Не опускайте рук: почему бионические протезы не становятся доступнее? Бионический протез: история создания, принцип работы.

💖 Нравится? Поделись с друзьями ссылкой

Как работает бионическая рука April 23rd, 2017

8 летняя Тилли впервые использует бионическую руку.

Я почему то думал, что до таких функциональных протезов наука на планете Земля еще не дошла. Однако же...

Как же это работает?



вот тут про эти протезы

До недавнего времени протезы прикреплялись к человеческому телу механически и не имели никакой связи с нервной системой. Они могли сгибаться в своих железных шарнирах-суставах, но для выполнения каждого движения владельцу нужно было тем или иным образом регулировать поведение своего протеза, вручную обеспечивая обратную связь. Таким образом человек сигнализировал своей ноге, что впереди лужа и ее нужно обойти, а руке — что нужно аккуратно взять яйцо и приготовить яичницу или, наоборот, крепко зажать в руке инструмент. Чтобы научить человека управлять новой конечностью таким образом, требовалось долгое время, да и набор команд был довольно ограниченным, поэтому мелкая моторика оставляла желать лучшего.

Но ученые, вдохновленные воображением писателей-фантастов, смогли сделать невероятное — присоединить механическую руку к человеческой нервной системе.

На перехват

Когда человеку без руки хочется пошевелить пальцем, мозг генерирует соответствующий сигнал, который идет по нервам, ведущим к мышцам конечности. Но, поскольку рука отсутствует, сигнал уходит «в пустоту». Но что, если где-то по пути «перехватить» нервные импульсы и на этой основе после анализа и обработки данных сформировать команды управления роботизированной рукой? Именно по этому пути идут многочисленные научные группы, стремясь разработать протезы, считывающие нервные сигналы и преобразующие их в движения.

В американских Хьюстонском университете и Университете Райса велись эксперименты со снятием моторных нервных сигналов методом электроэнцефалографии (ЭЭГ) с помощью электродов на коже головы. Сложность в том, что ЭЭГ — это набор большого количества разных сигналов, и задача выделить среди них те, которые управляют движением конечности, сродни поискам иголки в стоге сена.

Исследователи из Технического университета Чалмерса в Гетеборге (Швеция) совместно с коллегами из консорциума NEBIAS (проект нескольких европейских университетов) пошли другим путем. Вместо того чтобы располагать электроды на поверхности кожи, где полезный сигнал сильно зашумлен, ученые попытались уменьшить влияние помех, вшивая электроды под кожу. Но физиология каждого человека индивидуальна, и нельзя заранее сказать, где именно следует расположить электроды для максимального соотношения «сигнал-шум».

Самообучение роботов

В настоящее время самым перспективным методом управления бионическими протезами считается считывание электрических потенциалов с мышц культи — электромиография (ЭМГ). Такие высокотехнологические протезы уже вышли за пределы лабораторий и производятся серийно. Однако научить пациента правильно управлять протезом — все еще сложная проблема.

В лаборатории прикладных кибернетических систем Московского физико-технического института пытаются перевернуть эту проблему с головы на ноги, то есть «обучить» протез правильно понимать команды человеческого мозга. Команда GalvaniBionix, состоящая из студентов и аспирантов МФТИ во главе с заведующим лабораторией Тимуром Бергалиевым использует для считывания электрических потенциалов с мышц не одну пару электродов, а множество. Такой подход позволяет добиться значительного повышения уровня полезного сигнала и реализовать алгоритмы «самообучения». Каждая комбинация сигналов, пришедшая с разных электродов, соответствует определенному действию руки, а задача в том, чтобы составить библиотеку соответствий, к которой будет обращаться система при получении нового набора импульсов. «Программное обеспечение учится правильно распознавать команды мозга, подстраиваясь под конкретного человека, — объясняет Бергалиев. — Нам удалось продемонстрировать работоспособность прототипа системы: человек с ампутированной конечностью с помощью «мышечных сигналов» мог перемещать курсор по экрану. В дальнейшем мы планируем использовать алгоритмы машинного обучения для анализа частоты регистрации различных комбинаций сигналов и с помощью этих данных улучшить распознавание».

Тимур Бергалиев, заведующий лабораторией прикладных кибернетических систем Московского физико-технического института, руководитель проекта GalvaniBionix:

«Для управления протезами мы разрабатываем технологию, которая подстраивается под индивидуальность человека. На культе мы размещаем не одну пару электродов, как это обычно делается, а несколько. Чем больше электродов мы используем, тем б? льшую выборку сигналов для анализа получим. Да, таким образом мы сильно усложняем работу компьютера, поскольку процессору сложнее анализировать множество сигналов. Но зато значительно упрощается жизнь пациента».

Электрические руки

Протезирование начиналось с чисто косметических (пассивных) протезов, предназначенных сугубо для воссоздания естественного внешнего вида утерянных конечностей. Однако достижения технологии позволили разработать управляемые различными методами протезы.

Тяговое управление использует механические тяги для передачи движения протезу.

Электромиографическое управление основано на считывании биоэлектрических потенциалов, возникающих при сокращении мышц на уцелевшей части руки.

Электроэнцефалографическое управление использует считывание электрических потенциалов в мозгу посредством электроэнцефалографии (ЭЭГ). Сигналы с датчиков, размещенных на поверхности кожи головы, декодируются компьютером и преобразуются в команды, управляющие протезом.

Управление с помощью электронных имплантатов — вживленных в кору головного мозга электродов, с помощью которых регистрируется активность корковых нейронов.

Так что будущее уже рядом:

источники

Начиная со времен Средневековья и до сегодняшнего дня человечество пытается создать такие протезы, которые были бы максимально похожи на утраченную конечность не только по своему внешнему виду, но и по функционалу. Облегчить жизнь больным, которым в прежние времена не давалось никаких шансов на реализацию в социуме и улучшение самочувствия, позволяет современная медицина и наука. Бурное развитие технического прогресса позволяет создавать удивительные вещи, которые делают жизнь больных более свободной, позитивной и насыщенной.

Наука будущего

В настоящее время возникла новая дисциплина, сочетающая в себе технику и биологию. Бионика - наука, занимающаяся исследованиями нервной системы, ее клеточек, а также изучением рецепторов. Цель подобной работы состоит в создании инновационных приборов.

Бионика является прикладной дисциплиной, и на сегодняшний день ее развитие происходит достаточно быстрыми темпами. Ведь человечество всегда стремилось обладать такими способностями, которые не были даны ему от природы. Конечно, живое тело может многое. Однако существуют вещи, которые человеку просто не под силу. Это, к примеру, отсутствие возможности разговаривать с людьми, находящимися вне пределов слышимости, а также способность летать. Но человек всегда стремился компенсировать свое несовершенство. Для этого он использовал самые различные внешние приспособления. Так, например, были изобретены телефон и самолет. Но что касается медицинской сферы, здесь все более сложно. При этом каждому из нас понятно, что доктора, в тех случаях, когда с телом пациента что-либо происходит, проводят его «ремонт», пользуясь самыми последними достижениями в этой области.

Бионика - это наука, которая смогла сложить вместе две эти, на первый взгляд, довольно простые концепции. Кроме того, она позволяет нам немного заглянуть в будущее. Ведь там, вполне возможно, врачи начнут активно улучшать своих пациентов, «меняя» им «непригодные», «износившиеся» органы и системы. Кроме того, велика вероятность, что бионика позволит сделать нас такими, какими не смогла создать природа, то есть более сильными и быстрыми. Именно в этом и заключается суть этой науки.

Необычные приспособления

Одно из основных направлений бионики рассматривает вопросы изготовления современных протезов и имплантов. Подобные технологические устройства размещают там, где ранее была утерянная конечность.

Свое название бионический протез получил от слова «бионика». Для создания своих изделий, помимо техники и биологии, данная дисциплина использует достижения электроники и кибернетики, физики и химии, навигации и т.д.

Установленный человеку бионический протез или имплант начинает взаимодействовать с клетками нервной системы. И, несмотря на то что подобные устройства изготавливаются из искусственных материалов, они позволяют пациенту контролировать свои движения. Это становится возможным благодаря методу мышечной реиннервации. Его основной принцип заключен в том, что нервы, когда-то отвечавшие за уже ампутированную ногу или руку, соединяются с оставшимися на конечности мышечными тканями. Они-то и передают сигналы на протезные электронные датчики.
После того как у человека удалили конечность, в его теле остаются нервы, отвечающие за двигательную активность. Врачи с помощью сложной хирургической операции соединяют их с зонами наиболее крупных мышц. Например, в случае ампутированной руки, с грудной.

Как работают бионические протезы? Когда у человека возникает желание пошевелить пальцами, его мозг направляет сигнал для грудной мышцы. Здесь в работу включаются электроды. Они принимают данный сигнал и передают импульс по проводам к процессору, находящемуся внутри бионической конечности. Это и позволяет протезу совершать задуманное движение.

Интересно, что искусственная конечность способна чувствовать даже тепло, давление и прикосновение. Ведь врачи производят соединение живого чувствительного нерва с участком кожи, расположенным на груди. Подобный метод назвали целевой сенсорной реиннервацией. Сенсоры, расположенные на искусственной конечности, направляют сигнал к участку кожи. Далее этот импульс передается в кору головного мозга, и человек, например, способен ощутить высокую температуру и одернуть руку.

На сегодняшний день можно говорить о том, что бионические протезы конечностей только внедряются в жизнь. И пока еще существует проблема качественного управления подобными устройствами.

Бионические руки

Создание подобного протеза заняло у ученых много времени. Конечно, задача перед исследователями стояла не из легких. Как создать настолько умный протез, чтобы он смог воссоздавать все движения своего хозяина, даже самые деликатные? Ведь кончики пальцев кистей человека природа снабдила самыми чувствительными нервными окончаниями, которые и обеспечивают точность при выполнении различных заданий.

Конечно, на сегодняшний день ученым пока не удалось повторить естественные возможности человеческой руки на все сто процентов. Однако имеется несколько довольно интересных попыток, которые позволили максимально точно приблизить искусственную конечность к естественной.

Какими бывают бионические протезы? История создания этих устройств насчитывает пока еще совсем немного времени. Это и становится основной причиной того, что их использование на данный момент не столь массовое. Первые бионические протезы были разработаны учеными, работающими в чикагском Институте реабилитации. Именно им удалось создать устройство, которое позволило пациенту управлять своей рукой и даже распознавать целый ряд ощущений. Первая бионическая рука была поставлена Клаудии Митчелл. Эта женщина, которая в прошлом служила в американском морском флоте, в 2005 г. попала в аварию. Для того чтобы спасти пациентке жизнь, хирургам пришлось провести ей операцию по ампутации левой руки. Причем по самое плечо. Искусственная рука была присоединена к нервам, которые остались без изменения.
Сегодня такой бионический протез выпускается разными производителями. Рассмотрим некоторые из них.

Протезы i-LIMB

Одной из компаний, выпускающей бионические руки, является Touch Bionics. Изначально она производила свои изделия для ветеранов войны. Такая рука-протез может не только брать, но и удерживать предметы. При этом ее пальцы способны двигаться по отдельности и воспроизводить несколько стандартных записанных движений. Интересно, что такой бионический протез может сжимать предметы с разной силой.

Что лежит в основе работы данного устройства? Это микроэлектрический аппарат, способный считывать биоэлектрический потенциал уцелевшей части руки. Далее следует передача информации на программное устройство. Оно и обеспечивает проведение дальнейшего функционирования бионической конечности. Компьютерная система, которой снабжена искусственная рука, содержит в себе определенный перечень стандартных захватов и движений.

Протезы Bebionic3

Эта бионическая рука аналогична описанной выше. С ее помощью человек способен выполнять четырнадцать различных движений и захватов, воспроизводя различные действия.

Данный миоэлектрический протез в настоящее время находится на стадии доработки, но в скором времени может стать полноценной заменой утраченной руки.

Биорука, созданная в Техническом университете Чалмерса

Ученые из этого учреждения создали уникальный протез. Частично он может работать от миоэлектрики, а частично - благодаря импульсам, передаваемым нервной системой инвалида. В руку человека имплантируются электроды, которые и считывают передаваемые мозгом сигналы. Далее эти импульсы поступают в компьютерное устройство, которое перераспределят их в управляемые моторикой. В результате рука-протез способна воспроизвести движения пальцами как одновременно, так и каждого по отдельности.

На сегодняшний день создателями данной модели проводятся работы по ее усовершенствованию. Они ставят перед собой задачу формирования такого протеза, который бы управлялся исключительно нервными импульсами, передаваемыми головным мозгом.

Устройство Эндрю Швартца

Изготовление протезов, выполненных по разработкам этого нейробиолога, позволило изменить жизнь парализованных людей. Первой пациенткой, которой была проведена операция по установке данной биоруки, была женщина, которая страдала от тяжелейшего нейродегенеративного заболевания. Именно этот недуг привел пациентку к потере двигательных функций во всем теле. В мозг женщины были имплантированы специальные электроды, с помощью которых и осуществлялось управление биорукой.

В прототипе нового протеза верхней конечности тактильные сигналы передаются при помощи сенсоров, встроенных в кончики искусственной ладони, запястья и пальцев. Подобное нововведение позволяет пациенту ощущать не только расположение самого протеза. Он чувствует и сжимаемые биорукой предметы.

Конечно, на сегодняшний день можно сказать о том, что подобные ощущения не могут сравниться с естественными, данными нам природой. К тому же материал, из которого выполнен имплантат, не должен находиться в живом организме более месяца. Но тем не менее можно с уверенностью говорить о том, что первые шаги по созданию «умного» протеза уже сделаны.

Бионические ноги

На первый взгляд создание искусственной нижней конечности нового поколения кажется задачей более легкой по сравнению с той, которая стояла перед учеными при создании «умной» руки.

Однако на сегодняшний день исследователям так и не удалось значительно приблизиться к ее решению. Изготовление протезов, способных заменить нижние конечности, конечно, ведется на протяжении уже нескольких лет. Причем исследователи представили уже целый ряд наиболее удачных моделей.

Испытания бионических ног

Учеными университета Вандербильта проводится усиленная работа по созданию двигателей для колена и ступни. Первый пациент, который испытал на себе возможности этой искусственной конечности, - двадцатитрехлетний парень Крейн Хатто. Свою ногу он потерял в схватке с акулой. Анализируя видеоматериалы о походке молодого человека, можно с уверенностью сделать вывод о том, что Крейн хорошо перемещается по разным поверхностям. Хромает он лишь слегка и самостоятельно может пройти расстояние до 14 км. Такой протез способен реагировать даже на самые незначительные изменения во время движения человека.

Еще одна удачная разработка, которую испытали ученые из Университета Вандербилта, а также исследователи Реабилитационного центра из чикагского института, - искусственная нога, установленная Заку Воутеру. Используя технические возможности данного протеза, этот пациент самостоятельно поднялся на 103 этаж небоскреба.

Принцип действия данной модели заключен в том, что протез управляется сигналами, посылаемыми головным мозгом. При этом устройство соединяют с нервными окончаниями, которые имеются в оставшемся участке конечности.

Бионога Tibion

Кроме вышеперечисленных разработок, существуют и другие, не менее достойные модели искусственных нижних конечностей. Одна из них - бионога Tibion. Конструкцию этого протеза исследователи максимально приблизили к тем параметрам, которые имеет скелет естественной ноги. Подобная разработка предназначается для пожилых пациентов, имеющих обездвиженные нижние конечности, например, после инсульта.

Требования к биопротезам

Для того чтобы искусственные конечности были достаточно эффективны в своей функциональности, они должны отвечать таким требованиям:

Иметь основу из легкого и прочного материала (обычно это титановые сплавы), что особенно важно при протезировании нижних конечностей;

Обладать надежной электроникой, что позволит с точностью передавать импульсы с мышц оставшегося участка;

Иметь автономное питание, которое позволит обеспечить работу микродвижка и процессора в течение длительного времени;

Обладать износоустойчивыми деталями, которые имитируют коленный или локтевой сустав;

Максимально быть приближенными по своему анатомическому сходству с ампутированной конечностью.

Установка искусственных конечностей в России

Где в нашей стране может быть поставлен бионический протез? Россия - страна, где подобные устройства не производятся. Однако тем, кто попал в беду и стал инвалидом, помогут в Реабилитационно-ортопедическом центре, который находится в Москве. В течение последних десяти лет специалисты данного учреждения занимаются вопросами протезирования нижних конечностей. В РОЦ изготавливаются современные модульные протезы с применением высокотехнологичных разработок немецкой компании Otto Bock и исландской фирмы Ossur. К таким искусственным конечностям относят современные биопротезы, которые оснащены микропроцессором.

Они способны обеспечить максимально естественную походку. Эти протезы используют такие модули:

1. Rheo Knee. Это коленный модуль самообучающегося типа. Он настолько «умный», что постоянно и непрерывно адаптируется к пациенту, а также к окружающей его среде. В этом модуле применяются самые передовые технологии в виде датчиков нагрузки, которые снимают измерения с частотой 1000 раз в течение секунды.

2. Proprio Foot. Это первая в мире стопа с искусственным интеллектом. Ее ставят пациентам, пережившим операцию по удалению голени. Модуль производит даже автоматическое сгибание щиколотки. Это означает, что по своей функциональности он близок к здоровой стопе.

3. Symbionic Leg. Это полностью бионическая нога. Для ее работы используется объединенное питание, а также управление от одного микропроцессора стопой и адаптивным суставом колена.

Весьма эффективным для инвалидов является бионический протез ноги. Цена на него в РОЦ вместе с установкой находится в пределах от 1 до 3 млн руб.

Конечно, бионические протезы малодоступны для обычных людей. Однако это легко объясняется их сложным устройством и большими функциональными возможностями. Например, бионический протез ноги, цена на который, конечно же, очень велика, позволяет не только нормально ходить, подниматься и спускаться по лестнице, но и заниматься спортом, не отказывая себе в ведении активной жизни.

Какие еще органы можно заменить электроникой?

Под бионическими протезами понимают и кохлеарные имплантаты, которые вживляются в органы слуха. Это особые устройства, представляющие собой систему, в которой находится микрофон, звуковой процессор, а также передатчик звукового сигнала. Последняя из этих деталей фиксируется либо на кожу, либо под волосами. Приемник, являющийся неотъемлемым элементом данного протеза, имплантируется в подкожные ткани пациента, а электроды вводятся внутрь слуховой улитки.

С 1950 года ученые проводят эксперименты, целью которых является создание искусственного сердца. Первая операция по имплантации такого протеза была проведена в 1982 г.

Самым удивительным изобретением по праву считается искусственный глаз. Это сложное устройство, способное частично заменить орган зрения. Оно начинает работать после установки антенны в районе глазного яблока. Изображение попадает на особые очки, которые снабжены камерой и соединены с компьютером, обрабатывающим картинку.

  • Медгаджеты ,
  • Актриса Angel Giuffria (Голодные игры: Сойка-пересмешница)

    У 15% людей на планете есть нарушения функций и структур организма, которые препятствуют физической активности и мешают социальной жизни, и больше 50 миллионов человек в год становятся инвалидами. Прямые и косвенные потери из-за этой проблемы составляют около 6% - в 2015 году это примерно 4,4 триллиона долларов. Это сравнимо с годовыми потерями мировой экономики от «великой рецессии» 2008 года. И это втрое больше годового ВВП России.

    Качественные и функциональные протезы могли бы существенно уменьшить эти потери, но доступные протезы конечностей в большинстве своём, пишут «Известия» со ссылкой на исследование Высшей школы экономики, - это «примитивные малофункциональные изделия с плохим дизайном».

    Благодаря современным материалам, сбалансированному размещению двигателей, датчикам силы прикосновения и вместительным аккумуляторам разработчики протезов смогли создать бионические руки, которые способны на большую часть повседневных действий. Одни модели приближены к реальной кисти - гибкий блок лучезапястного шарнира позволяет Michelangelo сгибаться в запястье, а другие - к роботам из научной фантастики, как BeBionic, которой из-за беспроводного управления смогли добавить функцию вращения на 360 градусов. Главным недостатком современных протезов пока остается цена.

    BeBionic (компания RSLSteeper)

    Компания RSLSteeper занимается протезированием более 90 лет. Она известна широкой общественности благодаря линейке бионических рук BeBionic. Выход на рынок первой версии протеза анонсировали в 2010 году на International Society for Prosthetics and Orthotics в Германии. Протез имел четыре функциональных хвата. Большой палец выполняет роль «переключателя» между их группами.

    Вторая версия руки BeBionic получила интересный дизайн и большее количество хватов. Появился специальный хват для компьютерной мыши - разработчики предусмотрели двойной клик. Сенсоры позволяют руке подстраиваться под форму объекта в руке пользователя.

    BeBionic 3 появилась уже в 2012 году. В видео ниже Найджел Экленд показывает различные хваты, на которые способна рука.

    На 30% меньше по размеру, чем BeBionic 3, и весит бионическая рука 390 граммов. На кончиках пальцев руки есть подушечки для работы с мелкими предметами. Первым пользователем BeBionic Small стала Ники Эшвелл из Великобритании.

    «На полном заряде протезы проработают в течение дня. Вечером перед сном их нужно снимать и ставить батарею на зарядку», - рассказали в BeBionic. Это один из минусов - людям приходится снимать устройства при отходе ко сну. Гарантия на такую бионическую руку - один год, но можно расширить её до пяти лет.

    Каждый палец руки имеет собственный мотор, расположенный так, чтобы уравновесить само устройство. Микропроцессор следит за положением каждого пальца. Всего есть 14 хватов для ежедневных дел. Пользователь может контролировать скорость и силу хвата, чтобы, например, не разбить яйцо или не сломать одноразовый стаканчик. В руке есть функция «автозахвата» - если процессор понимает, что предмет сейчас выпадет из протеза, он усиливает хват автоматически.

    Облегчить протез позволяют материалы: это алюминиевые детали и углепластиковый корпус BeBionic. При этом рука BeBionic 3 выдерживает нагрузку до 45 килограммов. Благодаря беспроводной передаче данных разработчикам удалось добавить интересную функцию: рука крутится на 360 градусов.

    Touch Bionics

    BeBionics благодаря своей работе со СМИ и на различных мероприятиях сейчас, возможно, наиболее узнаваемый бренд. Но рука от RSLSteeper не была первой бионической рукой. Touch Bionics ещё в 2007 году начала устанавливать первую в мире руку такого типа. Миоэлектрический протез i-Limb уже тогда позволял с помощью датчиков, установленных всего у двух мышц, работать с различными хватами.

    В 2014 году появилась версия i-Limb Revolution. Протезы такого типа позволяют делать множество вещей, которые для людей с двумя руками кажутся абсолютно обычными, простыми: складывать вещи в чемодан и витамины в таблетницу, держать пакет с продуктами и открывать ящик комода, собирать Lego двумя руками и завязывать шнурки.

    Когда мы делаем что-то руками, мы часто используем запястья. Часто протезы не дают возможности повторять этот трюк с искусственной рукой. В Touch Bionics эту проблему попытались решить с помощью мобильного запястья протеза, позволяющего двигать кисть на 40 градусов относительно стандартного положения в обе стороны.

    В 2015 году Touch Bionics представили i-Limb Quantum, более футуристическую и одновременно более функциональную руку. Устройство получило 24 предустановленных хвата и возможность настроить ещё 12 хватов под владельца.

    Владельцы протезов из линейки i-Limb могут использовать мобильное приложение для выбора хватов, настройки их силы и программирования новых движений. Важно заметить, что этот протез имеет наибольшее количество хватов из всех, что представлены в этой статье. Только у этой бионической руки есть функция смены хватов с помощью жестов: запрограммированный хват включается при движении руки в одном из четырёх направлений.

    Touch Bionics на YouTube выкладывает интересные ролики с различными вещами, которые люди делают без протезов и с ними. Например - приготовление еды с i-Digits - протезом ладони и пальцев.

    У Touch Bionics, основанной в Шотландии 2003 году, выручка к 2015 году составила 15 миллионов долларов. Особенно высокими были продажи в Германии и Франции. Исландская Ossur в 2016 году купила эту компанию за 27,5 миллиона фунтов. По мнению экспертов, это может быть связано с не самой удачной бизнес-моделью, по которой компания делала дорогие сверхсложные устройства.

    Ossur является серьёзным игроком на рынке бионических протезов нижних конечностей - рынка гораздо большего объёма. С помощью Touch Bionics она расширила свои компетенции в области протезирования.

    Ottobock

    Один из лидеров мирового рынка протезов - немецкий концерн Ottobock . В России доступны несколько разработок от этого концерна.

    Линейка MyoFacil - миолектрические устройства со скромным набором функций. Они предназначены для людей с ампутированными ниже локтя руками. На видео ниже - человек без обеих кистей с такими протезами, делающий обычные повседневные дела - он бреется, чистит зубы, заправляет кровать, завтракает со своей девушкой, гладит одежду и водит автомобиль.

    «Протез MyoFacil стоит порядка 400-500 тысяч рублей, это зависит от предприятия, которое устанавливает протез, и от расходников. Это простое устройство начального уровня», - говорят в компании.

    Скорость схватывания такой рукой достигает 300 мм в секунду. Протез позволяет держать мелкие и крупные детали.

    Минус в том, что хват всего один. По сути это просто миоэлектрический «крюк» с перчаткой.

    Передовая разработка компании - Michelangelo. На видео ниже кто-то сравнил протез кисти Michelangelo с i-Limb не в пользу последнего. У Michelangelo есть семь основных хватов, позволяющих в том числе держать мелкие и плоские предметы.

    «Готовый протез стоит около 2-2,5 миллиона рублей, это зависит от комплектации. Ведь период службы изделия - 3 года, а перчатку на нём необходимо менять раз в полгода. Можно приобрести комплект с одной перчаткой, но этого мало. Такие расходники увеличивают стоимость. Кроме этого, на стоимость влияет и сложность работы – она зависит от культи пациента», - рассказывают в компании.

    Рука построена на системе Axon-Bus, технологическая основа которой создавалась для аэрокосмической и автомобильной промышленности, позже адаптированной Ottobock к протезированию. Запястье благодаря шарнирному соединению по технологии AxonWrist можно сгибать и поворачивать.

    Использование протеза помогает пациенту держать правильную осанку, избежать искривления позвоночника в одну сторону. Это важно и во время выполнения повседневных действий, и во время ходьбы. В расслабленном состоянии во время ходьбы бионическая рука ведёт себя подобно естественной - покачиваясь. Это позволяет снизить эффект ампутации на осанку, вызываемый неестественными компенсирующими движениями.

    В случае с этим протезом, существующий «баг» человеческой руки с пальцами остаётся: два мотора обеспечивают движение большого, указательного и среднего пальцев, а безымянный и мизинец движутся за ними. На кончиках пальцев - мягкий материал, позволяющий работать с мелкими предметами.

    Протез обеспечивает семь хватов, включая открытую ладонь.

    «Как правило все наши изделия при активном использовании работают не менее суток на одном заряде. Рынок верхних конечностей безусловно меньше рынка нижних конечностей. В России это, возможно, 5-7 тысяч протезов в год. Какое количество биоэлектрики – сложно сказать. Под него попадает и MyoFacil с минимальным набором функций», - рассказали в российском представительстве компании.

    На вопрос о положении дел в России представитель Ottobock ответил, что «рынок не так сильно развит не из-за отсутствия комплектующих, а из-за ограниченного количества специалистов, которые умеют делать такие продукты».

    Недостатки бионической руки

    Батарея
    Недолгое время работы на одном заряде аккумулятора - это недостаток большей части современных гаджетов. Бионические руки при активном использовании могут проработать в течение дня, но этого мало. Как большая часть людей привязана к розеткам необходимостью подзаряжать смартфоны и ноутбуки, так и у людей с протезами возникают дополнительные неудобства при, например, путешествиях. Можно использовать второй-третий аккумуляторы.

    Отсутствие защиты от воды
    Ещё один недостаток - как правило, такие устройства не работают в воде. С ними нельзя купаться, принимать душ. Их важно защищать с помощью специальных перчаток, чтобы грязь не попала внутрь устройства. Возможно, в будущем появятся бионические руки с полностью герметичным корпусом, позволяющим снимать руку очень редко - только для планового обслуживания.

    Лаги при управлении
    Нельзя сказать, что протезы работают медленно. Иногда они способны на высокую скорость, они могут быть сильнее, чем вторая рука человека, который носит один бионический протез. Но при управлении с помощью миоэлектрических датчиков пользователи имеют лаг: сначала мозг передаёт команду в мышцу у датчика, затем датчик передаёт команду двигателю, и после этого меняется жест. Так что реакция - далеко не самая высокая.

    Эту проблему, но с протезами ног, успешно

    Современная наука и медицина позволяют существенно облегчить жизнь больным, которым ранее не давалось никаких перспектив на улучшение самочувствия и реализацию в социуме. В этой статье мы ознакомим вас с 6 удивительными техническими достижениями современной медицины. Возможно, эта информация будет полезна для вас, и вы сможете воспользоваться предложенными новинками технического прогресса, делающими жизнь больных более насыщенной, позитивной и свободной.

    Бионические протезы

    Упоминание о бионических протезах вызывает у многих ассоциации с фильмом «Звездные войны». Искусственная рука может функционировать как настоящая, глаз «видит» и мозг «считывает» полученную информацию, ухо воспринимает все звуки – это далеко не весь перечень таких протезов.

    Слово «бионический» произошло от слова «бионика», и оно обозначает использование технических устройств, способных воспроизводить структуры живой природы. Одним из направлений этой отрасли является создание протезов и имплантатов, созданных на основе множества наук – химии, физики, биологии, кибернетики, электроники, навигации и др. Они способны воссоздавать функции утраченных органов и конечностей.

    Бионические руки

    Создание этих протезов заняло много времени и сил, т. к. при создании искусственной конечности трудно воспроизвести такие деликатные движения, которые способна выполнять кисть человека. Это объясняется тем, что на кончиках пальцев расположены самые чувствительные нервные окончания, обеспечивающие предельную точность движений.

    Пока ученые не смогли на все 100% повторить естественные возможности руки человека, но существует несколько интересных попыток, максимально приближающих функции протеза к обычной верхней конечности. Такие бионические устройства разрабатываются различными компаниями.

    Протезы i-LIMB

    Эти бионические руки выпускаются компанией Touch Bionics и изначально разрабатывались для ветеранов войны. Они способны брать и удерживать предметы, пальцы могут двигаться по-отдельности, воспроизводя несколько записанных стандартных движений, сила сжатия предметов может быть различной.

    Работа протеза основана на свойствах микроэлектрического устройства, которое считывает биоэлектрические потенциалы с уцелевшей области руки и передает их на программное устройство, обеспечивающее дальнейшее функционирование бионической верхней конечности. В компьютерной системе содержится целый ряд стандартных движений и захватов.

    Протезы Bebionic3

    Эта разновидность миоэлектрического протеза аналогична бионической руке i-LIMB. Она способна выполнять 14 разных захватов и движений для воспроизведения разных действий. Как и протез i-LIMB, эта бионическая рука в процессе доработок, и после них может стать полноценной заменой настоящих верхних конечностей.

    Проект биоруки ученых Технического университета Чалмерса

    Ученым удалось создать биопротез, способный работать частично от миоэлектрики и частично от нервной системы инвалида. В руку пациента могут имплантироваться электроды, способные считывать производимые головным мозгом биоэлектрические сигналы. После этого сигналы поступают в компьютерное устройство, и система перенаправляет их в импульсы, управляющие моторами. В результате обладатель биоруки может управлять и всеми пальцами одновременно, и двигать отдельные пальцы.

    Разработчики этой модели бионических протезов проводят работу над совершенствованием этой биоруки. Их стремления направлены на создание искусственной верхней конечности, которая будет управляться исключительно нервными сигналами, вырабатываемыми головным мозгом.

    Разработка нейробиолога Эндрю Швартца

    Благодаря этой разработке удалось провести операцию, которая была направлена на восстановление движений рукой парализованной женщины, страдающей от тяжелого нейродегенеративного заболевания, приведшего у полной утрате движений во всем теле. В ее мозг были имплантированы электроды, способные управлять биорукой.

    Тактильные сигналы прототипа нового биопротеза руки передаются специальными сенсорами, встроенными в кончики искусственных пальцев, запястья и ладони. Такое нововведение позволяет человеку чувствовать не только расположение протеза, но и сжимаемые им предметы. Пока эти ощущения не могут в полной мере сравниваться с естественными ощущениями человека, а материал имплантата может находиться в организме человека не более месяца. Однако первые шаги к созданию идеальной бионической руки уже сделаны.

    Бионические ноги

    Несмотря на тот факт, что создание бионической ноги более легкая задача, чем разработка искусственной руки, пока ученые не смогли полностью приблизиться к естественному аналогу. Такие работы активно проводятся, и на протяжении нескольких лет ученым удалось создать ряд удачных бионических протезов нижних конечностей.

    Университет Вандербильта проводит усиленную работу над созданием двигателей для ступни и колена. Первым человеком, испытавшим возможности такой бионической ноги, стал 23 летний студент Крейг Хатто, который лишился конечности в результате контакта с акулой. Анализ видеоматериалов о его походке позволяет делать выводы, что молодой человек может вполне хорошо передвигаться по различным поверхностям. Его хромота заметна лишь слегка, и Крейг смог пройти самостоятельно расстояние в 14 км. Протез может реагировать на самые минимальные изменения в условиях движения, т. к. он оснащен внушительным компьютерным и программным обеспечением.

    Еще одной удачной разработкой ученых из Университета Вандербилта и Реабилитационного центра института Чикаго стала бионическая нога для Зака Воутера. Благодаря ее техническим возможностям он смог самостоятельно подняться на 103-этажный небоскреб. Секрет характеристик этой модели бионической ноги кроется в том, что протез может управляться сигналами, посылаемыми из головного мозга, и соединен с нервными окончаниями ноги.

    Кроме вышеперечисленных бионических протезов существуют и другие достойные разработки искусственных нижних конечностей. Одной из них является бионога Tibion. Ее конструкция максимально приближена к параметрам скелета естественной ноги. Эта разработка была создана для пожилых больных с обездвиженными нижними конечностями (например, после кровоизлияния в мозг в результате ).

    Слуховые аппараты


    С помощью кохлеарных имплантов можно вернуть слух многим пациентам с тугоухостью.

    Бионическими протезами можно считать и кохлеарные имплантаты, вживляемые в органы слуха. Они представляют собой устройства, состоящие из микрофона, звукового процессора и передатчика звукового сигнала, который может фиксироваться путем прикрепления к волосам или на кожу. Приемник, входящий в состав этого устройства, имплантируется под кожу пациента, а ряд электродов вводится во время хирургической операции внутрь слуховой улитки.

    Аппараты этого типа изобретены уже давно: впервые они устанавливались уже в 1951 году. Первый кохлеарный имплантат был установлен в 1978 году. Он был разработан в Мельбурне и устанавливался людям с тяжелыми нарушениями слуха сенсоневрального происхождения. К 2000 году благодаря этой разработке ученых частично вернуть слух удалось тысячам больных, в т. ч. и детям до года. Сейчас такие операции могут проводиться и в России.

    Искусственное сердце

    С 1950 года начали проводиться первые эксперименты по созданию искусственного сердца. Первые имплантации такого бионического протеза были проведены в 1982 году. Jarvik-7 – результат научных исследований доктора Ярвикова – был пересажен двум пациентам. Тогда они считались успешными, т. к. могли продлевать жизнь больных даже на непродолжительные сроки. Один из них смог прожить после выполнения пересадки 112 дней, а второй – 620 дней.

    Множество попыток заместить естественное сердце искусственным привело ученых к тому, что они смогли создавать модели, способные стать временным вариантом для поддержания жизни людей, нуждающихся в пересадке сердца от донора. Сейчас к числу таких бионических сердец относят такие два устройства: SynCardia temporary Total Artificial и AbioCor Replacement Heart. Лидером среди этих разработок стало искусственное сердце SynCardia temporary Total Artificial, т. к. первая имплантация второго варианта потерпела фиаско.

    При выполнении пересадки искусственного сердца возможно появление такого риска для больного как отторжение устройства. Оно вызывается кардиопротезным психопатологическим синдромом и заключается в чрезмерной фиксации внимания больного на работе клапана, сопровождающейся характерным слышимым звуком. В результате пациенты пугаются такого сочетания звука и осознания того, что внутри них находится инородный механизм.

    Бионический глаз

    Одним из самых удивительных бионических протезов можно по праву считать искусственный глаз. Сложность его работы оправдывается тонким устройством естественного органа зрения.

    Argus II

    Принцип работы такого устройства как Argus II заключается в установке антенны в область глазного яблока и на специальные очки, снабженные камерой и соединенные с компьютером. Полученный визуальный сигнал фиксируется камерой и поступает в обработку на компьютерное устройство. После обработки он переводится на приемник и направляется к электродам, стимулирующим уцелевшие клетки зрительного нерва и сетчатки.

    Argus II включает в себя 60 электродов, и они позволяют больному различать формы, очертания и цвет предметов и воспринимать шрифт больших размеров. Полностью восстановить зрение такое устройство пока не способно, но его использование позволяет человеку получать ориентацию в пространстве и социализироваться в более полной мере.


    Bio-Retina

    Этот искусственный глаз включает в себя сенсор, разрешение которого составляет 576 пикселей, его имплантируют в функционирующую сетчатку и соединяют с глазным нервом. Бионический протез преобразовывает данные пикселей в электрические импульсы и головной мозг. Bio-Retina работает через специальные очки, проекцирующие инфракрасное изображение на сенсорное устройство, подпитывающееся от солнечной батарейки.

    Бионический миокард

    Этот бионический протез создан израильскими учеными, и он может помочь множеству людей, страдающих от , избежать наступления смерти в ожидании трансплантации сердца от донора. Разработчикам удалось воссоединить ткань живого миокарда с наноэлектроникой и полимерными материалами. В результате полученные «заплатки для сердца» позволяют заменять существенно поврежденные участки этого жизненно важного органа. Ученые добились того, что такие биопротезы позволяют не только готовить больного к необходимой трансплантации, но и лечат сердце.

    Человечество со времен средневековья и по сегодняшний день стремится создать протезы, наиболее похожие на утраченную конечность как внешне, так и функционально. Будущее - за бионическими протезами, которые механически наиболее приближены к функционалу тела здорового человека, однако проблема качественного управления такими устройствами на сегодняшний день до сих пор не имеет готового решения.

    За последние 5 лет появилось много компаний, занимающихся разработкой бионических протезов. В основном фокус делается на дешёвые бионические устройства из пластиковых деталей, выполненных в том числе при помощи технологий 3D печати. Есть уже готовые продукты, например, от OpenBionics, которые сейчас находятся на стадии одобрения в FDA . Механическая часть у таких игроков на рынке, как OttoBock или iLimb , тоже развивается, но это развитие направлено не на удешевление протезов, а скорее на механику движений (плавность, естественность, точность). При подобном подходе функциональная часть протеза развивается, но управляемость остается прежней.

    От Крюка до бионики

    История протезов начинается еще в давние времена - наиболее древним считается протез глаза , который относят к III тысячелетию до н. э. В средние века стали появляться хорошо известные «пиратские» деревянные опоры вместо утраченных ног или крюки вместо кисти. Такие протезы выполняли ограниченный ряд функций, в которых нуждался конкретный человек, исходя из его рода деятельности. Подобный подход можно встретить в протезировании и сегодня.

    Когда речь идет о реабилитации после ампутации руки, наиболее простым решением является косметический протез. Помимо эстетического назначения, такие протезы не выполняют практически никаких функций и не имеют преимуществ по сравнению со средневековыми протезами-крюками.

    Другое решение - это тяговые протезы. Их кисти уже могут сжиматься и разжиматься за счет, например, движений лучезапястного или локтевого сустава оставшейся части руки. Эти движения руководят механическим натяжением нитей, приводящих «пальцы» в действие. Такая кисть «умеет» только сжимать кулак и разжимать его. Она отличается быстродействием и неплохой надежностью. Тяговые протезы разрабатываются отечественными инновационными компаниями, также их можно сделать самостоятельно по инструкции (что практикуется и в странах третьего мира).

    Третий класс - механические протезы, управляемые мышечной активностью. Такие устройства, как правило, выполнены из металла, имеют большую прочность, но обладают только двумя степенями свободы - сжатие и разжатие . Управлять механическим протезом не очень удобно: для того, чтобы разжать кулак, нужно напрячь внешнюю сторону предплечья, а для того, чтобы сжать - наоборот, напрячь внутреннюю сторону предплечья. Это так называемый триггерный способ управления: либо мышечная активность есть - тогда движение активируется, либо мышечной активности нет. К сожалению, такая система управления может приводить к ложным срабатываниям. Механические протезы обладают «внешностью» косметических и функциональностью тяговых, питаются от аккумулятора, который размещается на протезе. Металлический каркас и мотор, приводящий в движение кисть, позволяют называть конструкцию надежной: например, если требуется держать какой-то предмет, механическая рука сможет сжать его сильно и надолго, и это практически не потребует усилий со стороны человека. Неудобное управление и ограниченная функциональность - основные недостатки механических протезов.

    Последний, четвертый класс - бионические протезы, в которых каждый палец управляется отдельным мотором - это дает большее преимущество в плане манипуляций с предметами. Система управления бионической кистью такая же, как и у механической, на основе сжатия и разжатия - поэтому этими протезами сложно пользоваться. Для облегчения использования добавляют какие-либо внешние переключатели - рычажки на протезе или приложения на смартфоне.

    Дороговизна и малофункциональность

    «Бионичность» подразумевает помимо восполнения механических функций потерянной руки, естественность её использования. Разработчики сфокусированы на оптимизации строения протезов - нужны максимально прочные, эргономичные, функциональные с точки зрения механики решения. Тем не менее, задача обеспечения максимальной функциональностью управления, не имеет готового решения на рынке. А неудобные и ограниченно функционирующие протезы стоят от $30 000 до $70 000 .

    Все сегодняшние R&D проекты сфокусированы на двух направлениях: удешевление самого протеза и улучшение системы управления . Если для первой проблемы существуют более-менее подходящие решения, то в области разработки систем управления все только начинается.

    В идеале человек, пользующийся протезом, не должен замечать системы управления. То есть интерфейс между человеком и протезом использует естественные механизмы управления, которым человек обучался ещё в детстве. Таким образом, остро стоит вопрос, какой интерфейс взаимодействия между человеком и протезом стоит использовать и как подстроить это взаимодействие под индивидуальные особенности каждого?

    Совершенное взаимодействие с человеком

    Для удешевления производства используются технологии 3D печати. Стоимость таких протезов невысока за счет использования пластиковых деталей, а компаний, которые занимаются 3D печатью протезов, достаточно много по всему миру, в том числе и в России. Зарубежные компании создают модели бионических протезов и выкладывают их в открытый доступ, способствуя развитию и доступности протезирования. Другие компании-разработчики оптимизируют и дорабатывают дизайн и механику свободно доступных 3D моделей.

    А вот решить задачу по улучшению взаимодействия человека с протезом намного сложнее. Наиболее «естественный» подход - это полноценная трансплантация руки . Мышцы и нервы при этом работают точь-в-точь как в здоровой руке, но процедура весьма дорогостоящая, требующая донорский материал, дополнительную терапию и риски отторжения. Безусловно, за таким методом, в том или ином виде будущее, которое наступит только после революций в смежных областях - лет через 100. Пока актуально создание устройств реабилитации, в достаточной мере восполняющих функции утраченной кисти и позволяющих управлять собой естественным образом.

    Можно выделить четыре основных типа взаимодействия человека с протезом:

    Первый , наиболее радикальный - разного рода импланты в моторную и сенсорную зоны коры головного мозга. Такой интерфейс обладает теми же недостатками, что и трансплантированная рука. Особенно уместны импланты в мозг в случае, когда по каким-либо причинам нарушена связь головного мозга и руки. В остальных случаях стоит дополнительно оценивать пользу/риск от использования такого интерфейса.

    Второй способ управления - использование электроэнцефалографии (ЭЭГ). Метод ЭЭГ основан на регистрации биоэлектрической активности головного мозга, возникающей вследствие распространения потенциала действия по нейронам. Метод считается перспективным, но имеет ряд технических сложностей, которые мешают появлению в продаже интерфейса на его основе. Во-первых, из-за особенностей регистрации карты мозговой активности систему нужно «обучать» заново при перемещении электродов. А во-вторых, сам сигнал очень неустойчив к различного рода электрическим наводкам и помехам.

    Третий: имплантация электродов к периферическим нейронам в оставшейся части руки. Такой способ имеет все те же проблемы , что трансплантация и мозговые импланты, к тому же требует длительной и индивидуальной работы врачей.

    И последний тип интерфейса - электромиография (ЭМГ). Простейшая его реализация - триггерная - используется в механических протезах, руководя сжатием или разжатием кисти. В бионические протезы внедрена точно такая же система управления. Но, как уже было сказано, ЭМГ в них используется только для двух степеней свободы - сгибание и разгибание пальцев. Также к ним может быть добавлена и третья степень свободы - одновременное напряжение обеих мышц, на которых измеряется ЭМГ активность.

    Электромиография - это метод анализа мышечной активности, основанный на измерении разности потенциалов в двух точках, между которыми под кожей по мембранам мышечных волокон распространяется потенциал действия (именно этот потенциал представляет собой распространение волны мышечной активности от зоны, куда поступает потенциал действия моторного нейрона, заставляющей «работать» наши мышцы). Такой способ позволяет записывать сигнал мышечной активности с минимальным уровнем шума. Большая часть движения пальцев и кисти тесно связана с мышцами предплечья. Это легко проверить, положив одну руку на предплечье (чуть ниже локтя) и пошевелив пальцами другой руки - можно почувствовать, как при этом сокращаются различные мышцы предплечья. Использование системы управления, индивидуально настроенной на паттерны движений кисти конкретного человека, приближает нас к созданию естественного интерфейса между человеком и протезом. С одной стороны, он не инвазивен и обладает большой функциональностью, с другой – быстро настраивается и устойчив к внешним воздействиям. Проблемой может стать атрофия оставшихся мышц, однако метод позволяет извлечь максимум сохранившихся естественных паттернов мышечной активности.

    Текущий статус разработок в мире

    Системы управления протезом также развивается, но компаний, сфокусированных на этой задаче значительно меньше. В основном, разработчики используют уже готовые электромиографические усилители и, получив сигнал, примитивно его обрабатывают. (так или иначе всё сводится к «триггерной» системе, вопрос только в количестве порогов и в количестве каналов записи ЭМГ). В некоторых случаях, прибегают к кластерному анализу, но такое в основном встречается в научных статьях, где также утверждается, что такие методы не приспособлены для использования в реальной жизни за счет изменчивости мышечной активности. В триггерных системах используются смартфоны или иные устройства, переключающих режимы схватов, по аналогии с существующими протезами. Тем не менее, в сочетании с дешевизной 3D печати и схожей системой управления «дорогих» протезов, данные компании займут свою долю на рынке. Существует и другой подход к решению задачи управляемости - более детальная обработка ЭМГ сигнала и выделение паттернов конкретных движений, чтобы впоследствии воспроизводить их на протезе после обучения с помощью machine learning. То есть нужно обучить систему управления каждому индивидуальному движению для конкретного пациента, которое будет воспроизводиться при повторном напряжении мышц, соответствующих конкретному движению. Данное обучение системы управления может происходить в течение 1-2 минут, при этом точность распознавания движений будет зависеть от качества алгоритмов обработки ЭМГ и алгоритмов machine learning и будет составлять не менее 99% в зависимости от многообразия распознаваемых движений. Такая система управления может быть встроена практически в любой бионический протез, что выделит его на рынке среди конкурентов. Компаний, ведущих разработку в этой области, во всем мире не так уж и много. В нашей стране этим тоже занимается ряд компаний (компания «Мионикс», которую представляет автор, - одна из них - Forbes)

    Также ведутся разработки систем обратной связи - от вибрационной тактильной обратной связи до искусственной кожи, интегрированной с нервной системой человека. Это отдельный пласт разработок, который безусловно необходим для тонких манипуляций со сложными объектами, например, хрупкими или мягкими. Без обратной связи протез, как реабилитационное устройство, не будет полноценной заменой утраченной конечности. Примечателен факт, что, как правило, разработка обратной связи не пересекается с разработкой улучшенной механики протеза и тем более системой управления бионическими протезами.

    Направление бионических протезов развивается во всём мире. Главная цель этого развития - создание готового удобного в управлении протеза, который можно купить, надеть и пользоваться без сложного процесса обучения. К сожалению, в настоящий момент такой продукт не создан, а спрос на него каждый год растёт. Мы верим, что в ближайшем будущем сможем увидеть дешевый протез с удобной, простой и персонализированной системой управления и обратной связью. Такие системы управления также дадут толчок к развитию экзоскелетов, управляемых небольшими мышечными усилиями.



    Рассказать друзьям