Основы иммунологии - активация в-лимфоцитов. Причины появления активированных лимфоцитов в анализах крови у ребенка, методы диагностики, лечения и профилактики Этапы активации в и т лимфоцитов таблица

💖 Нравится? Поделись с друзьями ссылкой

Активированные лимфоциты в анализе - это группа кровяных телец белого цвета. Их число будет определено после проведения специального обследования в лаборатории. При рассмотрении результатов анализа пациенты чаще всего не понимают значения многих записей. Для врача же такие показатели и обозначения станут источником всей информации о здоровье пациента. Часто происходит так, что человек по увиденным данным самостоятельно оценивает свое состояние и ставит себе неправильный прогноз. Важно определить, что значат активированные лимфоциты и почему они появляются в организме.

Для чего нужны лимфоциты в организме?

Белые кровяные тельца бывают двух видов, один из них и является лимфоцитами. Они вырабатываются иммунной системой человека. Их главная задача заключена в том, чтобы своевременно определить вирус либо инфекционный процесс в организме. Такие тельца отвечают за выявление вредных веществ и активную борьбу с ними. Они могут быть двух видов:

  • Т-клетки;
  • В-клетки.

В-клетки приводят к выработке антител, а Т-клетки уничтожают инородные тела в организме. Также существуют атипичные лимфоциты, которые также принято называть нулевыми.

Чтобы активировать работу телец, клетка получает специальную информацию. За количество вырабатываемых в организме лимфоцитов несет ответственность костный мозг. Многие думают, что лимфоциты перемещаются по организму человека и борются с инфекцией, уничтожая ее. Но в действительности все совсем не так. Кровь, находящаяся внутри сосудов, включает в себя всего 2 процента лимфоцитов от всех находящихся в организме человека. Все остальное количество приходится на лимфоузлы.

Количество лимфоцитов у взрослого

В организме человека находится следующее количество лимфоцитов:

  • белые тельца в крови взрослого человека составляют 40 процентов;
  • значительно отличается уровень лимфоцитов у женщин и у мужчин;
  • также на число таких клеток напрямую воздействует гормональный фон, который сильно изменяется у женщины во время менструации либо во время вынашивания плода. В этот промежуток времени число лимфоцитов может возрасти до 50% и больше.

При проведении обследования активированных лимфоцитов в анализе в лаборатории и при выявлении отклонений врач назначает дополнительные процедуры. Это может быть диагностика на генном уровне, которая поможет определить точную причину заболевания.

Важно проводить обследование на наличие активированных лимфоцитов в организме в том случае, если ранее человек переболел опасным заболеванием. По результатам диагностики можно точно определить общее состояние здоровья человека и назначить эффективное и комплексное лечение.

У детей число кровяных телец в крови сильно меняется на разном этапе взросления. С возраста 5 лет начинается процесс нормализации количества лимфоцитов.

Если врач обнаружил сильное отклонение от установленной нормы, то он устанавливает диагноз лимфоцитоз. При таком поражении важно выяснить его первопричину появления. Если в организме человека будет найдена инфекция, то повышение лимфоцитов в крови можно объяснить их активным воздействием на вредоносные микроорганизмы.

После полного восстановления организма человека и устранения симптомов заболевания, количество кровяных телец восстанавливается в течение последующих нескольких месяцев. Чтобы исключить либо определить наличие злокачественного образования в организме назначают сбор крови на биохимию.

Повышенный уровень лимфоцитов

При увеличении числа лимфоцитов в организме у человека возникают характерные симптомы заболевания. О повышенном количестве кровяных телец узнают, как правило, после диагностики инфекции в организме. Абсолютным лимфоцитозом врачи называют резкое увеличение числа клеток. Такая реакция возникает в большинстве случаев в ответ на борьбу с вирусом. При этом кровяные тельца будут устранять другие клетки, в результате чего их количество увеличится.

Спровоцировать такой процесс могут:

  • любые вирусы в организме человека;
  • аллергия;
  • хронические заболевания острого характера;
  • курсовой прием медикаментозных средств.

При проведении анализа в этот промежуток времени результат будет показывать значительное отхождение от нормы. При проведении эффективного и комплексного лечения такое состояние можно быстро устранить.

В детском возрасте увеличение числа белых кровяных телец в организме провоцируют различные вирусы.

Активирование лимфоцитов

В организме человека начинается активная выработка иммунитета к следующим заболеваниям:

  • ветрянка;
  • краснуха;
  • корь.

Активированные лимфоциты в крови могут быть признаком развивающейся простуды. При восстановлении организма и устранении заболевания уровень лимфоцитов должен в ближайшее время нормализоваться. Если такого не происходит, то важно незамедлительно записаться на прием к врачу. Он назначит проведение комплексной диагностики и поможет выявить причину такого состояния. В некоторых случаях врач выписывает направление к онкологу.

Пониженный уровень

Недостаточное количество лимфоцитов врачи называют лимфоцитопенией. При таком процессе значительно уменьшается количество этих клеток по отношению ко всем лейкоцитам в организме. Такое состояние будет напрямую зависеть от вида инфекции. Лимфопения считается абсолютной в том случае, если костный мозг перестает вырабатывать нужное количество иммунных клеток.

Чаще всего у взрослого человека такой процесс развивается на фоне простуды. В этом случае иммунные клетки в организме активно борются с инфекцией, а новые не вырабатываются в нужном количестве. Именно по такому принципу и развивается нехватка лейкоцитов у человека с диагнозом ВИЧ.

Причины недостатка лимфоцитов

Недостаточное их количество в организме человека диагностируется в следующих случаях:

  • беременность;
  • анемия;
  • при приеме кортикостероидов;
  • заболевания эндокринной системы;
  • при образовании в организме доброкачественных и злокачественных процессов;
  • после длительного курса химиотерапии.

Количество активированных лимфоцитов в анализе крови может сильно меняться. При этом важно восстановить его и следить за всеми изменениями в состоянии. Современные методы обследования помогают своевременно выявить проблемы со здоровьем человека и начать комплексное лечение, направленное на восстановление уровня лимфоцитов.

Первичную причину появления заболевания может определить исключительно лечащий специалист. Не следует пытаться самостоятельно восстановить количество белых телец в организме, так как таким способом можно только ухудшить общее состояние и спровоцировать осложнения.

Для тщательного изучения числа активированных лимфоцитов врач назначает расширенное иммунологическое обследование. Оно проводится на протяжении нескольких дней. Для него должны иметься четкие показания. К примеру, врач может столкнуться с ситуацией, когда простуда никак не проявляет себя и кажется, что ребенок здоров.

В этом случае специалист обращает особое внимание на следующие симптомы:

  • несильные покашливания у ребенка;
  • заложенность носа;
  • капризное поведение, недомогание, сильная усталость.

В этом случае следует пройти дополнительное обследование на активированные лимфоциты у ребенка, даже если поражение не провоцирует никаких неприятных симптомов.

Лечение поражения

Для начала, важно избавиться от причины появления заболевания. Если проблема будет устранена, то количество лимфоцитов в организме придет в норму без оказания какой-либо помощи. Если же организм человека даст обратную реакцию и количество кровяных телец не будет восстановлено, то ребенку может понадобиться проведение оперативного вмешательства с целью пересадки стволовых клеток.

Назначить операцию могут два специалиста:

  • иммунолог;
  • гематолог.

Если врач определил повышенное содержание лимфоцитов в организме пациента, а также у него проявляется сильная потливость, повышена температура тела, присутствует общее недомогание, то важно провести дополнительное исследование.

Лимфоциты - белые кровяные клетки, которые отвечают за поддержание иммунной защиты организма. Отклонения в их содержании в организме могут говорить о наличии у пациента опасных болезней (к примеру, онкологии), которые важно как можно скорее выявить и начать лечить.

Основные причины повышения лимфоцитов у детей

Распространенные причины увеличения активированных лимфоцитов в крови у ребенка:

  • инфекционные болезни (опоясывающий лишай, малярия, оспа, корь, вирусные заболевания);
  • язвенный колит;
  • бронхиальная астма;
  • анемия;
  • лейкоз;
  • гиперплазия тимуса;
  • гиперфункция костного мозга;
  • лейкоз острого и хронического характера.

Дети: норма белых телец

В зависимости от возраста, нормы активированных лимфоцитов в анализе у ребенка сильно отличаются:

  • У грудничка - от 14 до 32%.
  • От одной недели до нескольких месяцев - от 21 до 48%.
  • От одного до шести месяцев - 42-67%.
  • До одного года - 40-62%.
  • От 1 до 3 лет - 32-34%.
  • До возраста 5 лет - 30-52%.
  • До 13 лет - от 27 до 48 %.

Активированные лимфоциты повышены у ребенка из-за заболеваний в организме. Не следует пытаться самостоятельно выявить причину такого состояния и заниматься самолечением ребенка. Расшифровка результатов анализов осуществляется исключительно лечащим врачом.

Подготовка к сдаче анализов

Анализ для определения количества активированных лимфоцитов считается одним из самых углубленных. Чаще всего его назначают тем больным, в организме которых распространяется патологический процесс, отличающийся вирусным либо инфекционным характером. Иногда провести такой анализ важно для выявления эффективности лечения пациента.

Подготовка к процедуре довольно простая, но, вместе с этим, ответственная. Чем точнее будут соблюдены советы врача, тем правильнее и точнее будет результат расшифровки обследования.

Сдать анализ крови на определение уровня активных лимфоцитов можно в любой клинике в утреннее время, но некоторые лаборатории работают и до обеда.

Подготавливаться к проведению сдачи крови важно за три либо четыре дня до похода в лабораторию. На протяжении этого времени важно исключить сильное физическое перенапряжение (и другие изнуряющие организм нагрузки).

Помимо этого, на протяжении указанного времени важно прекратить прием медикаментозных препаратов (если ранее они использовались). Перед проведением анализа можно употреблять только важные лекарственные препараты, обговорив их прием предварительно с врачом.

Особых ограничений в питании нет. На протяжении подготовки к сдаче анализов можно употреблять любые привычные продукты.

За восемь-десять часов до начала процедуры запрещено употреблять пищу, а чтобы перенести голод (сделать это проще, когда человек спит), сдача анализов назначается на утренние часы. На протяжении этого отрезка времени можно пить воду, но не следует ею злоупотреблять в большом количестве.

Следует отметить, что употреблять разрешено только кипяченую либо бутилированную воду, от соков, чая, кофе и минеральных напитков следует отказаться.

Получение результатов

В современных клиниках результаты данного анализа можно получить уже по прошествии пары часов (в некоторых случаях через день) с момента сдачи крови. Чаще всего в государственных поликлиниках расшифровка исследования перенаправляется прямо в кабинет лечащего врача, который назначил сдачу крови пациенту.

Лейкоцитарные агранулоциты

Внимание! Анализ крови на лейкоцитарный ряд – важная составляющая общеклинического обследования детей и взрослых. Необходим для выявления патологических состояний различной этиологии и их своевременного лечения. Большая часть клеток лейкоцитарного ряда располагаются в различных тканевых структурах и лишь 5% – в крови.

Что такое лимфоциты и какие функции они выполняют?

Лимфоциты – клетки иммунной системы, которые обеспечивают бесперебойную защиту человеческого организма от патогенных факторов различной этиологии. При проникновении чужеродного микроорганизма или инородной частицы происходит активация и усиленная выработка лимфоцитов в органах. Большая часть лейкоцитарных агранулоцитов у детей вырабатывается в тимусе, а у взрослых – в костном мозге.

В зависимости от типа лейкоцитарных агранулоцитов различаются их основные функциональные особенности. В целом они отвечают за приобретенный иммунитет. Существует три основных вида лимфоцитов: В, Т и NK (естественные киллеры) клетки.

Важный тип лейкоцитарных агранулоцитов принято считать В-лимфоцитами, которые синтезируют пептидные соединения – иммуноглобулины. Другое название иммуноглобулинов – антитела. Они связываются с патогенным микроорганизмами и препятствуют их нормальной репродукции, высвобождению токсичных веществ. Содержание В-клеток в периферическом кровеносном русле не превышает 7-19%.

Распространенный тип лейкоцитарных агранулоцитов (до 70% в периферическом кровеносном русле) – Т-лимфоциты. Цитотоксические лимфоциты формируют базовый клеточный и гуморальный иммунный ответ. В эту группу лейкоцитарных клеток входят:

  • Т-киллеры;
  • Т-супрессоры;
  • Т-хелперы.

Естественные киллеры распознают и убивают зараженные клетки до начала инфекции. Их содержание в кровеносном русле варьируется в широком диапазоне: от 5 до 20%. Недостаточное количество NK-клеток приводит к онкологическим заболеваниям. Организм при отсутствии естественных киллеров не может своевременно распознать раковые клетки.

Норма лимфоцитов в исследовании крови

В зависимости от возраста ребенка различаются нормальные показатели общего содержания лимфоцитов в кровеносном русле:

  • Новорожденные – от 14 до 32%.
  • От одной недели до одного месяца – от 21 до 48%.
  • От одного до 6 месяцев – от 42 до 67%.
  • До одного года – 40-62%.
  • От 1 до 3 лет – 32-34%.
  • До 5 лет – 30-52%.
  • До 13 лет – 27-48%.

Важно! Любые отклонения в содержании лейкоцитарных агранулоцитов указывают на наличие заболеваний. Не стоит заниматься самостоятельной диагностикой или лечением ребенка. Расшифровка результатов анализов иммунофенотипирования или общего исследования крови производится квалифицированным специалистом.


Иммунофенотипирование клеток костного мозга

Если активированные лимфоциты повышены в крови, это лимфоцитоз, а если понижены – лимфоцитопения. Оба состояния представляют угрозу здоровью ребенка. Необходимо проведение дополнительных диагностических мероприятий для выявления причины повышения или снижения числа лейкоцитарных агранулоцитов в кровеносном русле.

Почему повышаются лимфоциты у ребенка в крови?

Симптомы лимфоцитоза различаются у разных людей. У некоторых проявляется повышением температуры тела, ознобом, гипергидрозом конечностей или головокружением, а у некоторых – протекает бессимптомно. В ряде случаев такое состояние возникает из-за психоэмоционального или физического перенапряжения и не представляет угрозы здоровью детей или взрослых.

Диагностируют повышенные лимфоциты при помощи биохимического анализа крови. Различают абсолютный и относительный лимфоцитоз. Абсолютный лимфоцитоз возникает при тяжелых расстройствах – лейкозе, например. Относительное повышение лейкоцитарных агранулоцитов наблюдается при вирусных, грибковых или воспалительных реакциях. Увеличенное количество лимфоцитов в крови – это не самостоятельное расстройство, а признак, указывающий на патологию.

Распространенные причины лимфоцитоза у детей:

  • Инфекционные заболевания (оспа, опоясывающий лишай, корь, малярия, вирусные поражения печени.
  • Аллергия.
  • Язвенный колит.
  • Бронхиальная астма.
  • Анемия (гемолитическая, железодефицитная).
  • Расстройства эндокринной системы.
  • Лейкоз (с острым или хроническим течением).
  • Гиперплазия тимуса.
  • Соматоформная вегетативная дисфункция.
  • Гиперфункция костного мозга.

Долгое время после выздоровления ребенка наблюдается повышенное содержание лейкоцитарных агранулоцитов. В большинстве случаев лимфоцитоз такой этиологии не представляет опасности здоровью малыша. Лечение лимфоцитоза направлено на устранение основного заболевания. Народные средства, биологически активные добавки или безрецептурные лекарственные средства могут ухудшить течение основного заболевания.

Почему понижается общее содержание лимфоцитов у ребенка?

Лимфоцитопения диагностируется по общему анализу показателей крови. Существует абсолютная и относительная лимфоцитопения. При относительном снижении общего числа лейкоцитарных агранулоцитов повышается уровень гранулоцитов – нейтрофилов. Уровень нейтрофилов повышается при воспалительных или вирусных заболеваниях. Такое состояние не опасно для здоровья и проходит после выздоровления.


Сильная лимфоцитопения у ребенка

ВИЧ, септические заболевания, туберкулез, гангрены – причины снижения абсолютного содержания лимфоцитов в крови. Абсолютное снижение количества этих лейкоцитов свидетельствует о серьезных заболеваниях.

Другие распространенные причины понижения абсолютного количества лимфоцитов:

  • Первичный иммунодефицит: болезнь Вискотта-Олдрича или комбинированный иммунодефицит.
  • Серповидноклеточная или апластическая анемия.
  • Лимфогранулематоз.
  • Болезнь Иценко-Кушинга.
  • Долгосрочная терапия гормональными препаратами.
  • Депрессивное расстройство.
  • Токсические или вирусные поражения печени.
  • Мышечная дистрофия.
  • Сердечная, почечная, печеночная или легочная недостаточность.
  • Системная красная волчанка.

Длительная лимфоцитопения приводит к гибели ребенка. У детей на фоне этого состояния инфекции протекают тяжелее и длительнее. Лечение лимфоцитопении направлено на устранение заболевания, вызвавшего ее.

Как подготовиться к сдаче анализов на лейкоцитарные агранулоциты?

Неправильная подготовка к биохимическому исследованию крови приводит к ложноположительным результатам, которые осложняют диагностику. Перед забором биологического материала необходимо отказаться от пищи за двенадцать часов, а от воды – за 2 часа. Воздержаться от психоэмоционального или физического стресса, так как они могут в значительной степени исказить результаты анализов.

Перед исследованием крови нельзя принимать лекарственные препараты. Необходимо сообщить лечащему врачу о приеме биологически активных веществ, трав или безрецептурных лекарственных средств.

Место укола хорошо промыть и дезинфицировать, чтобы исключить занесение инфекции. Современные лаборатории предоставляют результаты анализов через несколько часов, реже – дней. В муниципальных клиниках показатели исследования крови отправляют к лечащему врачу пациента.

Как лечат повышенное содержание лимфоцитов в крови?

Терапия лимфоцитоза зависит от основного заболевания. При вирусных заболеваниях назначают нестероидные противовоспалительные лекарственные средства, витаминные комплексы, обильное питье и постоянный отдых. С вирусными заболеваниями организм ребенка справится самостоятельно. Не рекомендуется употреблять противовирусные лекарственные средства, так как они не оказывают действия на организм ребенка. Их эффективность сопоставима с плацебо. У некоторых лекарственных средств такого типа имеются побочные эффекты, которые могут существенно повлиять на здоровье ребенка.

При бактериальных инфекциях назначают антибактериальные лекарственные средства. Если у ребенка высокая температура тела, показан прием ацетилсалициловой кислоты. Парацетамол детям употреблять крайне нежелательно из-за его гепатотоксичных свойств.

При онкологических болезнях основной упор делается на устранение новообразований. После выздоровления уровень лимфоцитов восстанавливается до исходных значений.

Как лечить лимфоцитопению?

Многое зависит от заболевания, вызвавшего снижение общего содержания лимфоцитов в крови. При врожденных патологиях костного мозга показана трансплантация стволовых клеток, прием препаратов, стимулирующих лимфоцитопоэз.

При некоторых инфекционных заболеваниях количество лимфоцитов восстанавливается после выздоровления. Поэтому необходимо соблюдать постельный режим и рекомендации лечащего врача.

Лечение основного заболевания проводится с учетом истории болезни пациента и переносимости лекарственных препаратов. Своевременная диагностика и терапия заболеваний – профилактическая мера, которая увеличивает шансы на выздоровление пациента.

Совет! Прием любых рецептурных или безрецептурных препаратов необходимо обсудить с лечащим врачом. Не следует заниматься самолечением, так как это чревато появлением непредвиденных побочных эффектов.

Активация В-лимфоцитов связана с рядом специфических и неспецифических стимулов, которые приводят к глубоким биохимическим и морфологическим изменениям в этих клетках.

Существуют теории , пытающиеся объяснить, каким образом антиген «запускает», активирует В-клетки. Хотя действие антигена и является наиболее важным для активации В-клеток, в процессе активации принимают участие и дополнительные факторы: 1) антигенспецифические Т-клетки, 2) медиаторы, секретируемые антигенспецифическими Т-клетками, 3) медиаторы, секретируемые неспецифическими Т-клетками, 4) продукт 1а-гена, 5) добавочные клетки (макрофаги, А-клетки), 6) антигенспецифические Т-супрессоры.
В настоящий момент предложен ряд моделей , объясняющих активацию В-лимфоцитов. Остановимся на некоторых из них.

1. Активация В-клеток обусловлена внедрением липофильного блока в двойной липидный слой их мембраны. Это внедрение может происходить и без участия антигена, неспецифически, при большой концентрации соответствующего метаболита. Таким образом, например, действует, по-видимому, неспецифический стимулирующий фактор Т-клеток-помощников.

Специфичность иммунологического процесса обусловлена наличием медиатора, который секретируется Т-лимфоцитами под влиянием антигена. Этот медиатор (секретируемый рецептор Т-клеток) состоит из трех частей: рецептора Т-клеток, специфически реагирующего с детерминантами несущей части антигена (носителя), Н-2-белка и «липофильного хвоста». Медиатор присоединяется своим рецептором к антигену, фиксированному на поверхности антигенсвязывающей клетки, и липофильный хвост внедряется в фосфолипидный слой мембраны.

2. Присоединение антигена к В-лимфоциту приводит к его обратимому параличу или инактивации благодаря возникновению сигнала 1. Сигнал 1 развивается при бимолекулярной реакции между одновалентным антигеном и соответствующим рецептором В-клетки. Он чрезвычайно быстро (возможно, уже через секунду) оказывает на клетку парализующее действие. Индукция иммунной реакции возникает в том случае, если на В-клетку после сигнала 1 подействует еще и сигнал 2. Первоначально предполагалось, что сигнал 2 вызывают антитела, которые фиксированы на поверхности Т-клеток и специфичны для антигена, присоединившегося к В-лимфоцитам. В дальнейшем была допущена возможность передачи сигнала 2 на небольшое расстояние при помощи образуемого Т-лимфоцитами медиатора. В некоторых случаях сигнал 2 обусловлен действием антител не против антигенов, присоединившихся к поверхности В-лимфоцитов, а против собственных антигенов его поверхности.

3. Для активации В-лимфоцитов необходим второй сигнал. Этот сигнал исходит от присоединившегося к клетке С3-компонента комплемента. В пользу этого взгляда говорят наличие на поверхности ПАОК рецепторов для активизированного С3-компонента и митогенность очищенных препаратов С3-компонента. Соответствует этой точке зрения и наличие в лимфатических клетках липосомальных протеаз, активирующих С3-компонент, и то, что эти протеазы выделяются как при действии на лимфатические клетки антигенов и иммуногенов, так и при взаимодействии Т- и В-лимфоцитов (Dukor, Hartman, 1973; Hartman, 1975).

В связи с этой точкой зрения нельзя не упомянуть о митогенном действии протеаз. Действие на клетки селезенки трипсина стимулирует включение 3Н-тимидина в эти клетки почти так же сильно, как действие самых мощных митогенов. Действие трипсина направлено на В-клетки: более 80% трансформированных им клеток содержало на поверхности иммуноглобулины; он чрезвычайно сильно стимулирует включение 3Н-тимидина в клетки селезенок бестимусных мышей (Kaplan, Bona, 1974; Vischer, 1974).

4. По модели одного неспецифического сигнала присоединение антигена к иммуноглобулиновым рецепторам В-лимфоцитов индуцирует ряд процессов (например, образование «колпачка»), но не активирует эти клетки. В-лимфоциты активируются неспецифическим сигналом от участка на их поверхности, который не является иммуноглобулином. Эти сигналы исходят от самого антигена (но не от их антигенной детерминанты) в случае тимуснезависимых антигенов и от медиаторов Т-клеток или макрофагов (в случае тимусзависимых антигенов).

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ТАВРИЧЕСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

ИМ. В.И. ВЕРНАДСКОГО

БИОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА БИОХИМИИ

Учебная дисциплина: ИММУНОЛОГИЯ


Тема: «В-лимфоциты.Рецепторы и маркеры. Участие в иммунном ответе»


Реферат подготовила:

Студент: Левченко Наталья Николаевна

Проверила:

Залевская Ирина Николаевна


Симферополь, 2013


Введение

2 Маркеры В-лимфоцитов


Введение

лимфоцит рецептор антиген

Клетки иммунной системы, на которые возложены ключевые функции по осуществлению приобретённого иммунитета, относятся к лимфоцитам, которые являются подтипом лейкоцитов.

Лимфоциты - это единственные клетки организма, способные специфически распознавать собственные и чужеродные антигены и отвечать активацией на контакт с конкретным антигеном. При весьма сходной морфологии малые лимфоциты делятся на две популяции, имеющие различные функции и продуцирующие разные белки.

Одна из популяций получила название В-лимфоциты, от названия органа «бурса Фабрициуса», где было впервые обнаружено созревание этих клеток у птиц. У человека В-лимфоциты созревают в красном костном мозге.

В-лимфоциты распознают антигены специфическими рецепторами иммуноглобулиновой природы, которые по мере созревания В-лимфоцитов появляются на их мембранах. Взаимодействие антигена с такими рецепторами является сигналом активации В-лимфоцитов и их дифференцировки в плазматические клетки, продуцирующие и секретирующие специфические для данного антигена антитела - иммуноглобулины.

Главной функцией В-лимфоцитов также является специфическое распознавание антигена, которое ведет к их активации, пролиферации и дифференцировке в плазматические клетки - продуценты специфических антител - иммуноглобулинов, т. е. к гуморальному иммунному ответу. Чаще всего В-лимфоциты для развития гуморального иммунного ответа нуждаются в помощи Т-лимфоцитов в виде продукции активирующих цитокинов.


Глава 1. Общая характеристика B-лимфоцитов


Специфическое иммунологическое распознавание патогенных организмов - это всецело функция лимфоцитов, поэтому именно они инициируют реакции приобретенного иммунитета. Все лимфоциты происходят из стволовых клеток костного мозга, но Т-лимфоциты затем развиваются в тимусе, тогда как В-лимфоциты продолжают свое развитие в красном костном мозге (у взрослых особей млекопитающих). Термин B-лимфоциты образован по первой букве английского названия органов, в которых эти клетки формируются: bursa of Fabricius (фабрициева сумка у птиц) и bone marrow (костный мозг у млекопитающих).

Сумка Фабрициуса - один из центральных органов иммуногенеза птиц, располагающийся в области клоаки и контролирующий гуморальный иммунный ответ. Удаление этого органа приводит к отмене синтеза антител. Аналогом фабрициевой сумки у млекопитающих является красный костный мозг.

Главная функция B-лимфоцитов (а вернее плазматических клеток, в которые они дифференцируются) - это выработка антител. Воздействие антигена стимулирует образование клона B-лимфоцитов, специфического к данному антигену. Затем происходит дифференцировка новообразованных B-лимфоцитов в плазматические клетки, вырабатывающие антитела. Эти процессы проходят в лимфоидных органах, регионарных к месту попадания в организм чужеродного антигена. лимфоциты составляют около 15-18% всех лимфоцитов, находящихся в периферической крови. После распознавания специфического антигена эти клетки размножаются и дифференцируются, трансформируясь в плазматические клетки. Плазматические клетки вырабатывают большое количество антител (иммуноглобулины Ig), которые являются собственными рецепторами B-лимфоцитов в растворенном виде.лимфоциты продуцируют и секретируют в кровоток молекулы антител, являющиеся измененными формами антигенраспознающих рецепторов этих лимфоцитов. Возникновение антител в крови после появления любого чужеродного белка - антигена - независимо от того, вреден он или безвреден для организма, и представляет собой иммунный ответ. Появление антител не просто защитная реакция организма против инфекционных заболеваний, но явление, имеющее широкое биологическое значение: это общий механизм распознавания "чужого". Например, иммунная реакция распознает как чужой и постарается удалить из организма любой аномальный и, следовательно, потенциально опасный вариант клетки, в которой в результате мутации в хромосомной ДНК образуется мутантная белковая молекула. лимфоциты (B-клетки) млекопитающих дифференцируются сначала в печени плода, а после рождения - красном костном мозге. В цитоплазме покоящихся B-клеток отсутствуют гранулы, но имеются расеянные рибосомы и канальцы шероховатого эндоплазматического ретикулума. Каждая B-клетка генетически запрограммирована на синтез молекул иммуноглобулина, встроенных в цитоплазматическую мембрану. Иммуноглобулины функционируют как антигенраспознающие рецепторы, специфичные к определенному антигену. На поверхности каждого лимфоцита экспрессируется около ста тысяч молекул рецепторов. Встретив и распознав антиген, соответствующий структуре антигенраспознающего рецептора B-клетки размножаются и дифференцируются в плазматические клетки, которые образуют и выделяют в растворимой форме большие количества таких рецепторных молекул - антител. Антитела представляют собой крупные гликопротеины и содержатся в крови и тканевой жидкости. Благодаря своей идентичности исходным рецепторным молекулам они взаимодействуют с тем антигеном, который первоначально активировал B-клетки, проявляя таким образом строгую специфичность.

После связывания антигена с рецепторами B-клетки клетка активируется. Активация B-клеток состоит из двух фаз: пролиферации и дифференцировки; все процессы индуцируются контактом с антигеном и T- хелперами. В результате пролиферации увеличивается число клеток, способных реагировать с введенным в организм антигеном. Значение пролиферации велико, поскольку в неиммунизированном организме очень мало B-клеток, специфичных для определенных антигенов. Часть клеток, пролиферирующих под действием антигена, созревает и дифференцируется последовательно в антителообразующие клетки нескольких морфологических типов, в том числе и плазматические клетки. Промежуточные стадии дифференцировки B-клеток отмечены меняющейся экспрессией разнообразных белков клеточной поверхности, необходимых для взаимодействия B-клеток с другими клетками.

Каждый лимфоцит, относящийся к B-лимфоцитам и дифференцирующийся в костном мозге, запрограммирован на образование антител только одной специфичности.

Молекулы антител не синтезируются никакими другими клетками организма, и все их многообразие обусловлено образованием нескольких миллионов клонов B-клеток. Они (молекулы антител) экспрессируются на поверхностной мембране лимфоцита и функционируют как рецепторы. При этом на поверхности каждого лимфоцита экспрессируется около ста тысяч молекул антител. Кроме того, B-лимфоциты секретируют в кровоток продуцированные ими молекулы антител, являющиеся измененными формами поверхностных рецепторов этих лимфоцитов.

Антитела формируются до появления антигена, и антиген сам отбирает для себя антитела. Как только антиген проникает в организм человека, он встречается буквально с войском лимфоцитов, несущих различные антитела, причем у каждого есть свой индивидуальный распознающий участок. Антиген соединяется только с теми рецепторами, которые в точности ему соответствуют. Лимфоциты, связавшие антиген, получают пусковой сигнал и дифференцируются в плазматические клетки, продуцирующие антитела. Поскольку лимфоцит запрограммирован на синтез антител только одной специфичности, антитела, секретируемые плазматической клеткой, будут идентичны своему оригиналу, т.е. поверхностному рецептору лимфоцита и, следовательно, будут хорошо связываться с антигеном. Так антиген сам отбирает антитела, распознающие его с высокой эффективностью.

Весь путь развития В-лимфоцитов от стволовой кроветворной клетки до плазмоцита включает несколько этапов, каждый из которых характеризуется своим клеточным типом.

Всего выделено 7 таких типов:

) стволовая кроветворная (гемопоэтическая) клетка - общий предшественник для всех ростков дифференцировки лимфомиелопоэза;

) общий лимфоидный предшественник B-клеток и T-клеток для B- и T-клеточного пути развития - наиболее ранняя лимфоидная клетка, для которой еще не определилось одно из двух направлений развития;

А) ранняя про-В-клетка - ближайший потомок предыдущего клеточного типа и предшественник последующих, продвинутых в дифференцировке клеточных типов (приставка "про" от англ. progenitor);

Б) поздняя про-В-клетка;

) пре-В-клетка - клеточный тип, окончательно вышедший на В-клеточный путь развития (приставка "пре" от англ. precursor);

) незрелая В-клетка - завершающая костномозговое развитие клеточная форма, которая активно экспрессирует поверхностный иммуноглобулин и находится в стадии отбора на способность взаимодействовать с собственными антигенами;

) зрелая В-клетка - клеточный тип периферии, способный взаимодействовать только с чужеродными антигенами;

) плазматическая клетка (плазмоцит) - эффекторная, антителопродуцирующая клеточная форма, которая образуется из зрелой В-клетки после ее контакта с антигеном.

Глава 2. Рецепторы и маркеры В-лимфоцитов


1 Антигенраспознающие рецепторы B-клеток: общая характеристика


Антигенраспознающие рецепторы В-лимфоцитов представляют собой молекулы иммуноглобулинов. Циркулирующие антитела структурно подобны основной части B-клеточных рецепторов, но лишены их трансмембранных и цитоплазматических сегментов. Основными классами мембранно-связанных иммуноглобулинов (mIg), находящихся на поверхности зрелых, нестимулированных В-лимфоцитов, являются IgM и IgD. На одной В-клетке могут одновременно присутствовать оба типа молекул, причем они имеют одинаковую специфичность, и, возможно, что эти антигенные рецепторы могут взаимодействовать между собой, осуществляя контроль за активацией лимфоцитов и супрессией лимфоцитов.

Рецептором B-лимфоцитов, узнающим антиген, является IgM. Мембраносвязанный IgM (mIgМ), как правило, представляет собой мономерный иммуноглобулин, т.е. отдельную единицу из четырех полипептидных цепей. Эта молекула имеет гидрофобную последовательность, расположенную на C-концевом участке тяжелой цепи и предназначенную для фиксации молекулы на клеточной мембране. Число молекул рецептора достигает 10 - 100тыс. на клетку.М кодируется тем же набором генов, что и сывороточные аналоги. Единственным их структурным отличием является дополнительный фрагмент на С-конце молекулы, играющий роль мембранного якоря.

В онтогенезе первые мембранные формы IgM появляются на заключительном этапе дифференцировки В-клеток в костном мозге. Зрелые В- клетки экспрессируют достаточно большое количество этого белка: 2*105 молекул на одну клетку. Такой рецепторный иммуноглобулин взаимодействует либо с белковым или корпускулярным антигеном (рис. 3.1), либо с антигенными детерминантами на поверхности антигенпрезентирующих клеток (макрофагов, дендритных клеток и др.).

Рис 1. Структура В-клеточного рецептора


Антигенраспознающие рецепторы B-клеток были обнаружены достаточно легко, в основном, с помощью антииммуноглобулиновых антител, меченных либо радиоактивными химическими элементами, либо флюоресцеином. При связывании антигена с соответствующим рецептором и под влиянием цитокинов, вырабатываемых моноцитами, макрофагами и Т-лимфоцитами, происходит активация В-лимфоцитов, которые начинают делиться и дифференцироваться в плазматические клетки. Часть активированных В-лимфоцитов превращаются в клетки памяти, которые обеспечивают более быстрый и эффективный иммунный ответ при повторном контакте с антигеном. С основной частью рецептора непосредственно связаны дополнителные компоненты (Ig-альфа (СВ79a) и Ig-бета (CD79b)), соединяющие его с путями внутриклеточной передачи сигнала.

Цитоплазматический участок у mIg невелик и не пригоден для взаимодействия с С-белками или тирозинкиназами. Роль CD3 в случае mIgМ, по-видимому, играет ассоциированный с mIgМ гетеродимер, состоящий из двух соединенных дисульфидной связью гликопротеинов с молекулярными массами 32-34кДа (IgM-альфа) и 37-39кДа (IgM-бета, IgM-гамма). Цепи бета и гамма являются продуктами одного гена и получаются в результате альтернативного сплайсинга. Обе цепи являются представителями суперсемейства иммуноглобулинов и содержат во внеклеточной части по одному домену. Цитоплазматические участки этих полипептидов имеют консервативную последовательность, включающую шесть расположенных определенным образом друг относительно друга аминокислот. Такая же последовательность обнаруживается в гамма-, дельта- и дзета-цепях CD3, что предполагает сходные функции CD3 и IgM-альфа-IgM-бета. Цитоплазматические фрагменты содержат потенциальные сайты фосфорилирования.


2 Маркеры В-лимфоцитов


На периферии (вне костного мозга) В-лимфоциты приобретают характерные для них поверхностно-клеточные маркёры.

Основные маркёры В-лимфоцитов - мембранные Ig при этом клетки одного клона (быстро формирующегося в результате серии последовательных делений потом-ства одной В-клетки) экспрессируют молекулы Ig, специфически связывающие только один эпитоп Аг. Такие клетки синтезируют моноклональные AT, способные распознавать и связывать только один Аг. Аг-связывающий участок мембранного Ig В-лимфоцита играет роль клеточного Аг-распознающего рецептора. Помимо мембранных Ig, В-лимфоцит несёт другие маркёры; рецепторы Fc-фрагмента Ig, CD10 {на незрелых В-клетках), CD19, CD20, CD21, CD22, CD23 (вероятно, участвуют в клеточной активации), рецепторы к С3b и C3d, молекулы МНС классов I и И.

Мембранный иммуноглобулин - специфический маркер В-клеток, поскольку он экспрессирован на всех зрелых В-лимфоцитах и отсутствует на других клетках. Преобладающим классом мембранных иммуноглобулинов на нативных (не контактировавших с антигеном) В-клетках является IgM. Он присутствует на поверхности всех нативных В-лимфоцитов, начиная со стадии незрелых В-клеток (см. раздел 3.3.1.2) (табл. 3.2). На зрелых нативных

В-клетках наряду с IgM присутствует IgD. Число молекул иммуноглобулинов на поверхности наивной В-клетки составляет около 150 000. В процессе иммунного ответа происходит переключение классов иммуноглобулинов на IgG, IgA и IgE. В-клетки крови и вторичных лимфоидных органов несут на своей поверхности преимущественно IgG, а В-клетки слизистых оболочек - IgA.

В состав BCR помимо иммуноглобулина входит еще несколько молекул. Две из них - СD79a и СD79b - составляют интегральную чаcть BCR, еще три - CD19, CD21 и CD81 - функционально ассоциированы с ним и формируют физическую связь с BCR только при активации клетки. Варианты молекул CD79 - a и b - называют еще Ig? и Ig?. При помощи нековалентных связей они формируют гетеродимеры, связанные с мембранным иммуноглобулином. Эти молекулы имеют сходные размеры и молекулярную массу (около 40 кДа). Участие Ig? и Ig? в передаче сигнала основано на связи их цитоплазматической части с внутриклеточными тирозинкиназами.

Молекулу CD19 относят к суперсемейству иммуноглобулинов. CD19 играет важную сигнальную функцию, поскольку эта молекула связана с киназой PI3K. CD21 - рецептор для компонентов комплемента (CR2), участвующий в усилении антигенного сигнала, а также в регуляции активности В-лимфоцитов. СD81 относят к тетраспанинам (4 раза пронизывают мембрану); функция этой молекулы точно не определена.

С цитоплазматическими участками мембранного иммуноглобулина связана тирозинкиназа Fyn, а с молекулами CD79, CD19 и CD81 - тирозин-киназы Blk, Lyn, Lck, а также Syk, участвующие в передаче активационного сигнала. Кроме того, около цитоплазматической части молекулы CD19 располагается липидная киназа PI3K. Такое обилие сигнальных ферментов, связанных с компонентами BCR, обеспечивает запуск и передачу активационных сигналов при связывании антигена.


Глава 3. Субпопуляции В-лимфоцитов


Все В-лимфоциты обладают рядом общих свойств: они продуцируют антитела и иммуноглобулин (Ig), экспрессируют антиген-распознающий Ig-рецептор (B-Cell Receptor - BCR) и поверхностные маркеры CD 19 и CD45 (В220). Вместе с тем можно выделить несколько субпопуляций В-клеток, различающихся по происхождению, дифференцировке, фенотипу и функциональным свойствам.

Выделяют 3 основные субпопуляции В-клеток (табл.1). Одна из них рассмотрена выше - В2-клетки (иногда их называют обычными В-клетками), локализующиеся преимущественно в селезенке, костном мозгу, лимфоузлах, пейеровых бляшках и отдельных фолликулах лимфоидной ткани кишечника. Гистологическая единица, являющаяся местом сосредоточения В2-клеток - лимфоидный фолликул. Эти клетки составляют подавляющеебольшинство циркулирующих В-лимфоцитов и играют основную роль в гуморальном иммунном ответе. Две другие субпопуляции - В1- и В-клетки маргинальной зоны (MZВ-клетки). Большинство данных о различных субпопуляциях В-лимфоцитов получено на мышах. Сведения о субпопуляцияхВ-клеток человека крайне скудны.

В1-клетки локализуются преимущественно в серозных полостях -

брюшной и плевральной. Небольшое количество В1-лимфоцитов, преимущественно клетки, секретирующие антитела, выявляют в селезенке, где на их долю приходится 1-5% от числа В-клеток. Некоторые В1-клетки мигрируют (через сальник) в слизистую оболочку кишечника и брыжеечные лимфоузлы (до 50% IgA-продуцентов в лимфоидной ткани кишечника - В1-клетки). В лимфатических узлах у мыши они отсутствуют. Выделяют2 субпопуляции В1-клеток. Основной дифференциальный признак при этом - экспрессия мембранной молекулы СD5 (известной как один из маркеров Т-клеток). В1а-клетки одновременно несут на поверхности молекулы IgM и CD5. CD5 отсутствует на всех остальных В-лимфоцитах, в том числе на В1b-клетках, в остальном очень схожих с В1а-клетками. Для В1-клеток характерен?активированный фенотип?, что проявляется в экспрессии на их поверхности костимулирующих молекул СD80 и СD86. Это свойство обеспечивает способность В1-лимфоцитов выполнять функции АПК.а- и B1b-клетки экспрессируют BCR, содержащий мембранную форму IgM. Известны исключения: описано переключение IgM на IgA в lamina propria кишечника. Перестроенные V-гены мембранного IgM В1а-клеток не содержат N-вставок (т.е. в их перестройке не участвует фермент TdT). Разнообразие V-генов В1-клеток существенно ниже, чем у В2-клеток. Это связано с различиями в условиях развития: В1а-клетки в онтогенезе появляются раньше других субпопуляций - еще до рождения. Они развиваются в печени плода при участии IL-5 и IL-10 из клеток-предшественников, отличных от таковых у обычных В-клеток. Еще в эмбриональном периоде В1-клетки мигрируют в серозные полости, где они существуют в течение всей жизни организма.

В1-клетки способны к самоподдержанию путем очень медленной пролиферации, восполняющей убыль клеток, погибающих по механизму апоптоза.

В1b-клетки также развиваются в печени эмбрионов, а после рождения - в костном мозгу из других клеток-предшественников. B1b-лимфоциты расселяются на периферии несколько позже В1а-клеток - непосредственно перед рождением и сразу после него. При перестройке V-генов в B1b-клетках формируется некоторое количество N-вставок. B1b-клетки также мигрируют в серозные полости и сохраняются там путем самоподдержания.

Обе разновидности В1-клеток могут дифференцироваться в антителообразующие клетки без стимуляции антигеном. При этом они секретируют преимущественно IgM-антитела (в кишечнике - также IgA). Большинство этих антител специфично к собственным белкам организма (ДНК, гистонам, коллагену, компонентам цитоскелета, антигенам групп крови и т.д.); многие из них полиспецифичны, т.е. способны взаимодействовать с несколькими антигенами, в том числе аутологичными. Эти антитела имеют низкое сродство (аффинность) к антигенам, включая аутоантигены, и не способны вызвать повреждение тканей. Примерно половина сывороточного IgM секретируется В1-клетками. Естественные антитела, продуцируемые В1а-лимфоцитами, часто специфичны к микробным антигенам и опсонизируют патогены, играя важную роль в реакциях врожденного иммунитета.

Эти клетки могут принимать участие в адаптивном иммунном ответе, что в большей степени свойственно В1b-клеткам. Ответ В1-клеток преимущественно тимуснезависимый. В1-клетки постоянно циркулируют между селезенкой и брюшной полостью, но не поступают в фолликулы, поскольку не экспрессируют CXCR5 - рецептор хемокина BLC (CXCL13). С этим связано то обстоятельство, что процессы?усовершенствования? гуморального иммунного ответа в виде переключения изотипов и повышения сродства к антигенам, не затрагивают или минимально затрагивают В1-клетки.

Еще одна разновидность В-лимфоцитов -B-клетки маргинальной зоны (MZB). Они локализуются почти исключительно в маргинальной зоне селезенки, отделяющей белую пульпу от красной. Фенотипически эти клетки более сходны с В2-, чем с В1-клетками. Они происходят от тех же костно-мозговых клеток-предшественников. Основной мембранный иммуноглобулин MZB-клеток -IgM, экспрессируемый сильнее, чем на В2-клетках. В то же время IgD присутствует на мембране в очень малом количестве. Эти клетки сходны по своему фенотипу с активированными В-лимфоцитами. На них присутcтвуют молекулы CD69, CD25, CD38, в малом количестве CD23. Обращает на себя внимание наличие молекулы CD1d, участвующей в презентации липидных антигенов.

Отделение линии MZB-клеток от общей линии В2-клеток происходит на переходной стадии транзиторных клеток (Т3), когда будущие MZB-клетки ослабляют экспрессию не IgM (как В2-клетки), а IgD и утрачивают молекулу CD23. На MZB-лимфоцитах не экспрессируется хемокиновый рецептор CXCR5, позволяющий клеткам мигрировать в фолликулы. Ключевой фактор дифференцировки MZB-клеток - Notсh-2. Под влиянием сфингозин-1-фосфата и при участии молекул адгезии LFA-1 и VLA-4 они мигрируют в маргинальные зоны селезенки. MZB-клетки не участвуют в рециркуляции, но осуществляют?челночные? миграции до лимфоидных фолликулов и обратно, получая информацию об антигенах, поступающих в селезенку с кровью. Срок жизни MZB-лимфоцитов сопоставим со сроком жизни организма. Снижение численности MZB-клеток, вызываемое повреждающими факторами, достаточно быстро устраняется.клетки участвуют в гуморальном иммунном ответе на возбудители, поступающие в кровоток. Они осуществляют тимуснезависимый иммунный ответ на инкапсулированные патогены. Благодаря сильной экспрессии молекул MHC-II и костимулирующих молекул MZB-клетки обладают выраженной способностью к взаимодействию с Т-хелперами, однако их участие в тимусзависимом иммунном ответе изучено плохо. При ответе на антигены MZB-клетки дифференцируются в короткоживущие антителообразующие клетки. V-гены MZB-клеток редко затрагиваются мутациями, что характерно для развития плазматических клеток вне зародышевых центров. В этих клетках не происходит переключения классов иммуноглобулинов и даже MZB-клетки памяти несут на своей поверхности IgM, а не IgG. IgM+ клетки памяти преобладают в маргинальной зоне селезенки человека.

Список использованной литературы


1.А. Ройт, Дж. Брюсстофф, Д. Мейл. Иммунология- М.: Мир, 2000

.Лебедев К.А. - Иммунология в клинической практике, 1996

.Иммунология(в 3 т.) / Под. ред. У. Пола.- М.:Мир, 1988

.Ярилин А.А - Иммунология, 2010

.Хаитов P.M., Игнатьева Г.А., Сидорович И.Г., Иммунология: Учебник. - М.: Медицина, 2000. 432 с: ил. (Учеб. лит. Для студ. медвузов).

.#"justify">.#"justify">.http://immuninfo.ru/immunologiya


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.


Под активацией клеток понимают их переход из состояния покоя в функционально активное состояние - макрофаги продуцируют активные формы кислорода, тучные клетки выбрасывают гранулы, мышечные клетки сокращаются и т.д. В случае лимфоцита активация также означает выход из состояния покоя (G0), но в несколько ином смысле: покоящийся лимфоцит находится вне клеточного цикла, а его активация означает вступление в цикл. Это последствие активации лимфоцитов глубоко функционально, поскольку любому проявлению функции лимфоцитов должно предшествовать их размножение (поскольку исходная численности клеток в каждом клоне мала). Это не относится к естественным киллерам - лимфоцитам, популяция которых не имеет клональной структуры. Активация NK-клеток не связана с пролиферацией и означает переход в состояние готовности выполнять цитотоксическую функцию.
Молекулярные основы активации Т-клеток
Активация клеток, в том числе лимфоцитов, всегда сопряжена с экспрессией многих генов. В случае лимфоцитов активация должна приводить прежде всего к экспрессии генов, обеспечивающих пролиферативную экспансию клона. Суть подготовки Т-клеток к пролиферации состоит прежде всего в экспрессии генов аутокринного ростового фактора - IL-2 и его рецептора, а точнее a-цепи этого рецептора, обеспечивающей достижение необходимого уровня сродства к цитокину, что служит условием выполнения рецептором его функций. Оба эти гена являются индуцибельными, т.е. в покоящемся состоянии они выключены, но экспрессируются в ответ на индуцирующее воздействие. Сигнал к включению гена поступает из его регуляторного (промоторного) участка, в котором расположены сайты специфического взаимодействия с определенными белками - транскрипционными факторами. Некоторые их таких белков исходно представлены в клетке в активной форме, но большинство отсутствует и может быть синтезировано de novo или активировано путем фосфорилирования или удаления ингибирующей субъединицы. Таким образом, молекулярная основа активации - образование необходимых транскрипционных факторов, обеспечивающих включение индуцибельных генов.
На Т-лимфоциты активирующее воздействие оказывают индукторы активации. В физиологических условиях таким индуктором служит антигенный стимул. Само по себе распознавание антигена при контакте Т-хел- пера с АПК не может повлиять на активность гена в силу пространственной разобщенности мембранного рецептора и генов, локализующихся в ядре. TCR проникает внутрь клетки после связывания с антигеном, но не для того, чтобы мигрировать в ядро и повлиять на активность гена, а для того, чтобы быть расщепленным. Однако при связывании антигенного комплекса с TCR в сочетании с костимулирующим воздействием возникает сигнал, достигающий ядра и регулирующий экспрессию генов. Передача сигнала осуществляется по каскадному принципу. На разных этапах передачи сигнала ее осуществляют молекулы ферментов (главным образом, протеинкиназы, активирующие белки на каждой очередной стадии передачи сигнала), а также адапторные и ГТФ-связывающие белки. Сигнал исходно является двойственным, поскольку его передача осуществляется одновременно от TCR и CD28. Затем эти пути пересекаются и вновь разделяются на несколько ветвей. Конечный результат передачи сигнала по каждому сигнальному пути - формирование транскрипционного фактора. На рис. 3.90 представлена типовая схема внутриклеточной передачи сигнала, завершающейся формированием транскрипционных факторов и активацией генов. Для активации Т-клеток требуется формирование трех транскрипционных факторов - NF-AT, NF-kB и AP-1. Далее рассмотрим осуществление внутриклеточной передачи сигнала на примере активации Т-хелперов при распознавании презентируемого дендритными клетками антигена.
Связывание комплекса MHC-II-пептид вызывает конформационные изменения молекулы TCR и связанной с ней молекулы корец ептора CD4. Пока окончательно не известно, происходит ли при этом только изменение конформации рецепторов или они олигомеризуются. Такие изменения активируют тирозинкиназы, ассоциированные с рецептором и корецеп- тором - Lck (p56lck), связанную с CD4, и Fyn (p59fyn), связанную с CD3. Указанные тирозинкиназы называют рецепторными, или проксимальными, в связи с тем, что они непосредственно примыкают к рецептору, входя в рецепторный комплекс. Обе упомянутые киназы относят к семейству Src-киназ. Киназы этого семейства содержат домены SH1, SH2 и SH3 (SH - от Src-homology) (рис. 3.91). Первый домен обладает ферментативной активностью, остальные взаимодействуют с другими киназами и адапторными белками. Функция тирозинкиназ состоит в фосфорилировании по остатку тирозина белков-мишеней, что необходимо для их активации и проявления функций, в том числе ферментативных. Мишени рецепторных киназ многочисленны. К ним относят сами молекулы Fyn и Lck (что обусловливает их аутофосфорилирование), а также полипептидные цепи TCR и другие киназы. Особенно многообразны мишени киназы Lck.
Однако первоначальным условием активации рецепторных киназ является, наоборот, их дефосфорилирование, обеспечивающее пере-

ход из гиперфосфорилированного в нормальное состояние. Дело в том, что в покоящейся клетке SH2-домен киназы Lck находится в свернутой форме вследствие фосфорилирования С-концевого остатка тирозина Y505 конститутивно активированной киназой Csk. Фосфорилированный Y505 взаимодействует с помощью фосфатной группы с остатком тирозина в Sffi-домене, к которому и подтягивается С-конец молекулы. В таком виде фермент не активен, поскольку при этом не может быть фосфори- лирован функционально важный остаток Y394 в домене SH1. Для снятия такой функциональной блокады необходимо дефосфорилирование с последующим развертыванием молекулы, что осуществляется с участием тирозинфосфатаз. Основную роль в переводе рецепторных киназ в «рабочее» состояние выполняет молекула CD45, цитоплазматический домен которой обладает активностью тирозинфосфатазы. Ранее уже упоминалось, что эта крупная молекула, препятствующая формированию тесного контакта между дендритной клеткой и Т-хелпером, вначале удаляется из зоны иммунного синапса, а затем часть молекул возвращается в эту зону для выполнения своей функции - дефосфорилирования молекул рецепторных тирозинкиназ. После того как остаток Y394 становится доступным для фосфорилирования, Lck может проявлять активность тирозинкиназы.
В генерации сигналов, передаваемых от полипептидных цепей комплекса TCR-CD3, наиболее важно наличие в цитоплазматическом участке у-, 5-, е- и Z-цепей активационной последовательности ITAM, о которой уже неоднократно упоминалось. Структура этого мотива такова: YXXI/L/ VX(6-8)YXXI/L/V (где Y - тирозин, Х - любой остаток, I/L/V - изолейцин, лейцин или валин) (рис. 3.92). Фосфорилирование остатков тирозина

Рис. 3.92. Сопоставление характеристик активационных и ингибирующих мотивов (ITAM и ITIM)


в ITAM делает этот участок доступным для распознавания аналогичными участками сигнальных молекул, расположенных более дистально. Среди полипептидных цепей TCR наиболее важна для передачи сигнала Z-цепь. В отличие от у-, 5- и е-цепей TCR, имеющих по одному участку ITAM, в цитоплазматической части Z-цепи расположены 3 последовательности ITAM, предназначенные для взаимодействия с остатками тирозина тирозинкиназы ZAP-70 (от Z-associated protein - ^-ассоциированный белок; масса 70 кДа) - ключевого фактора в передаче сигнала от TCR при его связывании с лигандом. Фосфорилирование Z-цепи является наиболее ответственным и в то же время наиболее уязвимым этапом активации Т-клеток. Полагают, что именно для обеспечения фосфорилирования всех мотивов ITAM этой молекулы необходимо длительное поддержание контакта Т-лимфоцитов и дендритных клеток. В Z-цепи покоящейся Т-клетки фосфорилирован 1 остаток тирозина; отсутствие фосфорилирования приводит к развитию апоптоза (рис. 3.93). После взаимодействия Z-цепи и ZAP-киназы запус-


Рис. 3.94. Схема сигнальных путей при активации Т-клеток. Распознавание комплекса молекулы МНС с антигенным эпитопом в сочетании с костимуляцией индуцирует запуск сигналов, передаваемых в ядро с помощью 5 каскадов, обеспечивающих формирование 3 транскрипционных факторов, необходимых для активации клетки. Жирным контуром обведены факторы, для которых показана высокая степень зависимости от костимуляции

кается полномасштабный процесс в виде нескольких параллельных путей передачи активационного сигнала (рис. 3.94).
Молекулу ZAP-70 относят к тирозинкиназам семейства Syk. Она содержит тандем из двух SH2-доменов. Условие ее взаимодействия с фцепью - предварительное фосфорилирование остатков тирозина в ITAM фцепи. После фосфорилирования 2-й остаток тирозина в мотивах ITAM фцепи взаимодействует с тирозином S^-доменов киназы ZAP-70. В результате фосфатная группа тирозина фцепи становится общей с тирозином Sffi-домена молекулы ZAP-70. За этим следует фосфорилирование остатков тирозина в ферментативном домене молекулы ZAP-70, осуществляемое тирозинкиназами Lck и, возможно, Fyn, что приводит к включению ферментативной (киназной) активности молекулы.
Дальнейшая передача сигнала обусловлена взаимодействием ZAP-70 с ее главным субстратом - адапторным белком LAT (от Linker for activation of T-cells - линкер активации Т-клеток). Этот белок связан с мембраной и входит в состав рафтов. После катализируемого ZAP-70 фосфорилирования LAT приобретает способность связывать сигнальные молекулы, участвующие в дальнейшей передаче сигнала: адапторные белки SLP-76, Grb2, фактор Vav, а также ферменты - PLCy1 и PI3K. Активация некоторых из упомянутых белков зависит от LAT не напрямую, а косвенно. Так, через SH3-домены


адапторных белков семейства Grb2 к сигнальному пути подсоединяются факторы SLP-76 и Sos. SLP-76, в свою очередь, опосредует подключение к сигнальному пути PLСy1 и ГТФазы Ras. Активация PLCy1 происходит с участием тирозинкиназы Itk, относящейся к семейству Btk - третьему (после Src и Syk) семейству тирозинкиназ, участвующих во внутриклеточной передаче сигнала при активации лимфоцитов. Все сигнальные факторы, вовлекаемые в процесс активации с прямым и косвенным участием LAT, рекрутируются в состав клеточной мембраны и взаимодействуют с ее фосфоинозитидными компонентами. Комплекс, образуемый при взаимодействии SLP-76, Vav и Nck, реагирует с белками цитоскелета PAK и WASP, служащими медиаторами перестроек в цитоскелете активируемых клеток.
Активированная PLCy1 катализирует расщепление фосфатидилино- зитол 4,5-бифосфата с образованием диацилглицерола (DAG), который остается связанным с мембраной, и инозитол-1,4,5-трифосфата (рис. 3.95). Инозитол трифосфат поступает в цитоплазму и взаимодействует с рецепторами на поверхности эндоплазматического ретикулума, что обусловливает выход ионов Са2+ из внутриклеточных хранилищ. Опустошение последних вызывает открытие Са2+-зависимых каналов в клеточной мембране, через которые в клетку поступают ионы Са2+ из внеклеточного пространства. В результате возрастает концентрация свободных ионов Са2+ в цитоплазме клетки. Ионы Са2+ активируют фосфатазу кальциневрин, дефосфорилиру- ющую цитоплазматический компонент транскрипционного фактора NF-AT (Nuclear factor of activated T-cells - ядерный фактор активированных Т клеток) (рис. 3.96). Это обусловливает перемещение фактора в ядро, взаимодействие с ядерным компонентом и формирование зрелой формы молекулы NF-AT, способной взаимодействовать с ДНК в промоторных участках генов, вовлеченных в активацию Т-клеток (IL2, IL2R и др.).
Диацилглицерол традиционно рассматривали как фактор, активирующий протеинкиназу С (PKC) - уже не раз упоминавшуюся ранее серин/тре-


Рис. 3.96. Са2+-зависимое звено активации Т-клеток и его блокада циклоспорином А. Зависимый от инозитолтрифосфата сигнальный путь приводит к мобилизации в ядро транскрипицонного фактора NF-AT. Этот путь может быть блокирован циклоспорином А, способным в комплексе с циклофиллином инактивировать фосфатазу кальциневрин, ответственную за дефосфорилирование цитоплазматического фактора NF-AT (что служит условием его миграции в ядро)

ониновую киназу, признаваемую одним из ключевых факторов активации Т-клеток. Однако оказалось, что изоформы РКС, активируемые диацил- глицеролом, не имеют отношения к активации Т-клеток. В ней участвует изоформа 0 РКС, появляющаяся в иммунном синапсе на пике его «зрелости». Ее рекрутирование в иммунный синапс зависит от активности Р13К и Vav (последний фактор связан с цитоскелетом, роль которого в транспорте РКС0 очень важна). Поскольку активация Vav зависит от сигнализации не только через TCR, но и через CD28, а CD28-зависимый путь реализуется с участием PI3K (она ассоциирована с CD28 - см. далее), становится очевидным, что PI3K и Vav представляют различные этапы одного сигнального пути и, таким образом, вовлечение в активацию молекулы РКС0 зависит от костимуляции через CD28. При этом не вызывает сомнений роль в активации РКС0 сигналов, поступающих от TCR, поскольку РКС0 фосфорили- руется (и, следовательно, активируется) киназой Lck. Допускают участие в активации РКС0 и других факторов, в том числе диацилглицерола, но эти влияния второстепенны. Активация PKC0 необходима для предотвращения апоптоза активируемых клеток и включения двух из трех критических транскрипционных факторов, необходимых для экспрессии генов IL2 и IL2R - АР-1 и NF-kB. РКС0-зависимая активация АР-1 реализуется через Rac/JNK-ветвь MAP-каскада (о нем будет сказано далее). Путь, приводящий к активации транскрипционного фактора NF-kB, содержит в качестве

промежуточных звеньев последовательно активируемые (с участием PKC0) факторы CARMA-1, Bcl-10 и MALT-1, IKK. IKK фосфорилирует ингибирующую субъединицу NF-kB - IkK, придавая ей способность к связыванию убиквитина, что предопределяет ее последующую деградацию. При этом освобождается активная субъединица NF-kB, мигрирующая в ядро и выступающая в роли транскрипционного фактора - одного из трех, необходимых для экспрессии генов активации Т-клеток. Транскрипционный фактор NF-kB, играющий ключевую роль при активации клеток врожденного иммунитета, был рассмотрен выше (см. раздел 2.2.4).
Столь же широко при активации клеток используется еще один сигнальный путь, запускаемый при активации Т-лимфоцитов - MAP-каскад, или MAP-модуль (от Mitogen-activated kinases - киназы, активированные мито- геном). Его роль состоит главным образом в индукции транскрипционного фактора АР-1 (димера c-jun/c-fos). Существует 3 ветви этого каскада, приводящие к образованию трех типов MAP-киназ (MAP^ - ERK1/ERK2 (от Extracellular signal-regulated kinases - киназы, регулируемые внеклеточными сигналами), p38 и JNK (от c-Jun NH2-terminal kinases - c-Jun NH2-концевые киназы). Каскады, приводящие к активации MAP-киназ, включаются с участием адапторных белков и низкомолекулярных ГТФаз. Один из адап- торных белков - Grb2 (Growth factor receptor bound protein 2), активируется при взаимодействии с фактором LAT. Активированный Grb2 спонтанно связывается с другим LAT-активированным белком SLP-76 и фактором Sos (от Son of sevenless). Sos представляет фактор замещения гуаниннуклеотидов: он обусловливает замещение ГДФ на ГТФ в составе малых G-белков (т.е. белков, связывающих гуаниннуклеотиды). Поэтому комплекс SLP-76/Grb2/Sos обусловливает активацию G-белка Ras, превращая связанный с ним ГДФ в ГТФ. Ras-ГТФ активирует серин/треониновую киназу Raf (киназу киназы MAP-киназы - МККК). Далее следует каскад реакций: Raf активирует МЕК (киназу MAP-киназы - МКК), а МЕК активирует вышеупомянутые MAP-киназы ERK1 и ERO. Активацию JNK-ветви MAP-каскада инициирует упоминавшийся выше фактор Vav (зависимый от LAT и связанный с активацией цитоскелета, а также РКС0, см. выше). Он вызывает переход ГДФ в ГТФ в комплексе с G-белком Rac (семейство Rho). Rac-ГТФ активирует киназу МЕКК (выступающую в роли МККК), она активирует киназу JNKK (MKK), которая, в свою очередь, активирует MAP-киназу JNK. Третий путь MAP-модуля, приводящий к образованию MAP-киназы р38, также зависит от G-белков семейства Rho. Он аналогичен по общей схеме двум другим путям, но изучен менее детально.
Активация MAP-киназ ERK1/ERK2, JNK и p38 осуществляется путем фосфорилирования остатков треонина и тирозина в мотиве TXY, причем роль Х в трех типах киназ выполняют различные остатки (соответственно Glu, Pro и Gly). Названные MAP-киназы обусловливают формирование транскрипционных факторов, участвующих во многих клеточных процессах. ERK1/ERK2 обусловливает образование транскрипционных факторов АР-1 и Elk-1, JNK - факторов ATF2, Elk-1 и c-Jun (компонент АР-1), p38 - факторов ATF2, Elk-1 и MEF-2C.
Запуск рассмотренных выше сигнальных путей при активации Т-клеток происходит при параллельном связывании TCR и костимуляции через молекулу CD28. Дифференцирование сигнальных путей, включаемых через эти мембранные молекулы, а также расшифровка взаимодействия этих путей до конца не завершены. Однако общая картина проявляется достаточно четко, чтобы в общих чертах понять молекулярные основы костимуляции. При связывании TCR, координированном со связыванием корецептора, происходит изменение конформации комплекса TCR-CD3, CD4 вызывает активацию рецепторных тирозинкиназ Fyn и Lck, а также фосфатазы CD45. Конечный результат «проксимальных» событий - фосфорилирование Z-цепи рецепторного комплекса и передача активационного сигнала на киназу ZAP-70. Далее с участием адапторных белков LAT, SLP-76 и Vav область, вовлеченная в передачу сигнала, существенно расширяется, включая мембранно-связанные киназы, цитоскелет и малые G-белки. Сигнальный путь, приводящий (через активацию PLCyl, образование инозитолтрифосфата и активацию кальциневрина) к мобилизации Са2+ и активации транскрипционного фактора NF-AT, по-видимому, реализуется без прямого участия сигналов, генерируемых при костимуляции. Другие пути в большей или меньшей степени зависят от костимулирующего сигнала.
Наиболее прямое следствие костимуляции через CD28 - активация мембранного фермента PI3K, физически связанного с молекулой CD28. Этот фермент катализирует образование фосфатидилинозитол 4, 5-бифосфата, служащего источником инозитолтрифосфата. Однако это событие напрямую не связано с активацией и может рассматриваться как подготовительное. При активации клетки фосфатидилинозитолтрифосфат активирует Vav - узловой фактор, ответственный за вовлечение в процесс активации цитоскелета и участвующий в рекрутировании и активации протеинкиназы PKC0. Этот фермент важен для функционирования сигнального пути, приводящего к формированию транскрипционных факторов NF-kB и АР-1. В обоих случаях роль PKC0 в наибольшей степени проявляется во включении Rас/JNK-ветви MAP-каскада. Raf/ERK- и Rac/p38-ветви MAP-каскада в меньшей степени зависят от PKC0, а следовательно, от костимуляции. Таким образом, молекулярная основа костимуляции - вовлечение в процесс активации Т-хелпера сигнальных путей, реализуемых с участием трех ключевых факторов - PI3K, фактора Vav и изоформы 0 протеинкиназы С. Из трех ключевых транскрипционных факторов, запускающих гены активации Т-клеток, экспрессия двух (АР-1 и NF-kB) зависит от костимуляции и только для выработки NF-AT непосредственно костимуляция не требуется.
Таким образом, в результате в Т-клетке формируется 3 транскрипционных фактора - NF-AT, NF-kB AP-1. Формирование этих факторов происходит различными путями. Активный NF-AT образуется в результате сборки димера, включающего цитоплазматический и ядерный субкомпоненты NF-AT - NF-ATc и NF-ATn. Если NF-ATn - конститутивный фактор, всегда присутствующий в ядре Т-клетки, NF-ATc должен быть активирован для миграции в ядро, что достигается его дефосфорилированием, катализируемым кальциневрином (см. выше). Транскрипционный фактор NF-kB активируется путем отщепления от комплекса IkB-NF-kB ингибирующей субъединицы IkB. Как уже говорилось выше, это происходит при фосфорилировании IkB киназой IKK, активируемой с участием РКС0. Фосфорилированная субъединица становится доступной для деградации



по убиквитиновому пути. Фактор АР-1 - димер белковых продуктов двух индуцибельных протоонкогенов - c-fos и c-jun. Для экспрессии этих генов и синтеза белков необходимы соответствующие транскрипционные факторы, а именно Elk-1 (для c-fos) и JNK (для c-jun). Как уже было указано выше, Elk-1 и JNK - конечные продукты деятельности различных ветвей MAP-каскада. Синтезируемые de novo белки c-fos и c-jun образуют гомо- и гетеродимеры, формирующие транскрипционный фактор АР-1.
Рассмотренные три фактора (NF-AT, NF-kB и AP-1) нужны для индукции генов активации Т-клеток - в первую очередь IL2 и IL2R. Промоторный участок гена IL2 содержит 9 сайтов связывания транскрипционных факторов (рис. 3.97). Среди них есть 2 участка связывания октомера Oct, не лимитирующего процесс индукции гена. Из трех ключевых транскрипционных факторов NF-kB взаимодействует с промотором в одном сайте, не зависимом от других транскрипционных факторов. Два других фактора - NF-AT и AP-1 - взаимодействуют с промотором как отдельно друг от друга (по 1 сайту связывания), так и в комплексе (3 сайта связывания). Заполнение всех сайтов соответствующими транскрипционными факторами, приводящее к индукции гена, служит конечным результатом передачи сигнала при активации Т-клеток.
Выше были подробно рассмотрены сигнальные пути, участвующие в активации Т-хелперов. Активация цитотоксических Т-клеток осуществляется по сходным механизмам.
3.5.2.2. Проявления активации Т-клеток
Активация CD4+ Т-клеток (как и любых Т-лимфоцитов) приводит к экспрессии большого числа генов, среди которых наибольшую роль в реализации основных эффекторных событий играют гены IL2 и IL2R, кодирующие соответственно цитокин IL-2 и a-цепь его рецептора. Экспрессия гена IL2 происходит примерно через 1 ч после получения стимулирующего сигнала. Секрецию белка IL-2 стимулированными Т-клетками in vitro выявляют через 3-4 ч; она достигает пика через 8-12 ч и прекращается через 24 ч. In vivo секреция IL-2 начинается через 1-3 сут после введения антигена


Рис. 3.98. Временная динамика экспрессии молекул активации Т-клеток. На графи
ке представлены сроки экспрессии ключевых молекул активации после стимуляции Т-клеток

(иммунизации) и сохраняется в течение 7-12 сут. Экспрессия a-цепи рецептора IL-2 происходит несколько позже и продолжается дольше - in vitro ее выявляют через 4 ч после стимуляции; максимума она достигает через 2-3 сут и прекращается через 5 сут (рис. 3.98).
Одновременно с геном IL2 в кратчайшие сроки после действия стимулятора (в физиологических условиях - антигенного комплекса пептид-MHC) экспрессируются гены с-Myc и N-Myc, называемые ранними активационными генами. Они участвуют в подготовке клеток к митозу. Через 2-3 ч на поверхности Т-клетки появляется CD69 - самый ранний активационный антиген, частично мобилизуемый из внутриклеточных депо, а частично экспрессируемый de novo. Его экспрессия продолжается немногим более суток. Вскоре после CD69 на поверхности клетки появляется другой ранний маркер активации - CD25, представляющий уже упомянутую a-цепь рецептора для IL-2. Несколько раньше выявляют экспрессию ряда цитоки- новых генов и синтез ограниченных количеств соответствующих цитокинов (IFNy, IL-4, IL-5, IL-6).
Следующие проявления активации наблюдают через сутки после действия стимулятора, когда экспрессируется молекула рецептора для транс- феррина (CD71). Этот фактор играет важную роль в пролиферации, поскольку для ее осуществления необходимы ионы железа. В последующие дни (3-6 сут) экспрессируются молекулы MHC-II, относимые к поздним маркерам активации Т-клеток, а затем - р1-интегрины, обозначаемые как очень поздние активационные антигены - VLA (Very late activation antigens), и секретируются хемокины. Эти поздние проявления активации клеток совмещаются с пролиферативным процессом.



Рассказать друзьям