanto» из США, появился первый трансгенный помидор, который был пущен «в массы». Овощ не боялся транспортировок, мог сохранять презентабельный вид в течение 6 месяцев и дозревать в помещении при повышении температуры воздуха до +23-25 °С. Именно 1994 год считают началом массового производства трансгенных продуктов питания.

Через год, в 95-м, всё та же «Monsanto» всерьёз занялась выращиванием гено-модифицированной сои, не боящейся сорных трав. Затем пришёл черёд кукурузы, хлопка, табака, рапса, картофеля и остальных культур. Сейчас этой компании принадлежит 50% рынка трансгенных семян в мире.

Ещё через 4 года появился «химерный» рис. Количество фермеров, желающих заполучить «не убиваемые» овощи, росло в геометрической прогрессии.

Первые отрицательные воздействия были обнародованы в 98-м году английским учёным А. Пуштай. В ТВ-передаче он нашёл в себе смелость заявить, что крысы, питавшиеся гено-модифицированным картофелем, демонстрировали необратимые изменения организма с нарушениями внутренних органов. Он был уволен. А ещё через год, независимая группа ученых, изучив его работы, во всеуслышание подтвердила достоверность данных, представленных А. Пуштаем. Это вынудило британские власти запретить продажу ГМО без наличия лицензии, чего не скажешь о США.

По состоянию на 2014 год, из всех площадей в мире, отведённых под посевы, более 15% занято выращиванием трансгенных продуктов. Возглавляет список, естественно, США, далее следуют Аргентина, Канада, Бразилия, Китай и Индия.

Случайный факт:

За последние 50 лет средний рост женщин увеличился на 1 см. —

Cтатья добавлена пользователем Неизвестный
17.03.2010

Краткая история ГМО

В последнее время мы все чаще слышим эту аббревиатуру, упаковки пестрят надписями "не содержит ", в СМИ пугают различными ужасными последствиями употребления ГМО… Что же это за "зверь" такой?

На самом деле, он не так страшен, как его рисуют. Опасность или безопасность еще не доказана ни одним из противоборствующих лагерей. А ведь по обе стороны баррикад – видные ученые (биологи, биоинженеры, химики).

(генетически модифицированный организм) - живой организм, генотип которого был искусственно изменён при помощи методов генной инженерии с целью придания ему желаемых свойств. объединяют три группы организмов – генетически модифицированные микроорганизмы (ГММ), животных (ГМЖ) и растения (ГМР). Наибольшее распространение получили именно генетически модифицированные растения. Нас как потребителей интересуют, конечно, ГМР. Именно их мы употребляем в пищу.

Краткая история ГМО: 1944 – Эвери, Мак-Леод и Маккарти доказали, что "вещество наследственности" – это ДНК. 1961-1966 – расшифрован генетический код – принцип записи в ДНК и РНК последовательности аминокислот в белках. 1970 – выделена первая рестриктаза. 1978 – фирма "Genentech" выпустила рекомбинантный инсулин, производимый человеческим геном, введенным в бактериальную клетку. 1980 – в США узаконивается патентование трансгенных микроорганизмов. 1981 – в продажу поступают автоматические синтезаторы ДНК. 1982 – в США впервые поданы заявки на проведение полевых испытаний трансгенных организмов. В то же время в Европе разрешена первая вакцина для животных, полученная методами генной инженерии. ГМО"/>

В 1983 – ученые, изучая почвенную бактерию, которая образует на стволах деревьев и кустарников наросты, обнаружили, что она переносит фрагмент собственной ДНК в ядро растительной клетки, где он встраивается в хромосому, после чего распознается как свой. С момента этого открытия и началась история генной инженерии растений. Пионером стала компания "Monsanto", которая вырастила табак, неуязвимый для вредителей, потом генно-модифицированный помидор (1994). Затем появились модифицированная кукуруза, соя, рапс, огурец, картофель, свекла, яблоки и многое другое.

1985-1988 – разработан метод полимеразной цепной реакции (ПЦР).

1994 – получено первое разрешение на возделывание трансгенного растения (помидор сорта FlavrSavr компании "Monsanto").

1996 – началось массовое выращивание трангсенных растений.

2000 – принят Катрахенский протокол по биобезопасности, установивший наиболее общие международные нормы обращения с трансгенными организмами.

На сегодняшний день трансгенные растения выращиваются на разных полях мира, общая площадь которых больше 80 млн. га.

Зачем же вообще были созданы ГМР и почему сегодня они так широко распространены?

Дело в том, что в 70-х годах XX ст. агрономы столкнулись с проблемой загрязнения агроэкосистем и окружающей среды химическими препаратами и пестицидами, которые используются для защиты растений от возбудителей болезней и вредителей. Нужно было искать принципиально новые подходы. Генетическая модификация растений позволяет успешно бороться с этой проблемой. Трансгенные растения приобрели устойчивость к гербицидам, возбудителям болезней и некоторым вредителям, умеют повышенные и улучшенные продуктивные характеристики, устойчивость к климатическим стрессам и др.

Так же человечество столкнулось с проблемой перенаселения планеты и, как следствие, голодом. Сегодня нас уже 6,5 млрд., а к 2020 г., по оценкам ВОЗ, будет 7 млрд. В мирЕ-800 млн. голодающих и каждый день от голода умирает 20 000 человек. Ученые считали, что трансгенные технологии помогут побороть голод во всем мире, так как они помогут в разы увеличить урожай. К сожалению, эти надежды не оправдались. В 2008 году ООН официально заявила, что ГМР не сможет побороть голод. Ведь голод, в основном, имеет социально-политические причины и может быть преодолен только путем согласованных действий глав государств и политических и экономических объединений.

Чтобы оставить комментарий, Вам необходимо включить javascript.

Обсуждение статьи:

Страницы: Все

/modules.php?name=articles&action=set_comment&ingr_id=118

    • знак гмо
    • 22.07.2017 16:07:19
    • 4 + -

    вот я нашол ген сабаки к кукурузе ана чо будит лаить????????

    Ответить

  • 10.05.2015 15:05:43
  • 16 + -

гмо - придуманое ленивыми людьми оружие массового поражения. Нет чтоб сами выращивать, так надо людей травить. Я смотрел что у одной девочки от ГМО ноги склеились как хвост у рыбы!!! Это просто невероятно даже сказать нечего.

Наука не только решает задачи, которые ставит перед собой сегодняшний день, но и подготовляет завтрашний день техники, медицины, сельского хозяйства, межзвездных полётов, покорения природы.

Введение

Одна из самых перспективных наук - генетика, изучающая явления наследственности и изменчивости организмов. Наследственность - одно из коренных свойств жизни, она определяет воспроизведение форм в каждом последующем поколении. И если мы хотим научиться управлять развитием жизненных форм, образованием полезных для нас и устранением вредных, - мы должны понять сущность наследственности и причины появления новых наследственных свойств у организмов.

В данном реферате рассматриваются основные характеристики, проблемы и перспективы генной инженерии. В настоящее время эта тема весьма актуальна. На начало 21-го века в мире проживает около 5 млрд. человек. По прогнозам учёных к концу 21-го века население Земли может увеличиться до 10 миллиардов. Как прокормить такое количество людей качественной пищей, если и при 5 миллиардах в некоторых регионах население голодает? Впрочем, даже если бы такой проблемы не существовало, то человечество, для решения других своих проблем, стремилось бы внедрять в сельское хозяйство наиболее производительные биотехнологии. Одной из таких технологий как раз и является генная инженерия.

Для написания реферата производился сбор материала, его обобщение и систематизация, что было весьма затруднительно, потому что в источниках существует много разногласий, много точек зрения. Так как генная инженерия большое развитие получила именно в наши дни, еще очень мало выпущено книг, посвященных этой теме, и поэтому в работе использовались статьи, найденные в Internet.


История генетического модифицирования

История генетического модифицирования началась в 1972г., когда американский ученый Пол Берг впервые объединил в пробирке в единое целое два гена, выделенные из разных организмов (бактерии и онкогенного вируса обезьяны). Он получил рекомбинацию ДНК, которая не могла образовываться в природе. Такая ДНК была внесена в бактериальные клетки – был создан первый трансгенный организм.

Затем последовало создание бактерий, несущих гены мушки дрозофилы, кролика, человека.

Трансгенные организмы получили разнообразные названия: рекомбинантные, живые измененные, генетически модифицированные, генно-инженерные, химерные.

Появление новых организмов обеспокоило многих ученых. Они, в том числе Берг, опубликовали в журнале "Сайенс" письмо с просьбой приостановить работы по генной инженерии до выявления безопасности трансгенных организмов и разработки правил безопасности работы с ними. Предлагалось, что искусственно созданные человеком организмы могут быть опасными для ныне существующих. Появление их в природе может вызвать их бесконтрольное размножение, вытеснение ими естественных обитателей. Не исключено, что трансгенные организмы могут вызвать эпидемии неизвестных ранее болезней растений, животных и человека, нарушить равновесие в природе, хаотично переносить гены. Возникли дискуссии: нравственные, религиозные, этические, политические.

Британские журналисты окрестили генетически модифицированные продукты (полученные из трансгенных организмов) "пищей Франкенштейна".

На генно-инженерные работы был наложен непродолжительный мораторий. После создания правил безопасности работы с генетически модифицированными организмами, с 1976г. запрет был снят. Первоначальные работы проводились в обстановке строгой безопасности в специальных сооружениях. Однако за 30 лет работы не было создано ничего опасного, поэтому постепенно меры предосторожности были снижены.

Зародилась новая отрасль промышленности – трансгенная технология. Она основана на конструировании и применении трансгенных организмов. Только в США существует свыше 2500 фирм, применяющих трансгенные технологии. В них работают высококвалифицированные специалисты, конструирующие организмы на основе вирусов, грибов, растений и животных.

Разработчики трансгенных технологий рассматриваю генно-инженерный способ создания сельскохозяйственных культур как усовершенствованное скрещивание, которое значительно сокращает сроки создания улучшенных сортов растений. Противники трансгенных технологий считают, что традиционная селекция проводится между сортами одного или нескольких близких видов, а трансгенные методы перемещают гены от одних видов в другие, нарушая при этом все установленные в течение длительного периода времени границы между живыми организмами. Это приводит к появлению принципиально новых организмов с измененной программой наследственности. Их пыльца и семена неизбежно проникнут в естественную среду и вызовут необратимые изменения, последствия которых непредсказуемы. Кроме того, трансгенные технологии недостаточно совершенны. Процесс встраивания нового гена недостаточно точен, т. е. невозможно предвидеть место нового гена в геноме. Внедренный ген может изменить функции генов клетки-хозяина, вызвать синтез новых веществ, побочные эффекты, связанные с плейотропным (множественным) действием генов, и др.

Предполагается, что трансгенные растения безопасны для окружающей среды. За последние 15 лет полевые испытания прошли 25000 трансгенных культур. Первым коммерческим трансгенами были помидоры сорта "Flavr Savr" (Приложение 1) , созданные компанией "Calgen". Они появились в 1994 г. в супермаркетах США. Однако проблемы с производством их и транспортировкой привели к тому, что сорт сняли с продажи. Затем были получены многие сорта самых различных сельскохозяйственных культур. Наиболее распространенной культурой является соя. Коммерческое выращивание ее трансгенов начато с 1995 г. на втором месте – кукуруза, на третьем – хлопок, а затем – масличный рапс, табак, картофель и др.

Преимущество трансгенных растений состоит в том, что они выращиваются без применения химикатов. Широко применяется тип инсектецидных трансгенных растений, которые несут ген бактерии Bacillus thuringienesis, способствующий поражению вредителей кукурузы, картофеля и хлопчатника. Инсектицидный бактериальный токсин, синтезируемый растением, безвреден для человека и животных. Поэтому применение инсектицидных трансгенных растений может повысить чистый доход на 35% по сравнению с немодифицированными растениями. Из испытанных модифицированных растений 40% - устойчивы к вирусам, 25% - устойчивы к гербицидам, 25% - устойчивы к вредным насекомым.

Генетически модифицированные растения имеют ряд преимуществ. Они менее прихотливы, более устойчивы к болезням, насекомым-вредителям, к пестицидам, отличаются повышенной урожайностью. Получаемые из них продукты дольше хранятся, имеют лучший товарный вид, обладают повышенной пищевой ценностью. Например, растительное масло из трансгенных кукурузы, сои рапса имеет сниженное количество насыщенных жиров. В трансгенных картофеле и кукурузе содержится меньше воды и больше крахмала. Из такого картофеля получаются воздушные чипсы, картофель фри. При этом требуется меньше масла для жарки. Такие продукты легче усваиваются организмом.

В 1999 г. был получен трансгенный "золотой рис" с повышенным содержанием каротина. Он служит для профилактики слепоты детей развивающихся стран, где является основным продуктом питания.

Мировые лидеры в выращивании трансгенных растений – США, Аргентина, Канада и Китай. За 12 лет в США было выращено 3,5 трлн. т трансгенных растений. Массовые посевы таких растений в странах ЕС и России запрещены. Страны ЕС против продуктов, полученных путем генетической модификации. В Россию и Украину ввозят некоторые модифицированные продукты: соя, кукуруза картофель.

Генетически модифицированные растения широко используются для производства продуктов питания и пищевых добавок. Например соевый лецитин (Е322) применяется как эмульгатор и стабилизатор в кондитерской промышленности, а шкурки соевых бобов – при производстве хлопьев, закусок, отрубей. Модифицированная соя широко используется в пищевой промышленности как дешевый наполнитель (входит в состав таких продуктов, как колбаса, хлеб, шоколад и др.). Модифицированные картофель и кукуруза применяются для приготовления чипсов, а так же крахмала, используемого в качестве загустителя, студнеобразователя, желирующих веществ в хлебопекарной и кондитерской промышленностях. Их используют так же в производстве многих кетчупов, соусов, майонезов. Модифицированное кукурузное и рапсовое масло применяют в виде добавок в маргарин, выпечку, бисквиты.

Перспективным направлением считается применение трансгенных продуктов иммунопрофилактике. Так, уже получен табак, в генетическом коде которого находится человеческий ген, ответственный за выработку антител против вируса кори. В ближайшем будущем будут созданы растения с противовирусными генами животных и человека.

Специалисты Гринписа подготовили список продуктов, которые могут содержать трансгенные продукты с указанием компаний-производителей. К ним относятся: шоколадные изделия Mars, Snickers, Twix, безалкогольные напитки Coca-Cola, Sprite, Pepsi, Co-la, шоколадный напиток Nesquik, соусы Knorr, чай Lipton, жевательная резинка Stimorol и др. Со списком может ознакомиться любой пользователь системы Internet.

Основным вопросом для дискуссий остаётся вопрос о безопасности трансгенных продуктов для организма и окружающей среды.

От естественных трансгенные продукты по основным характеристикам не отличаются. Трансгенные продукты проходят тестирование на токсичность и аллергенность. Однако не существует совершенно надёжных методов проверки на безвредность. В последние годы появились свидетельства об их отрицательном влиянии на живые организмы.

В апреле 1998 г. британский профессор Арпад Пуштай, который работал в Государственном институте Роветт города Абердин, в телевизионном интервью заявил, что в организме крыс, питавшихся трансгенным картофелем, произошли необратимые изменения. Животные стали страдать угнетением иммунной системы, наблюдались различные нарушения работы внутренних органов. Ученого уволили якобы за распространение якобы ложной информации.

Независимая группа из 20 ученых изучила работы А. Пуштая. В феврале 1999 г. она опубликовала заключение, в котором подтверждала достоверность полученных результатов. После этого министерство сельского хозяйства Великобритании рассмотрело вопрос о запрещении продажи генетически модифицированных продуктов без всестороннего исследования и лицензирования.

Примерно в это же время в Йоркской лаборатории питания было обнаружено, что при употреблении модифицированной сои за последние два года усложнились проблемы аллергии и пищеварения. Причем один из сортов сои опасен для людей, страдающих аллергией на орехи. Компания – производитель семян "Pioneer Hybrid Interna-tional" ввела в соевую ДНК ген бразильского ореха. его запасающий белок богат аминокислотами цистеином и метионином. Пострадавшие получили от компании компенсацию, а проект по модификации был свернут.

Трансгенные продукты могут вырабатывать и токсичные вещества. Например, после нескольких лет применения пищевой добавки аспартам (Е951), допущенной к применению в пищевой и фармацевтической промышленности более чем в 100 странах, появились сведения о серьёзных побочных аффектах. Аспартам слаще сахара в 200 раз, поэтому использовался как подсластитель (но не сахарозаменнитель, который по природе своей является углеводом и обладает высокой калорийностью) самостоятельно или в составе смесей подсластителей ("сладекс", "аспарвит", "сламикс" и т.п.). По химическому строению – это метилизированный дипептид, который состоит из остатков двух аминокислот (аспарагиновой кислоты и фенилаланина). Аспартам рекомендовали больным сахарным диабетом, для профилактики кариеса, применяли при производстве более 5000 продукции (молочных десертов, йогуртов, жевательной резинки и т.п.)., особенно не требующей тепловой обработки.

При продолжительном воздействии температуры компоненты аспартама разъединяются. Метанол превращается в формальдегид (ядовит, вызывает свёртывание белков), а затем – в муравьиную кислоту. Метаноловая токсичность вызывает симптомы, сходные с симптомами рассеянного склероза, но в отличии от последнего заболевания является смертельной.

Фенилаланин входящий в состав аспартама, согласно последним достижениям медицины, могут усваивать эффективно даже не все здоровые люди. Дополнительное введение фенилаланина значительно повышает его уровень в крови и представляет серьезную опасность для работы мозга. Аспартам противопоказан больным фенилкетонурией (наследственным заболеванием). Популярные газеты в США назвали аспартам "сладкой отравой".

Перемещение генов через трансгенные продукты является реальной угрозой. Об этом свидетельствуют эксперименты с перемещением генов, обеспечивающих устойчивость к антибиотикам, проведённые Гарри Гильбертом с коллегами из университета Ньюкасла и опубликованных Агентством пищевых стандартов безопасности Великобритании. Эксперимент проводили на добровольцах (12 здоровых и 7 – с хирургически удаленной толстой кишкой). Их кормили гамбургерами и поили молочными коктейлями, содержащими модифицированную сою. Анализы экспериментов показали, что у здоровых людей бактерии не содержали модифицированной ДНК, тогда как бактерии добровольцев с удалённой толстой кишкой имели такую ДНК. Ученые предположили, что ДНК сохраняется в тонком кишечнике, но разрушается полностью в толстом.

Применение в модифицированных продуктах генов, обеспечивающих устойчивость к антибиотикам (томатов, устойчивых к канамицину, кукурузы – к ампициллину), может привести к попаданию их в геном бактерии, обитающих в кишечнике человека и животных. С фекалиями бактерии будут выведены наружу, а оттуда гены передадутся болезнетворным микроорганизмам. Это приведёт к появлению новых микроорганизмов, устойчивых ко всем имеющимся лекарственным препаратам.

Согласно Протоколу по биобезопасности к Конвенции о биологическом разнообразии ООН, должна быть доказана безопасность генетически модифицированных организмов и лишь затем признана их пригодность. Во многих странах существуют правила, разрешающие наличие только определенного небольшого содержания в продуктах трансгенного материала (например, в странах ЕС – до 1 %). Несмотря на запреты, генетически модифицированные продукты с должной маркировкой и без нее постоянно проникают на рынок. Возможная опасность таких продуктов окончательно не выявлена, однако может проявиться в будущем.

Генетическая инжене?рия (генная инженерия) - совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.
Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.


Экономическое значение

Генетическая инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма. В отличие от традиционной селекции, в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования. Примерами применения генной инженерии являются получение новых генетически модифицированных сортов зерновых культур, производство человеческого инсулина путем использования генномодифицированных бактерий, производство эритропоэтина в культуре клеток или новых пород экспериментальных мышей для научных исследований.

Основой микробиологической, биосинтетической промышленности является бактериальная клетка. Необходимые для промышленного производства клетки подбираются по определённым признакам, самый главный из которых - способность производить, синтезировать, при этом в максимально возможных количествах, определённое соединение - аминокислоту или антибиотик, стероидный гормон или органическую кислоту. Иногда надо иметь микроорганизм, способный, например, использовать в качестве "пищи" нефть или сточные воды и перерабатывать их в биомассу или даже вполне пригодный для кормовых добавок белок. Иногда нужны организмы, способные развиваться при повышенных температурах или в присутствии веществ, безусловно смертельных для других видов микроорганизмов.

Задача получения таких промышленных штаммов очень важна, для их видоизменения и отбора разработаны многочисленные приёмы активного воздействия на клетку - от обработки сильно действующими ядами до радиоактивного облучения. Цель этих приёмов одна - добиться изменения наследственного, генетического аппарата клетки. Их результат - получение многочисленных микробов-мутантов, из сотен и тысяч которых учёные потом стараются отобрать наиболее подходящие для той или иной цели. Создание приёмов химического или радиационного мутагенеза было выдающимся достижением биологии и широко применяется в современной биотехнологии.

Но их возможности ограничиваются природой самих микроорганизмов. Они не способны синтезировать ряд ценных веществ, которые накапливаются в растениях, прежде всего в лекарственных и эфирномасличных. Не могут синтезировать вещества, очень важные для жизнедеятельности животных и человека, ряд ферментов, пептидные гормоны, иммунные белки, интерфероны да и многие более просто устроенные соединения, которые синтезируются в организмах животных и человека. Разумеется, возможности микроорганизмов далеко не исчерпаны. Из всего изобилия микроорганизмов использована наукой, и особенно промышленностью, лишь ничтожная доля. Для целей селекции микроорганизмов большой интерес представляют, например, бактерии анаэробы, способные жить в отсутствие кислорода, фототрофы, использующие энергию света подобно растениям, хемоавтотрофы, термофильные бактерии, способные жить при температуре, как оказалось недавно, около 110 гр.C, и др.

И всё же ограниченность "природного материала" очевидна. Обойти ограничения пытались и пытаются с помощью культур клеток и тканей растений и животных. Это очень важный и перспективный путь, который также реализуется в биотехнологии. За последние несколько десятилетий учёные создали методы, благодаря которым отдельные клетки тканей растения или животного можно заставить расти и размножаться отдельно от организма, как клетки бактерий. Это было важное достижение - полученные культуры клеток используют для экспериментов и для промышленного получения некоторых веществ, которые с помощью бактериальных культур получить невозможно.


История развития и достигнутый уровень технологии

Во второй половине ХХ века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки "прочитать" ту биологическую информацию, которая "записана" в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом (Нобелевская премия по химии 1980 г.). Как известно, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов. А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках - это мутации. Они происходят под действием, например, мутагенов - химических ядов или излучений. Но такие изменения нельзя контролировать или направлять. Поэтому учёные сосредоточили усилия на попытках разработать методы введения в клетку новых, совершенно определённых генов, нужных человеку.

Основные этапы решения генно-инженерной задачи следующие:

1. Получение изолированного гена.

2. Введение гена в вектор для переноса в организм.

3. Перенос вектора с геном в модифицируемый организм.

4. Преобразование клеток организма.

5. Отбор генетически модифицированных организмов (ГМО) и устранение тех, которые не были успешно модифицированы.

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды). Получила распространение техника, позволяющая использовать для синтеза ДНК, в том числе мутантной, полимеразную цепную реакцию. Термостабильный фермент, ДНК-полимераза, используется в ней для матричного синтеза ДНК, в качестве затравки которого применяют искусственно синтезированные кусочки нуклеиновой кислоты - олигонуклеотиды. Фермент обратная транскриптаза позволяет с использованием таких затравок (праймеров) синтезировать ДНК на матрице выделенной из клеток РНК. Синтезированная таким способом ДНК называется комплементарной (РНК) или кДНК. Изолированный, "химически чистый" ген может быть также получен из фаговой библиотеки. Так называется препарат бактериофага, в геном которого встроены случайные фрагменты из генома или кДНК, воспроизводимые фагом вместе со всей своей ДНК.

Чтобы встроить ген в вектор, используют ферменты - рестриктазы и лигазы, также являющиеся полезным инструментом генной инженерии. С помощью рестриктаз ген и вектор можно разрезать на кусочки. С помощью лигаз такие кусочки можно "склеивать", соединять в иной комбинации, конструируя новый ген или заключая его в вектор. За открытие рестриктаз Вернер Арбер, Даниел Натанс и Хамилтон Смит также были удостоены Нобелевской премии (1978 г.).

Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации. В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки.

Значительные трудности были связаны с введением готового гена в наследственный аппарат клеток растений и животных. Однако в природе наблюдаются случаи, когда чужеродная ДНК (вируса или бактериофага) включается в генетический аппарат клетки и с помощью её обменных механизмов начинает синтезировать "свой" белок. Учёные исследовали особенности внедрения чужеродной ДНК и использовали как принцип введения генетического материала в клетку. Такой процесс получил название трансфекция.

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование, то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача - получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детеныши с изменённым или неизменным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.


Применение в научных исследованиях

Нокаут гена. Для изучения функции того или иного гена может быть применен нокаут гена (gene knockout). Так называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации. Для нокаута синтезируют такой же ген или его фрагмент, изменённый так, чтобы продукт гена потерял свою функцию. Для получения нокаутных мышей полученную генно-инженерную конструкцию вводят в эмбриональные стволовые клетки, где конструкция подвергается соматической рекомбинации и замещает нормальный ген, а измененные клетки имплантируют в бластоцист суррогатной матери. У плодовой мушки дрозофилы мутации инициируют в большой популяции, в которой затем ищут потомство с нужной мутацией. Сходным способом получают нокаут у растений и микроорганизмов.

Искусственная экспрессия. Логичным дополнением нокаута является искусственная экспресия, то есть добавление в организм гена, которого у него ранее не было. Этот способ генной инженерии также можно использовать для исследования функции генов. В сущности процесс введения дополнительных генов таков же, как и при нокауте, но существующие гены не замещаются и не повреждаются.

Визуализация продуктов генов. Используется, когда задачей является изучение локализации продукта гена. Одним из способов мечения является замещение нормального гена на слитый с репортёрным элементом например, с геном зелёного флуоресцентного белка (GFP). Этот белок, флуоресцирующий в голубом свете, используется для визуализации продукта генной модификации. Хотя такая техника удобна и полезна, ее побочными следствиями может быть частичная или полная потеря функции исследуемого белка. Более изощрённым, хотя и не столь удобным методом является добавление к изучаемому белку не столь больших олигопептидов, которые могут быть обнаружены с помощью специфических антител.

Исследование механизма экспрессии. В таких экспериментах задачей является изучение условий экспрессии гена. Особенности экспрессии зависят прежде всего от небольшого участка ДНК, расположенного перед кодирующей областью, который называется промотор и служит для связывания факторов транскрипции. Этот участок вводят в организм, поставив после него вместо собственного гена репортерный, например, GFP или фермента, катализирующего легко обнаруживаемую реакцию. Кроме того, что функционирование промотора в тех или иных тканях в тот или иной момент становится хорошо заметным, такие эксперименты позволяют исследовать структуру промотора, убирая или добавляя к нему фрагменты ДНК, а также искусственно усиливать его функции.


Генная инженерия человека

В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.

Задача изменения генома взрослого человека несколько сложнее, чем выведение новых генноинженерных пород животных, т.к. в данном случае требуется изменить геном многочисленных клеток уже сформировавшегося организма, а не одной лишь яйцеклетки-зародыша. Для этого предлагается использовать вирусные частицы в качестве вектора. Вирусные частицы способны проникать в значительный процент клеток взрослого человека, встраивая в них свою наследственную информацию; возможно контролируемое размножение вирусных частиц в организме. При этом для уменьшения побочных эффектов ученые стараются избежать внедрения генноинженерных ДНК в клетки половых органов и тем самым избежать воздействия на ещё нерождённых потомков пациента. Также стоит отметить значительную критику этой технологии в СМИ: разработка генноинженерных вирусов воспринимается некоторыми слоями общественности как угроза для всего человечества.

В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах. Долгое время генетическая инженерия обезьян сталкивалась с серьезными трудностями, однако в 2009 году эксперименты увенчались успехом: в Nature появилась публикация об успешном применении генноинженерных вирусных векторов для исцеления взрослого самца обезьяны от дальтонизма. В этом же году дал потомство первый генетически модифицированный примат (выращенный из модифицированной яйцеклетки) - игрунка обыкновенная.

Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.

При помощи генной инженерии можно получать потомков с улучшенной внешностью, умственными и физическими способностями, характером и поведением. С помощью генотерапии в будущем возможно улучшение генома и нынеживущих людей. В принципе можно создавать и более серьёзные изменения, но на пути подобных преобразований человечеству необходимо решить множество этических проблем.


Генетически модифицированный организм

Генетически модифицированный организм (ГМО) - живой организм, генотип которого был искусственно изменён при помощи методов генной инженерии. Такие изменения, как правило, производятся в научных или хозяйственных целях. Генетическая модификация отличается целенаправленным изменением генотипа организма в отличие от случайного, характерного для естественного и искусственного мутагенеза.


Цели создания ГМО

Разработка ГМО некоторыми учеными рассматриваются, как естественное развитие работ по селекции животных и растений. Другие же, напротив, считают генную инженерию полным отходом от классической селекции, так как ГМО это не продукт искусственного отбора, то есть постепенного выведения нового сорта (породы) организмов путем естественного размножения, а фактически искусственно синтезированный в лаборатории новый вид. Во многих случаях использование трансгенных растений сильно повышает урожайность. Есть мнение, что при нынешнем размере населения планеты только ГМО могут избавить мир от угрозы голода, так как при помощи генной модификации можно увеличивать урожайность и качество пищи. Противники этого мнения считают, что при современном уровне агротехники и механизации сельскохозяйственного производства уже существующие сейчас, полученные классическим путем, сорта растений и породы животных способны сполна обеспечить население планеты высококачественным продовольствием (проблема же возможного мирового голода вызвана исключительно социально-политическими причинами, а потому и решена может быть не генетиками, а политическими элитами государств.)


Использование ГМО в научных целях

В настоящее время генетически модифицированные организмы широко используются в фундаментальных и прикладных научных исследованиях. С помощью ГМО исследуются закономерности развития некоторых заболеваний (болезнь Альцгеймера, рак), процессы старения и регенерации, изучается функционирование нервной системы, решается ряд других актуальных проблем биологии и медицины.


Использование ГМО в медицинских целях

Генетически модифицированные организмы используются в прикладной медицине с 1982 года. В этом году зарегистрирован в качестве лекарства человеческий инсулин, получаемый с помощью генетически модифицированных бактерий

Ведутся работы по созданию генетически модифицированных растений, продуцирующих компоненты вакцин и лекарств против опасных инфекций (чумы, ВИЧ). На стадии клинических испытаний находится проинсулин, полученный из генетически модифированного сафлора. Успешно прошло испытания и одобрено к использованию лекарство против тромбозов на основе белка из молока трансгенных коз.

Бурно развивается новая отрасль медицины - генотерапия. В её основе лежат принципы создания ГМО, но в качестве объекта модификации выступает геном соматических клеток человека. В настоящее время генотерапия - один из главных методов лечения некоторых заболеваний. Так, уже в 1999 году каждый четвёртый ребенок, страдающий SCID (severe combined immune deficiency), лечился с помощью генной терапии. Генотерапию, кроме использования в лечении, предлагают также использовать для замедления процессов старения


Использование ГМО в сельском хозяйстве

Генная инженерия используется для создания новых сортов растений, устойчивых к неблагоприятным условиям среды и вредителям, обладающих лучшими ростовыми и вкусовыми качествами. Создаваемые новые породы животных отличаются, в частности, ускоренным ростом и продуктивностью. Созданы сорта и породы, продукты из которых обладают высокой питательной ценностью и содержат повышенные количества незаменимых аминокислот и витаминов.

Проходят испытания генетически модифицированные сорта лесных пород со значительным содержанием целлюлозы в древесине и быстрым ростом.


Другие направления использования

Разрабатываются генетически модифицированные бактерии, способные производить экологически чистое топливо.

В 2003 году на рынке появилась GloFish - первый генетически модифицированный организм, созданный с эстетическими целями, и первое домашнее животное такого рода. Благодаря генной инженерии популярная аквариумная рыбка Данио рерио получила несколько ярких флуоресцентных цветов.

В 2009 году выходит в продажу генномодифицированный сорт розы "Applause" с цветами синего цвета. Таким образом, сбылась многовековая мечта селекционеров, безуспешно пытавшихся вывести "синие розы".


Заключение

В моей работе рассмотрена история селекции в разрезе новых технологий. На сегодняшний день необходимо внедрять эти методы в современное сельское хозяйство. Но перед нами стоит большая проблема малой развитости данных технологий в Российской Федерации. В большинстве случаев в нашей стране просо не хватает финансирования для организации своего производства. Также одной из важнейших проблем в этой области является несовершенно проработанное законодательство.

Большое внимание я уделила продукции, получаемой методами генной инженерии, так как считаю эту проблему насущной на сегодняшний день. Научный мир, работающий в этой области в настоящее время, разделен на две противоборствующие стороны - сторонники ГМ продуктов и их противники. Поэтому в курсовой работе указаны "За" и "Против" этих методов.

Хотелось бы отметить мое не однозначное отношение к продукции получаемой современными методами селекции, а в частности генной инженерией. Так как основы доводов противников и сторонников по моему мнению изучены не достаточно, поэтому в будущем стоит уделять большое внимание изучению трансгенной продукции на организм человека.

Таким образом, в реферате были рассмотрены основные характеристики генной инженерии: ее преимущества, какие качества "прививают" растениям, где в основном выращиваются генномодифицированные - растения, недостатки генной инженерии, а также ее перспективы.


Список используемой литературы

1. Е. Аспиз "Энциклопедический словарь юного биолога"

2. Ильяшенко О.Н. "Золотая коллекция рефератов" 2008 г.

3. Н.П. Дубинин "Очерки о генетике"

4. Н.П. Дубинин "Горизонты генетики"

5. Чирков Ю.Г. "Ожившие химеры". 1991 г., 239 с

Генетическое модифицирование

Начало всему этому положил человек, родившийся 30 июня 1926 года. Итак, знакомьтесь: Пол Берг.

Пол Наим Берг. Родился 30 июня 1926 г. в Бруклине (Нью-Йорк), США. Лауреат Нобелевской премии по химии 1980 года (1/2 премии, по 1/4 присуждено Уолтеру Гилберту и Фредерику Сенгеру за создание метода секвенирования ДНК).

В 1926 году случилось два знаменательных события в истории биологии и биохимии. Второе, менее важное (возможно!) - это рождение нашего героя, одного из трех сыновей производителя одежды Гарри Берга и домохозяйки Сары Бродски. Первое же событие имело, наверное, даже большее значение, чем рождение отца генной инженерии. 36-летний американский микробиолог из Мичигана Поль Генри де Крюи (иногда у нас его называли «де Кройф» и даже «де Крайф») написал книжку, которая стала, пожалуй, первым научно-популярным бестселлером.

Даже в СССР/России эта книга выдержала, наверное, не менее десятка изданий (рис. 1). И популярна до сих пор. «Охотники за микробами» Крюи с 1920-х и по сей день приводят в науку всё новых и новых людей: по меньшей мере, я знаю биохимиков младше меня, в детстве зачарованно читавших эту книжку, а нынче публикующих замечательные статьи в Nature.

Одно из многих русскоязычных изданий «Охотников за микробами» П. де Крюи (СССР, изд-во «Молодая гвардия», 1957 г.)

Наш герой в детстве тоже зачитывался сравнительно недавним бестселлером. Так что его судьба была предопределена сразу же - микробы, вирусы, их биохимия.

Но для начала нужно было пройти стандартный путь - школу и университет. Берг закончил школу Авраама Линкольна в январе 1943 года. К тому времени США уже участвовали во Второй мировой, и как только ему исполнилось 17 лет (июнь 1943), Берг пошел во флот. Он должен был стать летчиком палубной авиации, а этому нужно было учиться. Чтобы не терять времени в простом ожидании, Берг поступил в Пенн Стейт (Pennsylvania State University). Правда, летчиком Пол так и не стал: программу сократили, и ему пришлось служить по прямо противоположной специальности - на подводной лодке. В 1946 году Берг демобилизовался и уже в 1948 стал бакалавром в своем университете, а в 1952 его ждала докторская степень по биохимии в Западном резервном университете Кейза (Case Western Reserve University). В своей диссертации он показал роль фолиевой кислоты и витамина B12 в синтезе метионина.

С тех пор (так уж случилось) Берг работает только с лучшими. К примеру, в 1954 году Берг перешел на кафедру микробиологии в Медицинскую школу университета Вашингтона (WUSM), где начал работать с Артуром Корнбергом - первым человеком, синтезировавшим ДНК, и нобелевским лауреатом 1959 года за это достижение (рис. 2).


Артур Корнберг (1918-2007). Лауреат Нобелевской премии по физиологии и медицине 1959 года.

В лаборатории Корнберга (уже в Стэнфорде, куда Корнберг с командой ушел в 1959 году) Берг изучает механизм, по которому аминокислоты собираются в белки. Собственно говоря, именно Берг установил, как транспортные рибонуклеиновые кислоты (тРНК) переносят аминокислоты в место синтеза белка.

Примерно к середине 1960-х годов работа генов в клетках становится понятнее. В первую очередь - благодаря бактериофагам, которые могут встраивать свою ДНК в геном бактерий. Как всегда, главные открытия были сделаны на «лабораторной мыши» микробиологов - кишечной палочке E. coli - и заражающем ее бактериофаге лямбда. Вирусы применялись для анализа работы генов, тогда же биохимики и генетики научились при помощи вирусов манипулировать генами. Бергу очень хотелось делать то же самое с генами многоклеточных организмов.

В 1967 году Берг взял в Стэнфорде отпуск на год. Впрочем, «отпуск» в его случае не означал отсутствие работы. Он поехал в Солковский (не путать со Сколковским!!!) институт к еще одному будущему нобелиату - Ренато Дульбекко (рис. 3). Дульбекко незадолго до того открыл полиомавирус, вызывающий опухоли у мышей. Главной целью Берга было освоение работы с культурами клеток, однако ДНК-вирус его заинтересовал.


Ренато Дульбекко (1914-2012). Лауреат Нобелевской премии по физиологии и медицине 1975 года.

Когда Берг вернулся в Стэнфорд, он продолжил эксперименты с полиомавирусами, взяв в работу полиомавирус SV40 (рис. 4). Берг понял, что можно использовать SV40 как вектор для введения в обычную клетку другой генетической информации. И запланировал очень изящный эксперимент, по-хорошему, ставший началом всей генной инженерии.


Электронные фотографии вирионов полиомавируса SV40 и его ДНК. Иллюстрация из нобелевской лекции Пола Берга

В обычных условиях SV40 не взаимодействует с кишечной палочкой. Поэтому Берг использовал набор ферментов, выделенных Корнбергом, чтобы разрезать ДНК SV40 и бактериофага лямбда и затем «собрать» из кусочков химерную, или, как принято говорить, рекомбинантную ДНК. В итоге получилась плазмида - кольцевая молекула, состоящая из ДНК вируса SV40 и ДНК бактериофага лямбда с «заимствованным» у кишечной палочки галактозным опероном (последовательностью генов, кодирующих метаболизм галактозы) (рис. 5).

Схема эксперимента Берга. Иллюстрация из нобелевской лекции Пола Берга

Чем хорошо писать о нобелиатах последних 30 лет? Во-первых, многие из них живы по сей день. А во-вторых, легко можно найти видео, где они сами рассказывают о своих работах.

Давайте послушаем самого Берга:

Успех пришел в 1972 году, а за успехом пришел испуг. Ну ладно, не испуг - нормальная и правильная предосторожность: об онкогенности вирусов тогда было известно (из работ Дульбекко в частности), причем полиомавирус SV40 был способен вызывать рак у некоторых животных. Поэтому Берг задумался - вдруг искусственные вирусы будут порождать новые, онкогенные бактерии?

В 1974 году он написал письмо в крупнейшие научные журналы (Nature, Science и другие), в котором призвал ввести годичный мораторий на операции с рекомбинантными ДНК. И начал готовить конференцию для обсуждения потенциальной опасности. В 1975 году в Калифорнии прошла знаменитая Асиломарская конференция по рекомбинантной ДНК. Впрочем, достаточно быстро стало понятно, что опасность была преувеличена - и работы с рекомбинантной ДНК были продолжены.

Началась эпоха генной инженерии, а пять лет спустя - в 1980 году - Берг был удостоен Нобелевской премии по химии. Наш герой получил половину премии, вторую часть поделили между собой личности не менее легендарные - Уолтер Гилберт (вообще начинавший в физике элементарных частиц и работавший у Абдуса Салама) и Фредерик Сенгер (уже получавший химического «нобеля» в 1958 году за расшифровку структуры инсулина). Эти двое создали метод установления первичной структуры ДНК - секвенирование. Право выступить на нобелевском банкете от всех троих получил Берг. В своей речи Берг привел ставшую классической метафору другого нобелевского лауреата, Питера Брайена Медавара: «Если мы представим развитие живых организмов сжатым в год космического времени, то развитие человека заняло только день. Только в течение последних 10–15 минут длится наша жизнь, совсем не сомнительная. Мы - всё еще новички и можем надеяться стать лучше. Высмеивать надежду на прогресс - окончательная глупость, последнее слово бедности духа и подлости ума».

В своём интервью на сайте Нобелевского комитета Берг говорит: «Не совсем корректно называть меня отцом генной инженерии. Мы сделали лишь первый шаг на пути к ней».

Потребность улучшать живые организмы, которыми мы питаемся, присутствовала всегда, но только по мере накопления теоретических знаний и лабораторных методик начался настоящий шквал открытий. Решить, кто именно был автором самого первого осознанно спроектированного генетически модифицированного организма, сложно хотя бы потому, что мы упираемся в вопрос определений того, что такое “осознанно” и что такое “генетически модифицированный” – не стоит ли, вообще говоря, начинать отсчет с одомашнивания первых растений и животных примерно за 10 тысяч лет до нашей эры?

Или с формализации принципов искусственного отбора в XIX веке? Или по крайней мере с радиационного мутагенеза, уже прямого вмешательства в геном, в начале XX века? А как насчет Фредерика Гриффита, который еще в 1928 году смешал безобидный, но живой штамм пневмококка с опасным, но убитым и обнаружил, что бактерии способны захватывать наследственную информацию из окружающей среды и использовать ее, превращаясь в патогенных?

Если мы сосредоточимся на экспериментах, лучше отвечающих современному пониманию того, что такое генетическая модификация, то отсчет – условно! – стоит вести с 1970 года, когда Мортон Мандель и Акико Хига выяснили, как заставлять бактерии захватывать из внешней среды любую ДНК, даже если они не хотят этого делать, – путем химической стимуляции, например, с помощью обычного хлорида кальция. Эта методика существенно упростила эксперименты, и в 1972 году в лаборатории Стэнли Нормана Ко-эна были получены первые бактерии с заданными свойствами. Кишечной палочке E. Coli сознательно подсаживали гены устойчивости к антибиотикам, и большинство протестированных колоний действительно обретали способность жить и размножаться на питательной среде, в которую эти антибиотики были добавлены.

В том же году будущий нобелевский лауреат Пол Берг и его коллеги создают первые рекомбинантные ДНК, то есть молекулы, сочетающие генетическую информацию от разных видов – например, гены обезьяньего вируса SV40, бактериофага λ и бактерии E. coli . Но годом рождения генной инженерии все же считается 1973-й, когда созданные в пробирке рекомбинантные кольцевые ДНК (плазмиды) были введены в клетки E. coli и благополучно начали там работать. С этого момента стало в принципе понятно, что можно переносить любые произвольно выбранные гены из одного организма в другой; остальное было делом техники. В следующие 10 лет в лабораториях создавались первые генетически модифицированные животные и растения, были разработаны эффективные методы расшифровки ДНК и копирования заданных последовательностей, осваивались новые методики внедрения генов, от открывающихся перспектив захватывало дух.

Однако использовать ГМО в медицине и сельском хозяйстве люди начали далеко не сразу (первое лекарство – в 1982 году, а первая сельскохозяйственная культура – в 1992-м). По данным 2013 года, генетически модифицированными растениями в мире засеяно 174 миллиона гектаров (это больше, чем площадь Испании, Франции и Германии вместе взятых). При этом их разнообразие невелико: львиная доля посадок приходится на хлопок, рапс, сою и кукурузу, а всего выращивают на полях только около 30 видов генетически модифицированных растений – я говорю о видах в биологическом смысле, так-то для большинства из них существует несколько разных модификаций. Относительно медленный темп появления новых культур связан со сложностями их разработки и внедрения, которые, в свою очередь, в значительной степени вызваны страхом общественности, полагающей, что ГМО содержат гены.
************************
Это был отрывок из вышедшей в марте книги "В Интернете кто-то неправ! Научные исследования спорных вопросов". Ещё одна блестящая работа Аси Казанцевой для тех, кто хочет расширить свой кругозор. Книга, которая входила в список "самых ожидаемых в 2016 году".



Рассказать друзьям