Логарифм числа формулы. Натуральный логарифм, функция ln x

💖 Нравится? Поделись с друзьями ссылкой

*Магистрант под научным руководством Исахова А. А., PhD математического и компьютерного моделирования

Задумывались ли вы о том, как люди считали в далёкие времена, когда не было ни калькуляторов, ни компьютеров? Расчёты выполнялись вручную, на бумаге или в уме. Хотя задачи, с которыми они сталкивались, были такими же сложными, как и современные.

Отсутствие вычислительных машин подталкивало древних математиков к упрощению вычислений. Они придумывали таблицы с уже рассчитанными выражениями (например, таблица умножения), искали пути замены сложных операций простыми. Сегодня мы поговорим об одном подобном «упрощении» или о том, как люди научились заменять умножение сложением, а деление – вычитанием. Благодаря этому был изобретён логарифм. Чтобы понять, что это, нужно сделать всего три шага.

ШАГ 1: Упрощать и ещё раз упрощать

Начнём с простого примера.

2 + 2 = 4

Давайте усложним задачу и найдём сумму пяти двоек.

2 + 2 + 2 + 2 + 2 = 10

И с этой задачей мы легко справились. А если нужно найти сумму 1 000 000 двоек? Использование аналогичного метода расчёта займёт уйму места и времени. Но хитрые математики поняли, как это легко сделать. Они придумали операцию умножения. Давайте посмотрим как это выглядит:

2 × 2 × 2 × 2 × 2 × 2 × 2 = 128

Для упрощения этого выражения математики придумали операцию возведения в степень. Ясно, что речь идёт об умножении одного и того же числа на себя n раз, зачем его дублировать и записывать снова и снова? Не легче ли написать так?

Здесь а – основание степени, n – показатель степени. Таким образом, мы значительно укоротили запись. Независимо от величины показателя степени, выражение будет выглядеть весьма лаконично:

Михаэль Штифель (1487–1567) — немецкий математик, внёс значительный вклад в развитие алгебры и таких её областей как прогрессии, возведение в степень и отрицательные числа. Штифель впервые использовал понятия «показатель степени» и «корень». Несмотря на то, что учёный фактически использовал логарифмы, слава первооткрывателя досталась шотладскому математику Джону Неперу (1550–1617).

ШАГ 2: Понять свойства степеней

Как мы уже говорили, древние математики не обременяли себя расчётами каждый раз, когда им нужно было помножить или сложить числа, а использовали таблицы с заранее рассчитанными результатами. Очень удобно! Пользуясь подобной таблицей, немецкий математик Михаэль Штифель заметил интересную закономерность между арифметической и геометрической прогрессией.

Арифмитическая прогрессия 1 2 3 4 5 6 7 8 9 10
Геометрическая прогрессия 2 4 8 16 32 64 128 256 512 1024
Степенная запись 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10

Давайте и мы попробуем её увидеть. Ведь эта закономерность позволяет упростить операции умножения и деления . Пусть нам необходимо посчитать произведение двух чисел:

16 × 64 =  ?

Прежде чем браться за расчёты, взгляните на таблицу и найдите эти числа: это члены геометрической прогрессии с шагом 2. Числа, стоящие над ними в верхнем ряду: 4 над 16; 6 над 64 – это члены арифметической прогрессии. Сложим эти числа: 4 + 6 = 10. Теперь смотрим, какое число стоит под цифрой 10 во втором ряду – 1024. А ведь если выполнить наше изначальное задание 16х64, то результат будет равен 1024. Это значит, что, пользуясь таблицей и умея лишь складывать цифры, можно легко находить произведение.

Теперь рассмотрим операцию деления:

Снова посмотрите на таблицу и найдите соответствующие числа из верхнего ряда. Получим 10 и 7 соответственно. Если при умножении мы складываем, то при делении мы вычитаем: 10–7  =  3. Смотрим на число, стоящее под числом 3 во втором ряду, это 8. Следовательно, 1024:128 = 8.

Точно так же можно использовать таблицу для операций возведения в степень и извлечения корня.

Например, нам надо возвести 32 в квадрат. Смотрим на число, стоящее над 32 в верхнем ряду. Получаем 5. Умножаем 5 на 2. Выходит 10, далее смотрим на число, стоящее под 10: 1024. Отсюда 32 2   = 1024.

Рассмотрим извлечение корня. Например, найдём корень третьей степени от числа 512. Над числом 512 в верхнем ряду стоит 9. Разделим 9 на 3, получим 3. Находим соответствующее число во втором ряду. Получим 8. Следовательно, 83 = 512.

Все четыре примера – это следствие свойств степеней, которые можно записать следующим образом:

ШАГ 3: Назовём это логарифм

Разобравшись со степенями, попробуем решить маленькое уравнение:

2 x = 4

Данное уравнение называют показательным . Так как х , который нам необходимо найти, является показателем степени, в которую надо возвести 2, чтобы получить 4. Решение уравнения х  = 2.

Рассмотрим другой аналогичный пример:

2 x = 5

Ещё раз проговорим условие, мы ищем число х, в которое надо возвести 2, чтобы получить 5. Этот вопрос ставит нас в ступор. Решение наверняка существует, например, если нарисовать графики этих функций, то они пересекаются. Но что бы найти его, нам придётся искать его методом проб и ошибок. А это могло занять много времени.

Поэтому древние учёные придумали логарифм, они знали, что решение уравнения существует, но оно не всегда было нужно сразу. Математически это записывается так: х  =  log 2 5 . Вот мы и нашли решение уравнения 2 x   = 5. Ответ: х  =  log 2 5. Если же привести точный ответ, то х = 2,32192809489… , причём эта дробь не заканчивается никогда.

Выражение читается следующим образом: логарифм числа 5 по основанию 2 . Запомнить это легко: основание всегда пишется внизу, и в показательных и в логарифмических записях.

Свойства логарифма

Логарифмы имеют ограничения . В математике существуют два жёстких ограничения.

а) Нельзя делить на ноль

б) Извлекать корень чётной степени из отрицательного числа (так как отрицательное число, возведённое в квадрат, всегда будет положительным).

равносильно записи

a x = b

Ограничения на а

а — это основание, которое нужно возвести в степень x, чтобы получить b.

Если a  = 1. Единица в любой степени будет давать единицу.

А если а меньше нуля? Отрицательные числа — капризные. В одну степень их можно возводить, в другую — нельзя. Поэтому их тоже исключаем. В результате получаем: а > 0; a ≠ 1

Ограничения на b

Если положительное число возвести в любую степень, получим также положительное число. Отсюда: b > 0. x может быть любым числом, так как мы можем возводить в любую степень.

Если b  = 1. то при любом a значение x = 0.

Операции над логарифмами

Учитывая основные свойства степеней, выведем аналогичные и для логарифмов:

Сумма . Логарифм произведения равен сумме логарифмов сомножителей:

Разность . Логарифм частного равен разности логарифмов делимого и делителя:

Степень . Логарифм степени равен произведению показателя степени на логарифм её основания.

Вытекают из его определения. И так логарифм числа b по основанию а определяется как показатель степени, в которую надо возвести число a , чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки следует, что вычисление x=log a b , равнозначно решению уравнения a x =b. Например, log 2 8 = 3 потому, что 8 = 2 3 . Формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с . Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа .

С логарифмами, как и с любыми числами, можно выполнять операции сложения , вычитания и всячески трансформировать. Но ввиду того, что логарифмы - это не совсем ординарные числа, здесь применимы свои особенные правила, которые называются основными свойствами .

Сложение и вычитание логарифмов.

Возьмем два логарифма с одинаковыми основаниями: log a x и log a y . Тогда сними возможно выполнять операции сложения и вычитания:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

log a (x 1 . x 2 . x 3 ... x k ) = log a x 1 + log a x 2 + log a x 3 + ... + log a x k .

Из теоремы логарифма частного можно получить еще одно свойство логарифма. Общеизвестно, что log a 1= 0, следовательно,

log a 1 / b = log a 1 - log a b = - log a b .

А значит имеет место равенство:

log a 1 / b = - log a b.

Логарифмы двух взаимно обратных чисел по одному и тому же основанию будут различны друг от друга исключительно знаком. Так:

Log 3 9= - log 3 1 / 9 ; log 5 1 / 125 = -log 5 125.

  1. Проверьте, не стоят ли под знаком логарифма отрицательные числа или единица. Данный метод применим к выражениям вида log b ⁡ (x) log b ⁡ (a) {\displaystyle {\frac {\log _{b}(x)}{\log _{b}(a)}}} . Однако он не годится для некоторых особых случаев:

    • Логарифм отрицательного числа не определен при любом основании (например, log ⁡ (− 3) {\displaystyle \log(-3)} или log 4 ⁡ (− 5) {\displaystyle \log _{4}(-5)} ). В этом случае напишите "нет решения".
    • Логарифм нуля по любому основанию также не определен. Если вам попался ln ⁡ (0) {\displaystyle \ln(0)} , запишите "нет решения".
    • Логарифм единицы по любому основанию ( log ⁡ (1) {\displaystyle \log(1)} ) всегда равен нулю, поскольку x 0 = 1 {\displaystyle x^{0}=1} для всех значений x . Запишите вместо такого логарифма 1 и не используйте приведенный ниже метод.
    • Если логарифмы имеют разные основания, например l o g 3 (x) l o g 4 (a) {\displaystyle {\frac {log_{3}(x)}{log_{4}(a)}}} , и не сводятся к целым числам, значение выражения нельзя найти вручную.
  2. Преобразуйте выражение в один логарифм. Если выражение не относится к приведенным выше особым случаям, его можно представить в виде одного логарифма. Используйте для этого следующую формулу: log b ⁡ (x) log b ⁡ (a) = log a ⁡ (x) {\displaystyle {\frac {\log _{b}(x)}{\log _{b}(a)}}=\log _{a}(x)} .

    • Пример 1: рассмотрим выражение log ⁡ 16 log ⁡ 2 {\displaystyle {\frac {\log {16}}{\log {2}}}} .
      Для начала представим выражение в виде одного логарифма с помощью приведенной выше формулы: log ⁡ 16 log ⁡ 2 = log 2 ⁡ (16) {\displaystyle {\frac {\log {16}}{\log {2}}}=\log _{2}(16)} .
    • Эта формула "замены основания" логарифма выводится из основных свойств логарифмов.
  3. При возможности вычислите значение выражения вручную. Чтобы найти log a ⁡ (x) {\displaystyle \log _{a}(x)} , представьте себе выражение " a ? = x {\displaystyle a^{?}=x} ", то есть задайтесь следующим вопросом: "В какую степень необходимо возвести a , чтобы получить x ?". Для ответа на этот вопрос может потребоваться калькулятор, но если вам повезет, вы сможете найти его вручную.

    • Пример 1 (продолжение): Перепишите в виде 2 ? = 16 {\displaystyle 2^{?}=16} . Необходимо найти, какое число должно стоять вместо знака "?". Это можно сделать методом проб и ошибок:
      2 2 = 2 ∗ 2 = 4 {\displaystyle 2^{2}=2*2=4}
      2 3 = 4 ∗ 2 = 8 {\displaystyle 2^{3}=4*2=8}
      2 4 = 8 ∗ 2 = 16 {\displaystyle 2^{4}=8*2=16}
      Итак, искомым числом является 4: log 2 ⁡ (16) {\displaystyle \log _{2}(16)} = 4 .
  4. Оставьте ответ в логарифмической форме, если вам не удается упростить его. Многие логарифмы очень сложно вычислить вручную. В этом случае, чтобы получить точный ответ, вам потребуется калькулятор. Однако если вы решаете задание на уроке, то учителя, скорее всего, удовлетворит ответ в логарифмическом виде. Ниже рассматриваемый метод использован для решения более сложного примера:

    • пример 2: чему равно log 3 ⁡ (58) log 3 ⁡ (7) {\displaystyle {\frac {\log _{3}(58)}{\log _{3}(7)}}} ?
    • Преобразуем данное выражение в один логарифм: log 3 ⁡ (58) log 3 ⁡ (7) = log 7 ⁡ (58) {\displaystyle {\frac {\log _{3}(58)}{\log _{3}(7)}}=\log _{7}(58)} . Обратите внимание, что общее для обоих логарифмов основание 3 исчезает; это справедливо для любого основания.
    • Перепишем выражение в виде 7 ? = 58 {\displaystyle 7^{?}=58} и попробуем найти значение?:
      7 2 = 7 ∗ 7 = 49 {\displaystyle 7^{2}=7*7=49}
      7 3 = 49 ∗ 7 = 343 {\displaystyle 7^{3}=49*7=343}
      Поскольку 58 находится между этими двумя числами, не выражается целым числом.
    • Оставляем ответ в логарифмическом виде: log 7 ⁡ (58) {\displaystyle \log _{7}(58)} .

(от греческого λόγος - «слово», «отношение» и ἀριθμός - «число») числа b по основанию a (log α b ) называется такое число c , и b = a c , то есть записи log α b =c и b=a c эквивалентны. Логарифм имеет смысл, если a > 0, а ≠ 1, b > 0.

Говоря другими словами логарифм числа b по основанию а формулируется как показатель степени , в которую надо возвести число a , чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки вытекает, что вычисление x= log α b , равнозначно решению уравнения a x =b.

Например:

log 2 8 = 3 потому, что 8=2 3 .

Выделим, что указанная формулировка логарифма дает возможность сразу определить значение логарифма , когда число под знаком логарифма выступает некоторой степенью основания. И в правду, формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с . Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа .

Вычисление логарифма именуют логарифмированием . Логарифмирование - это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей трансформируется в суммы членов.

Потенцирование - это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов трансформируются в произведение сомножителей.

Достаточно часто используются вещественные логарифмы с основаниями 2 (двоичный), е число Эйлера e ≈ 2,718 (натуральный логарифм) и 10 (десятичный).

На данном этапе целесообразно рассмотреть образцы логарифмов log 7 2, ln5, lg0.0001.

А записи lg(-3), log -3 3.2, log -1 -4.3 не имеют смысла, так как в первой из них под знаком логарифма помещено отрицательное число , во второй - отрицательное число в основании, а в третьей - и отрицательное число под знаком логарифма и единица в основании.

Условия определения логарифма.

Стоит отдельно рассмотреть условия a > 0, a ≠ 1, b > 0.при которых дается определение логарифма . Рассмотрим, почему взяты эти ограничения. В это нам поможет равенство вида x = log α b , называемое основным логарифмическим тождеством , которое напрямую следует из данного выше определения логарифма.

Возьмем условие a≠1 . Поскольку единица в любой степени равна единице, то равенство x=log α b может существовать лишь при b=1 , но при этом log 1 1 будет любым действительным числом . Для исключения этой неоднозначности и берется a≠1 .

Докажем необходимость условия a>0 . При a=0 по формулировке логарифма может существовать только при b=0 . И соответственно тогда log 0 0 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Исключить эту неоднозначность дает условие a≠0 . А при a<0 нам бы пришлось отвергнуть разбор рациональных и иррациональных значений логарифма, поскольку степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Именно по этой причине и оговорено условие a>0 .

И последнее условие b>0 вытекает из неравенства a>0 , поскольку x=log α b , а значение степени с положительным основанием a всегда положительно.

Особенности логарифмов.

Логарифмы характеризуются отличительными особенностями , которые обусловили их повсеместное употребление для значительного облегчения кропотливых расчетов. При переходе «в мир логарифмов» умножение трансформируется на значительно более легкое сложение, деление — на вычитание, а возведение в степень и извлечение корня трансформируются соответствующе в умножение и деление на показатель степени.

Формулировку логарифмов и таблицу их значений (для тригонометрических функций) впервые издал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, увеличенные и детализированные прочими учеными, широко использовались при выполнении научных и инженерных вычислений, и оставались актуальными пока не стали применяться электронные калькуляторы и компьютеры.

Логарифмом положительного числа b по основанию a (a>0, a не равно 1) называют такое число с, что a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Обратите внимание: логарифм от неположительного числа не определен. Кроме того, в основании логарифма должно быть положительное число, не равное 1. Например, если мы возведем -2 в квадрат, получим число 4, но это не означает, что логарифм по основанию -2 от 4 равен 2.

Основное логарифмическое тождество

a log a b = b (a > 0, a ≠ 1) (2)

Важно, что области определения правой и левой частей этой формулы отличаются. Левая часть определена только при b>0, a>0 и a ≠ 1. Правая часть определена при любом b, а от a вообще не зависит. Таким образом, применение основного логарифмического "тождества" при решении уравнений и неравенств может привести к изменению ОДЗ.

Два очевидных следствия определения логарифма

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Действительно, при возведении числа a в первую степень мы получим то же самое число, а при возведении в нулевую степень - единицу.

Логарифм произведения и логарифм частного

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Хотелось бы предостеречь школьников от бездумного применения данных формул при решении логарифмических уравнений и неравенств. При их использовании "слева направо" происходит сужение ОДЗ, а при переходе от суммы или разности логарифмов к логарифму произведения или частного - расширение ОДЗ.

Действительно, выражение log a (f (x) g (x)) определено в двух случаях: когда обе функции строго положительны либо когда f(x) и g(x) обе меньше нуля.

Преобразуя данное выражение в сумму log a f (x) + log a g (x) , мы вынуждены ограничиваться только случаем, когда f(x)>0 и g(x)>0. Налицо сужение области допустимых значений, а это категорически недопустимо, т. к. может привести к потере решений. Аналогичная проблема существует и для формулы (6).

Степень можно выносить за знак логарифма

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:

Log a (f (x) 2 = 2 log a f (x)

Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть - только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.

Формула перехода к новому основанию

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Тот редкий случай, когда ОДЗ не изменяется при преобразовании. Если вы разумно выбрали основание с (положительное и не равное 1), формула перехода к новому основанию является абсолютно безопасной.

Если в качестве нового основания с выбрать число b, получим важный частный случай формулы (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Несколько простых примеров с логарифмами

Пример 1. Вычислите: lg2 + lg50.
Решение. lg2 + lg50 = lg100 = 2. Мы воспользовались формулой суммы логарифмов (5) и определением десятичного логарифма.


Пример 2. Вычислите: lg125/lg5.
Решение. lg125/lg5 = log 5 125 = 3. Мы использовали формулу перехода к новому основанию (8).

Таблица формул, связанных с логарифмами

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)


Рассказать друзьям