Причины повреждения клетки. Реферат: Повреждение клетки Причины и механизмы повреждения клеток

💖 Нравится? Поделись с друзьями ссылкой

Патологическая физиология [Учебник для студентов мед. вузов]
Н. Н. Зайко, Ю. В. Быць, А. В. Атаман и др. К.: "Логос", 1996

Повреждение клетки - типический патологический процесс, основу которого составляют нарушения внутриклеточного гомеостаза, приводящие к нарушению структурной целостности клетки и ее функциональных способностей.

В зависимости от скорости развития и выраженности основных проявлений повреждение клетки может быть острым и хроническим. Острое повреждение развивается быстро, как правило, в результате однократного, но интенсивного повреждающего воздействия, в то время как хроническое - протекает медленно и является следствием многократных, но менее интенсивных патогенных влияний.

В зависимости от периода жизненного цикла, на который приходится действие повреждающего агента, повреждение клетки может быть митотическим и интерфазным .

В зависимости от степени нарушения внутриклеточного гомеостаза повреждение бывает обратимым и необратимым .

Выделяют два патогенетических варианта повреждения клеток.

1. Насильственный вариант. Развивается в случае действия на исходно здоровую клетку физических, химических и биологических факторов, интенсивность которых превышает обычные возмущающие воздействия, к которым клетка адаптирована. Наиболее чувствительны к данному варианту повреждения функционально малоактивные клетки, обладающие малой мощностью собственных гомеостатических механизмов.

2. Цитопатический вариант. Возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов клетки. В этом случае фактором, запускающим патогенетические механизмы повреждения, являются естественные для данной клетки возмущающие стимулы, которые в этих условиях становятся повреждающими. К цитопатическому варианту относятся все виды повреждения клетки вследствие отсутствия каких-либо необходимых ей компонентов (гипоксическое, при голодании, гиповитаминозное, нервнотрофическое, при антиоксидантной недостаточности, при генетических дефектах и др.). К цитопатическому повреждению наиболее чувствительны те клетки, интенсивность возмущений, а следовательно, и функциональная активность которых в естественных условиях очень высоки (нейроны, миокардиоциты).

Этиология. Нарушения внутриклеточного гомеостаза, составляющие сущность повреждения клетки, могут возникать как в результате непосредственного воздействия на клетку патогенного агента, так и опосредованно, вследствие нарушений постоянства внутренней среды самого организма.

Непосредственное (первичное) повреждение. В зависимости от происхождения все факторы, способные при взаимодействии с клеткой вызвать ее повреждение, можно разделить на 3 группы:


1. Факторы физической природы. К ним относятся механическое воздействие, высокая и низкая температура, ультрафиолетовые лучи, ионизирующая радиация и др.

2. Факторы химического происхождения. Повреждение клетки могут вызвать неорганические вещества (кислоты, щелочи, соли тяжелых металлов), низкомолекулярные органические соединения (фенолы, альдегиды, галогенопроизводные), высокомолекулярные соединения (гидролитические ферменты, основные катионные белки, иммуноглобулины, комплексы антиген-антитело, комплемент). В настоящее время описано более 20 000 химических соединений, оказывающих повреждающее действие.

3. Факторы биологической природы. К ним относятся микроорганизмы, способные взаимодействовать с клетками организма - вирусы, бактерии, простейшие.

Опосредованное (вторичное) повреждение. Возникает как следствие первичных нарушений постоянства внутренней среды организма. К повреждению клетки приводят гипоксия, гипо- и гипертермия, ацидоз и алкалоз, гипер- и гипоосмия, гипогликемия, гиповитаминозы, повышение содержания в организме конечных продуктов метаболизма, оказывающих токсическое действие (аммиак, билирубин и др.).

Патогенез. Можно выделить 6 групп молекулярных механизмов, имеющих важное значение в патогенезе повреждения клетки: липидные, кальциевые, электролитно-осмотические, ацидотические, протеиновые и нуклеиновые.

Липидные механизмы повреждения клетки включают в себя перекисное окисление липидов, активацию мембранных фосфолипаз и детергентное действие свободных жирных кислот.

1. Перекисным окислением липидов (ПОЛ) называется свободнорадикальное окисление ненасыщенных жирных кислот, входящих в состав фосфолипидов клеточных мембран. Инициаторами ПОЛ являются свободные радикалы, среди которых наибольшее значение имеют: О 2 - - супероксидный анион-радикал (в водной среде находится в виде НО 2 ); ОН - гидроксильный радикал; Н - водородный радикал; О 2 - синглетный (возбужденный) кислород, у которого один из электронов перешел на более высокий энергетический уровень.

В процессе повреждения клетки возможны 2 механизма активации ПОЛ.

Первый механизм - избыточное образование первичных свободных радикалов. В такой ситуации имеющиеся в клетке антиоксидантные системы не в состоянии "потушить" реакции ПОЛ. По данному механизму происходит активация ПОЛ в случае повреждающего воздействия на клетку ультрафиолетовых лучей, ионизирующей радиации, гипероксии, некоторых ядов, в частности четыреххлористого углерода; в условиях сильного стресса (образование свободных радикалов из катехоламинов); при гипервитаминозе Д (образование свободных радикалов в результате процессов аутоокисления эргокальциферола).

Второй механизм активации ПОЛ - нарушение функционирования антиоксидантных систем клетки. В этом случае инициаторами ПОЛ являются первичные свободные радикалы, образующиеся в процессе естественно протекающего обмена веществ. Антиоксидантная недостаточность может быть обусловлена наследственными и приобретенными нарушениями синтеза антиоксидантных ферментов (супероксиддисмутазы, каталазы, глутатионпероксидазы, глутатионредуктазы); дефицитом железа, меди, селена, необходимых для функционирования этих ферментов; гиповитаминозами Е, С; нарушениями пентозного цикла и цикла Кребса, в реакциях которых образуются НАДФН и НАДН, обеспечивающие восстановление истинных и вспомогательных антиоксидантов и, наконец, действием детергентов, вследствие чего нарушается строение липидного бислоя мембран и открывается доступ свободных радикалов к обычно скрытым в гидрофобном слое ненасыщенным жирным кислотам. Независимо от механизма активации ПОЛ в клетке развиваются тяжелые изменения, связанные с нарушениями барьерной и матричной функции клеточных мембран.

2. Активация мембранных фосфолипаз. В патогенезе повреждения клетки важное значение имеет чрезмерная активация фосфолипазы А, - фермента, осуществляющего гидролитическое отщепление ненасыщенной жирной кислоты - одного из двух гидрофобных хвостов молекулы фосфолипида.

Освободившиеся под действием фосфолипазы А, ненасыщенные жирные кислоты (арахидоновая, пентаноевая и др.) расходуются на образование физиологически активных соединений - простагландинов и лейкотриенов. Оставшаяся часть молекулы фосфолипида (лизофосфолипид) имеет лишь один жирнокислотный "хвост", вследствие чего обладает способностью к мицеллообразованию и является очень сильным детергентом. С детергентным действием лизофосфолипидов и связано повреждение клеточных мембран в условиях чрезмерной активации фосфолипазы А,. Основным фактором, вызывающим такую активацию, является высокая концентрация ионов Ca в цитоплазме клетки.

3. Детергентное действие избытка свободных жирных кислот. Свободные жирные кислоты в больших концентрациях, так же как и лизофосфолипиды, оказывают детергентное действие и вызывают нарушение липидного бислоя мембран. Можно выделить четыре основных механизма повышения содержания свободных жирных кислот в клетке:

1. усиленное поступление свободных жирных кислот в клетку при гиперлипоцидемии (повышении концентрации свободных жирных кислот в крови), что наблюдается при активации липолиза в жировой ткани, в частности, при стрессе, сахарном диабете;

2. усиленное освобождение свободных жирных кислот в лизосомах из триглицеридной части липопротеидов, поступающих в клетку, что имеет место в условиях гиперлипопротеинемий, сопровождающих развитие атеросклероза;

3. усиленное освобождение свободных жирных кислот из фосфолипидов мембран под действием уже упоминавшихся мембранных фосфолипаз;

4. нарушение использования клеткой свободных жирных кислот в качестве источника энергии, что отмечается при уменьшении активности ферментов Р-окисления и цикла Кребса, а также при гипоксии. Для того чтобы предотвратить повреждающее действие избытка жирных кислот, клетка располагает системой ферментов, которые переводят свободные жирные кислоты в триглицериды. При этом наблюдается несвойственное в норме отложение последних в клетке в виде жировых капель, т. е. возникает жировая дистрофия клетки.

Описанные выше липидные механизмы повреждения приводят к нарушению двух основных функций липидного бислоя клеточных мембран: барьерной и матричной. В основе нарушения барьерной функции мембран лежат два основных механизма: ионофорный и механизм электрического пробоя. Первый из них обусловлен появлением в клетке веществ, обладающих свойствами ионофоров, т. е. соединений, способных облегчать диффузию ионов через мембрану благодаря образованию проходимых через ее слои комплексов иона и ионофора. В процессе активации перекисного окисления липидов среди промежуточных продуктов его реакций появляются вещества - ионофоры по отношению к ионам кальция и водорода, в результате чего повышается проницаемость клеточных мембран для указанных ионов. Второй механизм ("самопробой") реализуется за счет существующей на многих мембранах (плазматической, внутренней митохондриальной) разности потенциалов. В результате появления гидрофильных продуктов перекисного окисления липидов, а также вследствие детергентного действия лизофосфолипидов и избытка свободных жирных кислот нарушаются электроизолирующие свойства гидрофобного слоя клеточных мембран, уменьшается электрическая их стабильность, что приводит к электрическому пробою мембраны, т. е. к электромеханическому ее разрыву с образованием новых трансмембранных каналов ионной проводимости.

Сущность матричной функции липидного бислоя мембран состоит в том, что в нем вмонтированы мембранные ферменты и некоторые специализированные белки. В процессе перекисного окисления липидов нарушается активность мембранных ферментов в связи с изменением их липидного микроокружения, во многом определяющего свойства белковых молекул. Кроме того, в ходе реакций ПОЛ может произойти образование "сшивок" между молекулами белков и фосфолипидов, а также окисление сульфгидрильных групп активных центров, что приводит к необратимой инактивации ферментов.

Кальциевые механизмы. Целый ряд важных патогенетических механизмов повреждения клетки обусловлен повышением концентрации ионов кальция в ее цитоплазме. В основе такого повышения могут лежать 2 механизма: избыточное поступление ионов Ca в цитоплазму и нарушение удаления их из цитоплазмы.

Избыточное поступление ионизированного кальция в цитоплазму может осуществляться через неповрежденную плазматическую мембрану в случае повышения градиента его концентрации, например при гиперкальциемии. Однако гораздо чаще поступление кальция в цитоплазму усиливается в результате нарушения барьерной функции мембран, как это имеет место в условиях активации уже рассмотренных липидных механизмов повреждения клетки.

Удаление ионов Ca из цитоплазмы нарушается вследствие недостаточности трех основных кальцийтранспортирующих систем клетки:

1. Ca-насосов плазматической мембраны и эндоплазматического ретикулума;

2. Na-Ca-обменного механизма и

3. Ca-аккумулирующей функции митохондрий.

Нарушение функционирования Ca-насосов может быть связано с наследственно обусловленными и приобретенными дефектами белковых компонентов Ca-насосов, а также с уменьшением в клетке концентрации АТФ, необходимой для осуществления процессов активного транспорта. Дефицит АТФ в клетке в свою очередь закономерно возникает в условиях нарушения энергетического обмена: при недостаточности энергетических источников в клетке, при гипоксии, при уменьшении активности ферментов гликолиза и цикла Кребса, при угнетении процессов клеточного дыхания и окислительного фосфорилирования. Na-Ca-обменный механизм удаления ионизированного кальция из цитоплазмы обеспечивается энергией градиента концентраций ионов Na по обе стороны плазматической мембраны. Поэтому основной причиной нарушения Na-Ca-обмена является уменьшение указанного градиента, что происходит в условиях нарушения функции Na-К-насоса, создающего этот градиент.

Ca-аккумулирующая функция митохондрий является одним из альтернативных путей использования энергии транспорта электронов по дыхательной цепи, когда освобождающаяся энергия идет не на синтез АТФ, а на транспорт ионов Ca из цитоплазмы в митохондрии против концентрационного градиента. С учетом этого Ca-аккумулирующая функция митохондрий угнетается во всех случаях нарушения процессов транспорта электронов по дыхательной цепи.

Стойкое повышение содержания ионов Ca в цитоплазме вызывает ряд важных последствий:

1. нарушение специфических функций клетки, в осуществлении которых принимают участие ионы Ca; примером является развитие контрактуры миофибрилл мышечных клеток. При этом утрачивается способность таких клеток к расслаблению, а пересокращенные миофибриллы подвергаются разрушению под действием активированных избытком кальция протеолитических ферментов;

2. активация фосфолипазы А, (см. выше);

3. разобщение окисления и фосфорилирования.

В условиях повышения концентрации ионов Ca в цитоплазме данный эффект возникает в результате использования энергии клеточного дыхания не на синтез АТФ, а на транспорт кальция из цитоплазмы в митохондрии. Кроме того, важное значение имеет повышение проницаемости внутренней митохондриальной мембраны под влиянием фосфолипазы А2, активированной избытком ионов кальция.

Электролитно-осмотические механизмы. Электролитно-осмотические механизмы повреждения клетки обусловлены сдвигами в содержании главных клеточных катионов: Na и К. Выравнивание концентраций этих ионов по обе стороны плазматической мембраны приводит к увеличению внутриклеточной концентрации ионов Na и уменьшению концентрации ионов К в клетке. В основе указанных сдвигов могут лежать два механизма:

1) усиленная диффузия ионов через плазматическую мембрану

2) нарушение механизмов активного транспорта Na и К, обеспечивающих поддержание концентрационных градиентов указанных ионов.

Усиление диффузии ионов Na в клетку и выход ионов К из клетки могут происходить как через неповрежденную плазматическую мембрану в условиях общих нарушений водно-электролитного обмена в организме (гипернатриемия, гипокалиемия), так и при нарушении барьерной функции плазматической мембраны. Перемещение ионов Na и К в этих случаях осуществляется через имеющиеся и вновь образовавшиеся каналы ионной проводимости за счет существующих концентрационного и электрического градиентов.

Основу нарушений активного транспорта ионов Na и К через плазматическую мембрану составляет недостаточность Na-К-насосов. Главной причиной нарушений работы этих механизмов является дефицит АТФ, за счет энергии которой достигается перемещение ионов Na и К против электрохимического градиента. Поскольку основным источником АТФ для Na-К-насосов является гликолиз, то нарушения этого процесса при недостаточном поступлении глюкозы в клетку или уменьшении активности соответствующих ферментов будет приводить к рассматриваемым здесь электролитным сдвигам. Причиной нарушения функции Na-К-насосов может быть также изменение свойств липидного бислоя наружной клеточной мембраны и, в частности, увеличение содержания в нем холестерина, что наблюдается при атеросклерозе. Угнетение работы Na-К-насосов вызывается и целой группой специфических ингибиторов Na-К-АТФазы (строфантин, оубаин и др.).

Сдвиги электролитного состава клетки в процессе ее повреждения проявляются развитием ряда изменений, среди которых наиболее важными являются:

1. потеря клеткой электрического мембранного потенциала (потенциала покоя),

2. отек клетки

3. осмотическое растяжение мембран, приводящее к нарушению их барьерной функции.

Ацидотические механизмы. В основе этой группы механизмов повреждения лежит увеличение концентрации ионов водорода в клетке, т.е. внутриклеточный ацидоз.

Развитие внутриклеточного ацидоза может быть обусловлено следующими механизмами:

1. избыточным поступлением ионов водорода в клетку из внеклеточной среды, что наблюдается в условиях общих нарушений кислотно-основного гомеостаза в организме - при декомпенсированных газовом и негазовом ацидозе;

2. избыточным образованием кислых продуктов в самой клетке, что отмечается при активации гликолиза (молочная кислота), нарушениях цикла Кребса (три-и дикарбоновые кислоты), гидролитическом расщеплении фосфолипидов клеточных мембран (жирные кислоты, фосфорная кислота), усиленном распаде свободных адениновых нуклеотидов (фосфорная кислота);

3. нарушением связывания ионов водорода в результате недостаточности буферных систем клетки; и, наконец,

4. нарушением выведения ионов водорода из клетки при недостаточности Na-Н-обменного механизма цитоплазматической мембраны, а также в условиях расстройства местного кровообращения в ткани.

Повышение внутриклеточной концентрации ионов водорода приводит к развитию ряда изменений:

1. нарушению функциональных свойств белков (ферментов, сократительных и др.) в результате изменений конформации их молекул;

2. активации лизосомальных гидролитических ферментов;

3. повышению проницаемости клеточных мембран вследствие изменения жидкостного состояния мембранных липидов.

Протеиновые механизмы включают в себя:

1. ингибирование ферментов (обратимое и необратимое);

2. денатурацию - т. е. нарушение нативного строения белковых молекул в результате изменений вторичной и третичной структуры белка, обусловленных разрывом нековалентных связей, и

3. протеолиз, осуществляющийся под действием лизосомальных гидролитических ферментов (катепсинов) и Ca-активируемых протеаз.

Основу нуклеиновых механизмов повреждения клеток составляют нарушения 3 процессов: репликации ДНК, транскрипции и трансляции.

На субклеточном уровне реализация рассмотренных выше молекулярных механизмов повреждения клетки приводит к нарушению строения и функции отдельных ее органелл. Поскольку большинство из них относится к мембранным образованиям, то универсальным механизмом повреждения субклеточных структур является нарушение проницаемости и целостности клеточных мембран. Суммируя приведенные в этом разделе сведения, можно выделить 5 основных механизмов повреждения мембран:

1. перекисное окисление липидов,

2. активация фосфолипаз,

3. осмотическое растяжение мембран,

4. адсорбция белков на мембране (например, комплексов антиген-антитело),

5. изменение фазового состояния мембранных липидов (ацидоз, изменения температуры).

Повреждение цитоплазматической мембраны может проявляться нарушениями ее барьерной функции, расстройствами систем активного транспорта веществ (Na-К- и Ca-насосов, Na-Ca- и Na-H-обменных механизмов и др.); изменениями белков, образующих специфические каналы ионной проводимости; повреждением рецепторных макромолекул, воспринимающих внешние регуляторные сигналы; нарушениями белковых комплексов, осуществляющих межклеточные взаимодействия и, наконец, изменениями гликопротеидов, определяющих антигенность клетки.

Наиболее характерными проявлениями повреждения митохондрий являются эффект разобщения окисления и фосфорилирования и угнетение клеточного дыхания.

Основным патогенетическим фактором разобщения окисления и фосфорилирования является нарушение барьерной функции внутренней митохондриальной мембраны, в результате чего не может быть реализован постулированный Митчелом хемиосмотический механизм сопряжения клеточного дыхания и ресинтеза АТФ. Повышение ионной проницаемости внутренней митохондриальной мембраны делает неэффективной работу водородной "помпы", приводит к падению электрохимического градиента, энергия которого обеспечивает в норме ресинтез АТФ в определенных точках митохондриальной мембраны благодаря встроенным здесь сложным АТФ-азным комплексам. Ситуация усугубляется также и тем, что переход ионов Na и К в митохондриальный матрикс закономерно сопровождается набуханием и отеком митохондрий. Это в свою очередь приводит к растяжению митохондриальной мембраны и, как следствие, к еще большему нарушению ее барьерных функций. В результате такого "порочного круга" разобщение окисления и фосфорилирования приобретает стойкий характер.

Повреждение эндоплазматического ретикулума проявляется нарушениями свойственных ему многочисленных функций: синтетической, детоксикационной, депонирующей и др. Повреждение лизосом сопровождается выходом и активацией многочисленных гидролитических ферментов, в результате чего повреждение клетки становится необратимым, происходит ее аутолиз.

С повреждением микротрубочек и микрофиламентов могут быть связаны изменение формы клетки, нарушение ее подвижности, угнетение процессов клеточного деления.

Все многообразные защитно-компенсаторные реакции клетки в ответ на ее повреждение можно условно разделить на 2 группы:

2. направленные на создание функционального покоя поврежденной клетки. Первая группа включает в себя активацию механизмов активного транспорта ионов, репаративный синтез поврежденных компонентов клетки, усиленную регенерацию антиоксидантных систем и др. Непременным условием реализации этих механизмов является достаточное энергетическое обеспечение клетки. Это достигается, с одной стороны, повышением интенсивности энергетического обмена (активация гликолиза, клеточного дыхания, пентозного цикла), а с другой, перераспределением имеющихся в клетке энергетических ресурсов.

Вторая группа реакций направлена на то, чтобы устранить возможные дополнительные сдвиги внутриклеточного гомеостаза при действии физиологических нервных и гуморальных возмущающих факторов (стабилизация повреждения) и свести к минимуму энергетические траты на выполнение специфических функций клетки, обеспечив таким образом энергетические ресурсы для восстановления нарушенного гомеостаза. Примером может служить образование в поврежденной клетке простагландинов, которые ингибируют аденилатциклазу и тем самым "охраняют" клетку от действия целого ряда медиаторов и гормонов (катехоламинов, тироксина и др.). При полном дефосфорилировании АТФ образуется аденозин, который, являясь естественным блокатором кальциевых каналов плазматической мембраны, препятствует запуску Ca-опосредуемых клеточных функций. Все перечисленные изменения, направленные на создание функционального покоя поврежденной клетки, имеют двойное значение. С одной стороны, они являются защитно-компенсаторными для самой клетки, поскольку помогают ей выжить в условиях действия повреждающего агента, с другой стороны, они имеют неблагоприятное значение для организма в целом, особенно если происходят в клетках жизненно важных органов.

Этот файл взят из коллекции Medinfo http://www.doktor.ru/medinfo http://medinfo.home.ml.org E-mail: [email protected] or [email protected] or [email protected] FidoNet 2:5030/434 Andrey Novicov Пишем ы на заказ - e-mail: [email protected]


В Medinfo для вас самая большая русская коллекция медицинских ов, историй болезни, литературы, обучающих программ, тестов.


Заходите на http://www.doktor.ru - Русский медицинский сервер для всех!


2"Повреждение клетки"


Составил: ст.препод.,

к.м.н. А.Р.Антонов


Учебные вопросы


Вводное слово


1. Понятие о повреждении клетки:

а) характеристика

б) виды и особенности

в) причины

г) значение митоза в повреждении клетки.

2. Общие механизмы повреждения клетки:

а) специфические и неспецифические компоненты п 2о 0в-

реждения;

б) нарушение структуры и функции отдельных органелл.

3. Механизмы защиты и адаптации клетки к повреждению.

4. Заключение.

2В В Е Д Е Н И Е

Живая клетка - это тот универсальный уровень биосистем, на котором все разнообразие функций, присущих организмам любой сложности, проявляется в минимальном количестве связей и отклонений. Клетка как целостная система осуществляет свою деятельность в среде,обеспечивающей ее существование и функционирование, перестраивая, организовывая свои элементы - субклеточные единицы различного уровня - в зависимости от характеристик среды. Важно подчеркнуть, что функции субклеточных органелл не строго детерминированы,поэтому они могут участвовать в различных внутриклеточных процессах. Главной функцией клетки является осуществление обмена со средой веществом, энергией и информацией, что подчинено в конечном счете задаче сохранения клетки как целого при изменении условий существования.

От нарушения элементарных структур клетки и их функций к патологии клетки как элементарной саморегулирующейся живой системе и к патологии клеточных образований, объединенных конечной функцией - таков путь познания структурной основы патологии человека.


ПОНЯТИЕ О ПОВРЕЖДЕНИИ КЛЕТКИ

Проблема повреждения клеток и организма в целом занимает важное место в современной общей патологии. Сам термин "повреждение" встречается уже в древнегреческих и древнеримской медицине, хотя до сих пор единой интерпретации этого понятия нет.

В наиболее общем смысле, _повреждение организма. на любом уровне (молекулярном, клеточном, органном) представляет собой такое изменение его структуры и функции, которое не способствует, а мешает жизни и существованию организма в окружающей среде. Авцин А.П. и Шахламов В.А. (1979) определяют повреждение как нарушение структурной и функциональной организации живой системы, вызванное различными причинами.

С точки зрения развития процессов в самой общей форме - это нарушение клеточного обмена веществ, появление дистрофии, паранекроза, некробиоза и, наконец, некроза, если клетка погибает.

Некоторые физиологи и патологи ставят вопрос о "физиологическом повреждении" при процессах естественного распада и регенерации клеток, которые обусловлены, например, возрастными изменениями в организме, либо длительным бездействием клеток, что приводит к их атрофии. Изучение проблемы повреждения клетки тесно связано с выяснением взаимоотношений структурных и функциональных изменений, которые встречаются, как правило, в трех вариантах:

1) морфологические изменения тканей по своему характеру и степени выраженности вполне соответствуют функциональным нарушениям;

2) структурные изменения значительно более выражены, чем функциональные;

3) структурные изменения незначительны по сравнению с тяжелыми функциональными расстройствами.

В этих вариантах нет кажущегося противоречия с принципом единства структуры и функции, напротив, выявляется полная его справедливость, о чем мы поговорим позднее.

Причиной повреждения клетки может стать фактор как экзо-, так и эндогенной природы. С классификацией этиологических факторов вы уже знакомы, поэтому повторятся не буду.

Следует отметить, что повреждения бывают _обратимые. и _необратимые.. Например, обратимым повреждением лизосом в клетках эпителия кишечника является их разрушение под влиянием эндотоксинов микробов кишечной группы. После прекращения интоксикации лизосомы в цитоплазме поврежденной клетки восстанавливаются. В случае сильной или длительной интоксикации и гибели клеток, говорить о восстановлении лизосом, конечно, не приходится. Необратимые повреждения клеток может вызвать, к примеру, любая вирусная инфекция.

Повреждение клетки может быть _острым. и _хроническим..

Функциональные проявления острого повреждения клетки делятся на преддепрессионную гиперактивность, парциальный некроз и тотальное повреждение. Эти проявления составляют сущность острого повреждения клетки в зависимости от ее строения, исходного функционального состояния, вида этиологического фактора и механизма его действия.

Преддепрессионная гиперактивность. возникает вследствие обратимого повреждения клетки умеренными действиями патогенных факторов. В результате этого в мембране клетки происходит неспецифическое возбуждение аденилатциклазной системы и активация образования вторичных мессенджеров (посредников) и усиление деятельности органелл, в первую очередь митохондрий. Это приводит к усилению окисления субстратов и синтеза АТФ. Одновременно с этим мобилизуются все энергозависимые процессы, направленные на повышение резистентности клетки к патологическому фактору. В результате, если воздействие этого фактора ограничено, может произойти"выздоровление" клетки с последующим восстановлением первоначальной структуры и функции. По Меерсону, после этого в генетическом аппарате клетки образуется так называемый "системный структурный след", запоминающий происшедшее воздействие и в дальнейшем при повторном воздействии этого же фактора облегчающий клетке адаптацию. Обратите на этот феномен особое внимание, поскольку он крайне важен для понимания многих адаптационных процессов в любых органах и тканях.

В случае _ парциального некроза. поврежденная часть клетки отделяется от функционирующей части вновь образующиейся компенсаторной "демаркационной" мембраной и уничтожается фагоцитами. После этого структура и функция клетки восстанавливается за счет гиперплазии субклеточных единиц.

Если же повреждающий фактор имеет выраженную интенсивность и время действия, то происходит _тотальное повреждение клетки, что приводит к депрессии функции митохондрий, снижению синтеза макроэргов, нарушению энергозависимого клеточного транспорта. Нарастает угроза дисфункции клетки, которая реализуется в случае массивной деструкции лизосом, выхода гидролитических ферментов в цитоплазму и структурной дезорганизации органелл и мембран. Эта фаза острого повреждения клетки, когда еще сохраняется небольшой градиент концентрации электролитов между цитоплазмой и внеклеточной средой, называется "агонией" клетки. Исчезновение мембранного потенциала в результате выравнивания концентраций Na+ и К+ по обе стороны мембраны характеризует смерть клетки. При этом резкое увеличение проницаемости клеточных мембран приводит к доступу в клетку из окружающей среды ферментов, которые продолжают разрушение всех ее структурных элементов.

Особенности реакции клетки на повреждающий фактор зависят как от его характеристики, так и от типа клетки по ее способности к делению, обеспечивающей возможность рекомпенсации. В настоящее время принято считать, что в организме имеются _три категории. специализированных клеток по их способности к делению.

Клетки I категории. к моменту рождения в первый период жизни достигают высокоспециализированного состояния структур за счет минимизации функций. В организме отсутствует источник возобновления этих клеток в случае их дисфункции. К таким клеткам относятся нейроны. Клетки I категории способны к внутриклеточной регенерации, в результате которой восстанавливается утраченные части клеток, если сохранены ядерный аппарат и трофическое обеспечение.

Клетки II категории. - высокоспециализированные клетки, выполняющие какие-либо определенные функции и затем либо "изнашивающиеся", либо слущивающиеся с различных поверхностей, причем иногда очень быстро. Подобно клеткам I категории, они не способны размножаться, однако в организме имеется механизм для их непрерывного воспроизводства. Такие клеточные популяции называются обновляющимися, а состояние, в котором они находятся - стационарным. К ним, например, относятся клетки, выстилающие большую часть кишечника.

Клетки III категории. отличаются большой продолжительностью жизни, их деление после полного завершения специализации в нормальных условиях онтогенеза происходит редко, но способность к этому процессу у них сохраняется. При стимуляции, возникающей, например, после травмы, они начинают интенсивно делиться, в результате чего воспроизводятся соответствующие специализированные клетки. Примером таких клеток служит гепатоцит или гормонально активная клетка.

Процессы клеточного деления (митоза) могут нарушаться при различных воздействиях: УФО, ИО, высокая температура, митотические яды, канцерогены и т.п. Как вы помните, с помощью митоза осуществляется передача наследственных свойств клетки. В процессе митотического деления выделяют 4 фазы: профазу, метафазу, анафазу и телофазу.

При патологии митоза может страдать любое из его звеньев. Руководствуясь этим, были предприняты попытки создать классификацию патологии митоза.

Наибольшую известность получила классификация, предложенная в 1972 году И.А.Аловым:

I тип.. Повреждение хромосом: задержка клеток в профазе; нарушение спирализации и деспирализации хромосом; образование мостов между хромосомами в анафазе; раннее разъединение сестринских хроматид; повреждение кинетохора.

II тип.. Повреждение митотического аппарата: задержка развития митоза в метафазе; рассредоточение хромосом в метафазе;полая метафаза; многополюсные митозы; асимметричные митозы;моноцентрические митозы; К-митозы.

III тип.. Нарушение цитотомии: преждевременная цитотомия, задержка цитотомии; отсутствие цитотомии.

Можно считать установленным, что задержка вступления клеток в митоз возникает в основном в связи с нарушением их метаболизма, в частности синтеза нуклеиновых кислот и белков, а нарушение хромосом при репродукции клетки, обнаруживаемое в условиях патологии - вследствие разрыва цепей ДНК и расстройства репродукции ДНК хромосом.


ОБЩИЕ МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТОК


На уровне клетки повреждающие факторы "включают" несколько патогенетических звеньев:

I. 2 нарушение энергетического обеспечения процессов, 2протекающих в клетке:

1. Снижение интенсивности и(или) эффективности процессов ресинтеза АТФ.

2. Нарушение транспорта энергии АТФ.

3. Нарушение использования энергии АТФ.

II. 2 повреждение мембранного аппарата и ферментных сис2тем клетки;

III. 2 дисбаланс ионов и жидкости в клетке;

IV. 2 нарушение генетической программы клетки и(или) ме2ханизмов ее реализации:

А. Нарушение генетической программы:

1.Изменение биохимической структуры генов.

2.Дерепрессия патогенных генов.

3.Репрессия "жизненно важных" генов.

4.Внедрение в геном фрагмента чужеродной ДНК с пато-

генными свойствами.

Б. Нарушение реализации генетической программы:

1.Расстройство митоза.

2.Нарушение мейоза.

V. 2 расстройство внутриклеточных механизмов регуляции 2функции клеток:

1. Нарушение рецепции регуляторных воздействий.

2. Нарушение образования вторичных посредников.

3. Нарушение фосфорилирования протеинкиназ.

Повреждение клеток может быть специфическим и неспецифическим. По существу, каждое повреждение вызывается нарушением структуры и функции клеток тем или иным болезнетворным началом. Поэтому специфическое проявление повреждения на любом уровне прямо или косвенно связано с особенностями действия этиологического фактора, вызывающего данное повреждение.

Специфические формы повреждения можно усмотреть при анализе любого его вида. Например, при механической травме - это нарушение целостности структуры ткани,при иммунном гемолизе - изменение свойств мембраны эритроцитов под влиянием гемолизина и комплемента, радиационное повреждение - образование свободных радикалов с последующим нарушением окислительных процессов. Подобных примеров можно привести очень много.

Специфическим повреждениям клеток сопутствуют или следуют за ними и общие неспецифические проявления повреждения, на которых мы остановимся более подробно.

Первым и наиболее общим неспецифическим выражением пов_реждения клетки., вызванного любым агентом,является нарушение неравновесного состояния клетки и среды, что является общей характеристикой всего живого, независимо от уровня его организации. Организм обладает массой приспособлений, питаемых энергией пищевых веществ, с помощью которых он поддерживает состояние, препятствующее уравновешиванию диффузионных, осмотических, тепловых, электрических процессов с окружающей средой. Полное прекращение жизни - смерть характеризуется, как известно, постепенным прекращением неравновесного состояния и переходом его в состояние полного равновесия с окружающей средой.

С энергетической точки зрения, повреждение как нарушение неравновесного состояния живой системы сопровождается высвобождения дополнительной энергии в виде тепловой, электрической (потенциал повреждения), химической (снижение редокс-потенциала) и так называемой структурной энергии клеток и тканей.

Структурная энергия освобождается при _денатурации структур цитоплазмы и клеточных органоидов. Денатурация - повреждение молекул белка, имеет много показателей, такие, как величина энтропии, степень упорядоченности молекул.

Этот процесс в химическом смысле сопровождается сглаживанием, исчезновением третичной и четвертичной структур белка, расплавлением полипептидных цепей, изменением активности сульфгидрильных групп и т.д.

Повреждение клеток выражается еще и _нарушением структу_ры и функции мембран.. Вообще способность формировать мембраны является решающей в образовании клетки и ее субклеточных органелл. Любое нарушение сопровождается изменением проницаемости клеточных мембран и состояния цитоплазмы поврежденной клетки. Повреждение клеточных мембран, согласно модели Сингера, может быть обусловлено деструкцией их липидных или белковых (ферментных) компонентов.

Повреждение липидных компонентов клеточных и субклеточных мембран возникает несколькими путями. Важнейшими из них являются перекисное окисление липидов (ПОЛ), активация мембранных фосфолипаз, осмотическое растяжение пептидной основы мембран, повреждающееся воздействие иммунных комплексов.

Суммарным выражением патологии клеточной мембраны может служить нарушение ее основных функций:

1) мембранного транспорта;

2) изменение проницаемости мембраны;

3) изменение коммуникации клеток и их "узнавания";

4) изменение подвижности мембран и формы клеток;

5) изменение синтеза и обмена мембран.

Мембранный транспорт. предполагает перенос ионов и других субстратов против градиента концентрации. При этом нарушается функция клеточных насосов и ингибируются процессы регуляции обмена веществ между клеткой и окружающей ее средой. Молекулярный механизм работы клеточных насосов до конца не расшифрован и в настоящее время. Энергетической основой их работы являются процессы фосфорилирования и дефосфорилирования ферментов - аденозинфосфатаз за счет энергии АТФ. Эти ферменты "вмонтированы" в белковую часть клеточных мембран. Там же работают ионные каналы, через которые проходят в клетку и из клетки ионы, вода и другие вещества (например, аминокислоты). В зависимости от вида проходящих по каналу ионов различают Na-K-АТФазу, Ca-Mg-АТФазу, Н-АТФазу. Особое значение имеет работа Na-K-насоса, результатом которой является превышение концентрации ионов К+ внутри клетки приблизительно в 20-30 раз по сравнению с внеклеточной. Соответственно этому, концентрация ионов Na+ внутри клетки приблизительно в 10 раз меньше, чем снаружи.

Повреждение Na-K-насоса вызывает освобождение ионов К из клетки и накопление в ней ионов Na, что характерно для гипоксических состояний, токсических повреждений клетки (яд кобры, каракурта), инфекционных поражений, аллергии, снижения температуры внешней среды. С транспортом ионов Na и К тесно связан транспорт ионов Са. Интегральное выражение этих нарушений хорошо иллюстрируется на примере гипоксии миокарда, которая прежде всего проявляется патологией митохондрий.

Следует отметить, что повреждение мембран митохондрий являлется ключом клеточного повреждения. В его прогрессировании большая роль принадлежит нарушению контроля уровня кальция в цитоплазме. Ишемическое повреждение митохондрий приводит к нарушению функции Na-К-АТФазного насоса, постепенному накоплению в клетке Na и потере ею калия, что в совокупности ведет к вытеснению Са из митохондрий. В результате повышается уровень ионизированного кальция в цитоплазме и увеличивается его связь с кальмодулином, что, в свою очередь, приводит к расхождению клеточных стыков, активации фосфолипаз. Эндоплазматическая сеть накапливает воду и ионы, следствием чего является развитие гидропической дистрофии. Усиление гликолиза сопровождается истощением гликогена, накоплением лактата и снижением рН. Таким образом, накопление Са в клетке можно считать универсальным механизмом клеточной деструкции.

Кроме того, хорошо известно участие Са в освобождении медиаторов аллергии из тучных клеток. По современным данным, их аллергическая травма сопровождается разжижением мембраны, разрыхлением и увеличением проводимости кальциевых каналов. Са, проникая в большом количестве внутрь клетки, способствует освобождению гистамина и других медиаторов из гранул.

Проницаемость мембран. - качество мембраны, позволяющее поддерживать обмен клетки со средой и осуществлять контроль "перекрытых каналов", связанный с метаболизмом энергии и конформацией белка. Проницаемость мембраны позволяет поддерживать не только постоянство электролитного состава клетки - ионный гомеостаз, но и ионный гетерогенитет, т.е. вполне определенные, резко выраженные различия ионного состава внутриклеточной м внешней среды. Donnan (1911) предложил уравнение равновесия концентрации анионов и катионов по обе стороны полунепроницаемой мембраны, согласно которому произведения концентрации противоположно заряженных ионов по обе стороны мембраны равны между собой.

В качестве примера изменения проницаемости для ионов мембраны эритроцитов при иммунной травме следует указать на специфический гемолиз. Процесс гемолиза начинается с увеличения проницаемости мембраны эритроцитов для ионов К, Na, Ca. Нарушается функция Na-К-насоса, из эритроцитов выходит К, а входит Na. Увеличивается проницаемость мембран для молекул глюкозы, аминокислот и ряда других метаболитов. Тормозится обмен Cl- и HCO3- (феномен Гамбургера) и Cl- и SO4-за счет фиксации на эритроците гемолизина и комплемента.

Коммуникация клеток и их "узнавание" ..

Клеточное "общение" и "узнавание" подразумевают прежде всего различия во внешних поверхностях плазматических мембран и мембран внутриклеточных органелл. В этом отношении особый интерес представляет гликокаликс мембраны с поверхностными антигенами-маркерами определенного типа клеток.

При различных патологических процессах (воспаление, регенерация, опухолевый рост) поверхностные антигены могут изменяться, причем различия могут касаться как типа антигена, так и его доступности со стороны внеклеточного пространства. Например, изменения гликолипидов мембраны делают ее более доступной воздействию антител. Известно также, что изменения с поверхностью мембраны протеиназ могут влиять на прочность связей мембранных компонентов с цитоскелетом и тем самым на подвижность клеток.

Коммуникабельность клеток определяется и состоянием клеточных стыков, которые могут повреждаться при различных патологических состояниях и болезнях.

Межклеточное взаимодействие и кооперация клеток связаны с клеточной рецепцией и медиацией, нарушение которой ведет к разнообразной патологии клеток.

Подвижность мембран и форма клеток.. Различают два типа изменений; выпячивание мембраны наружу - экзотропия, и выпячивание мембраны внутрь цитоплазмы - эзотропия. Изменения формы клеток связаны не только с этими двумя типами изменений, нередко речь идет об упрощении клеточной поверхности, т.е. потере специфических образований, без которых невозможно нормальное функционирование клетки (например, потеря микроворсинок энтероцитами).

Синтез мембран. может усиливаться либо снижаться, также как и обмен мембран при некоторых заболеваниях.

Следующим неспецифическим проявлением повреждения клетки можно считать _ потенциал повреждения. (или так называемый мембранный потенциал), который представляет собой разность потенциалов между неповрежденной и поврежденной ее поверхностями. Поврежденная ткань (или клетка) становится электроотрицательной по отношению к своим неповрежденным участкам. Разность потенциалов обусловлена уменьшением количества ионов К на поврежденной поверхности. Мембранный потенциал клеток печени крысы при гипоксии снижается с -60 до -80 mВ.

Одним из важнейших неспецифических выражений повреждения тканей и клеток является _ нарушение обмена воды. в тканях и клетках. Оно заключается в том, что в поврежденной клетке вода освобождается из цитоплазмы и выходит в окружающюю среду. Соответственно увеличивается содержание экстрацеллюлярной воды и возникает травматический отек. Примером может служить отек мозга и т.д. Чем сильнее повреждение, тем больше поврежденная ткань отдает воды в межклеточную жидкость, кровь и лимфу. Например, при переломе бедра из поврежденных тканей за 5 суток переходит в кровь и лимфу до 8 л воды.

Изменение электропроводности. как показатель повреждения клеток и тканей выражает прежде всего изменение емкостных свойств не только поверхностных цитоплазматических, но и внутренних мембран эндоплазматической сети и клеточных органоидов, которые выполняют роль конденсаторов, а содержимое клеток - роль раствора, содержащего коллоиды и кристаллоиды. Как известно, клетки обладают не только омическим, но и емкостным сопротивлением, суммарная величина которых называется _импеданс.. Применение этого показателя в качестве диагностического метода разрабатывается на кафедре физики нашего института.

Распространение повреждения вглубь клетки травмирует ее органоиды и нарушает активность связанных с ними _ ферментных _систем.. В митохондриях поврежденной клетки происходят различные нарушения активности окислительных ферментов (цитохромоксидазы и др.). Вследствие этого интенсивность клеточного дыхания снижается, активируются внутриклеточные протеазы, что приводит к накоплению кислых продуктов протеолиза и снижению рН клеточной среды. Эти процессы лежат в основе _ауто_лиза. поврежденных клеток.

Уменьшение окислительного фосфорилирования., оценивающееся отношением убыли неорганического Р к количеству поглощаемого кислорода, так же может служить признаком повреждения клетки.

Заслуживает внимания и изменение _ редокс-потенциала. тканей при различных повреждениях. Простота метода его определения и быстрота получения ответа позволяют использовать этот метод для выявления повреждения тканей при их консервации и пересадке.

Любое повреждение тканей сопровождается _ ацидозом. клеток (рН падает до 6 и ниже). Ацидоз - один из наиболее важных и легко измеряемых показателей повреждения клетки. Различают _ацидоз первичный. - вследствие активации протеолиза, гликогенолиза и гликолиза в поврежденной клетке (большое значение при этом имеет повреждение лизосом); и _ ацидоз. вторичный - возникающий в воспаленной ткани значительно познее (через несколько часов после повреждения). Первичный ацидоз возникает независимо от вида повреждающего агента. При повреждении клеток меняются их _ сорбционные. свойства, что проявляется в усилении интенсивности окрашивания клеток различными красителями. По этому показателю можно судить в обратимости повреждения - если клетки восстанавливают первоначальные сорбционные свойства.

Нельзя не сказать о том, что при повреждении клеток существенно меняются структурно-функциональные характеристики органелл. Более подробно мы остановимся на некоторых из них.

Изменения _ эндоплазматической сети. могут быть представлены гиперплазией и атрофией, дезагрегацией рибосом и полисом, разрывом трубок и пузырьков ЭПР (рис.1). Известно, что важнейшей функцией ЭПР является обезвреживание различных токсических веществ. Катализаторами таких процессов являются монооксигеназы или оксигеназы со смешанной функцией (ОСФ), конечной оксигеназной этой цепочки является цитохром Р-450. Следует помнить, что далеко не всегда эта система может обезвредить поступающие вещества, напротив, возможно образование реакционноспособных оксигенированных продуктов, которые, взаимодействуя с нуклеиновыми кислотами и белками клетки, ведут к ее повреждению.

Выделяют два основных пути повреждения клетки от воздействия системы ОСФ-цитохром Р-450:

1) Образование активированных продуктов, вызывающих разрушение жизненноважных клеточных компонентов (ДНК, РНК, белков, кофакторов), что приводит к острому или хроническому токсическому повреждению клетки.

2) Генерация супероксидных радикалов кислорода и перекиси водорода, индуцирующих ПОЛ.

Исследования последних лет показали, что именно интенсификация процессов ПОЛ является одним из главных факторов повреждения мембран и ферментов клеток. Ведущее значение при этом имеют следующие процессы: 1) изменение физико-химических свойств липидов мембран, уменьшение содержания в них фосфолипидов, холестерина и жирных кислот. Это обусловливает нарушение конформации их липопротеидных комплексов и связанное с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран; 2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментную функции в клетке; 3) образование структурных дефектов в мембране - т.н. простейших каналов (кластеров) вследствие внедрения в них продуктов ПОЛ. Увеличение образования продуктов ПОЛ и параллельно с этим кластеров может привести к фрагментации мембран (этот процесс получил название детергентного действия продуктов ПОЛ) и к гибели клетки.

Важно отметить, что в клетке существуют _ защитные систе_мы., которые могут ингибировать эти повреждения (восстановленный глютатион, превращение эпоксидов в транс-дигидродиолы, естественные структурные антиоксиданты - vit. Е и холестерин).

Таким образом, повреждение клетки в этом случае реализуется лишь после истощения систем. О повреждении _ митохонд_рий. мы уже говорили, поэтому кратко суммируем ранее сказанное. Морфологически это проявляется набуханием митохондрий, изменением их размеров (рис.2), структуры и числа крист, а функционально - в нарушении транспорта Са и выработки энергии.

Весьма значительную роль в повреждении клетки отводят лизосомам - "органам" внутриклеточного пищеварения, которые известны еще и как "убийцы" клетки. Физиологическая патологическая активность лизосом зависит в основном от двух факторов: состояния (стабилизации) мембран лизосом и активности их ферментов. Дестабилизации лизосомальных мембран способствуют микотоксины и эндотоксины бактерий, канцерогены, фосфолипазы, активаторы ПОЛ, гипоксия, голодание, нарушение КЩР, эндокринопатии, шок, травмы. Эти факторы объединяются под названием лабилизаторов мембран. Антагонистами их являются стабилизаторы (противовоспалительные гормоны, хлороксин, холестерол и др.).

В патологических условиях возникают конкурентные взаимоотношения между лабилизаторами и стабилизаторами лизосомных мембран, если они в пользу первых, проницаемость мембран становится достаточной для выхода гидролаз в цитоплазму. В этом случае часть клетки или вся клетка гибнет (рис.3).

Нарушение функции лизосом может носить наследственный характер (т.н. лизосомные болезни), что проявляется дефектом (отсутствием) одного или нескольких лизосомных ферментов, что ведет к накоплению в клетке веществ, которые в норме метаболизируются этим ферментом. Примерами таких болезней являются гликогенозы, гепатозы и т.д. Синонимами их служат "болезни накопления" или тезаурисмозы.


Механизмы защиты

И адаптации клеток к повреждению..


Наряду с ранее описанными механизмами повреждения, в клетке существуют и параллельно протекают защитные и адаптивные процессы, без которых полноценное функционирование клеток просто невозможно.

В основе этих процессов лежат такие основополагающие свойства клеток как биосистем:

1) отграниченность от среды за счет биологического барьера - мембраны, позволяющей осуществлять обмен со средой без нарушения целостности системы;

2) открытость системы, заключающаяся в возможности обмена со средой веществом, энергией и информацией, что позволяет поддерживать функциональный гомеостаз;

3) избирательность обмена со средой;

4) способность в процессе обмена создавать функциональные резервы вещества и энергии, необходимой для экстремальных ситуаций;

5) способность изменять свою структуру в зависимости от требований среды.

Весь комплекс адаптивных реакций условно можно разделить на две группы: внутриклеточные и межклеточные.

2Внутриклеточные механизмы адаптации клеток:

1. Компенсация нарушений энергетического обеспечения клеток.

2. Защита мембран и ферментов клеток.

3. Уменьшение степени или устранение дисбаланса ионов и жидкости в клетках.

4. Устранение нарушений генетической программы клеток.

5. Компенсация расстройств механизмов регуляции внутриклеточных процессов.

6. Снижение функциональной активности клеток.

7. Регенерация.

8. Гипертрофия.

9. Гиперплазия.

В процессе эволюции по мере усложнения своей организации клетки приобрели способность противостоять патогенным воздействиям извне. Решающую роль для такого саморегулирования играет принцип перемещающейся активности функциональных структур. Этот принцип заключается в том, что в нормальных условиях функциональные элементы системы "задействованы" не полностью: из общего числа структур, выполняющих одинаковую функцию активно действуют только часть их, обеспечивающая физическую нагрузку. При увеличении нагрузки повышается число функционирующих структур, при уменьшении снижается. Этот принцип распространяется на все уровни системы: от молекулярного до организменного. Таким образом, на уровне тканей имеются резервные клетки, а на уровне клетки - резервные органеллы и молекулы, которые в нормальных условиях в

Повреждение и гибель клеток и тканей: причины, механизмы, виды необратимого повреждения. Некроз. Апоптоз.

МОРФОЛОГИЯ ПОВРЕЖДЕНИЯ

Повреждение органов начинается на молекулярном или клеточном уровне, поэтому изучение патологии начинается с познания причин и молекулярных механизмов структурных изменений, возникающих в клетках при их повреждении.

В ответ на воздействие различных факторов в клетках развивается процесс адаптации. Если лимиты адаптивного ответа клетки исчерпаны, адаптация невозможна, то возникает повреждение клетки, до определенного предела обратимое. Если неблагоприятный фактор действует постоянно то развивается необратимое повреждение, или смерть, клетки.

Смерть клетки - конечный результат ее повреждения, следствие ишемии, инфекции, интоксикации, иммунных реакций.

Существует два типа клеточной смерти - некроз и апоптоз.

ПРИЧИНЫ ПОВРЕЖДЕНИЯ КЛЕТОК

Гипоксия.

Уменьшения кровотока (ишемия), возникающее при появлении препятствий в артериях (атеросклерозе , тромбозе).

Неадекватная оксигенация крови при сердечно-сосудистой недостаточности.

Снижение способности крови к транспортировке кислорода, например при анемии , отравлении СО2.

Физические агенты. Относят механическую травму, чрезмерное снижение или повышение температуры окружающей среды, внезапные колебания атмосферного давления, радиацию, электрический шок.

Химические агенты и лекарства. Глюкоза и поваренная соль, в повышенных концентрациях могут вызвать повреждение клеток непосредственно или путем нарушения их электролитного гомеостаза. Кислород в высоких концентрациях очень токсичен. Даже следы известных ядов (мышьяк, цианиды, соли ртути), могут разрушить достаточно большое количество клеток в течение минут и часов.

Разрушительным действием обладают многие факторы окружающей среды: пыль, инсектициды, гербициды; промышленные и природные факторы (уголь, асбест); социальные факторы: алкоголь, курение, наркотики; высокие дозы лекарств.

Иммунные реакции. Развитие некоторых иммунных реакций лежит в основе аутоиммунных болезней.

Генетические нарушения. Многие врожденные нарушения метаболизма связаны с энзимопатиями (отсутствие фермента).

Дисбаланс питания. Дефицит белковой пищи и витаминов остается распространенным явлением.

МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТОК

Существуют четыре внутриклеточные системы, поддерживающие гомеостаз клетки:

    Поддержание целости клеточных мембран, от которой зависит ионный и осмотический гомеостаз клетки и ее органелл; Аэробное дыхание, связанное с окислительным фосфорили-рованием и образованием аденозинтрифосфата (АТФ); Синтез ферментов и структурных белков; Сохранение единства генетического аппарата клетки.

Например, нарушение аэробного дыхания повреждает натриевый насос мембраны, который поддерживает ионно-жидкостный баланс клетки, что приводит к нарушению внутриклеточного содержания ионов и воды.

Реакция клеток на повреждение зависит от типа, продолжительности действия, тяжести повреждающего фактора. Например, малые дозы токсинов или непродолжительная ишемия могут вызвать обратимые изменения, тогда как большие дозы того же токсина и продолжительная ишемия способны привести к немедленной гибели клетки (клеточной смерти).

Механизмы повреждения и смерти клетки

1. Образование свободных радикалов (при недостаточном поступлении кислорода в ткани) возникает свободнорадикальное перекисное окисление липидов (СПОЛ).

2. Нарушение гомеостаза кальция. Свободный кальций в цитоплазме клеток содержится в очень низких концентрациях по сравнению с внеклеточным. Это состояние поддерживается Са2+, Mg2+-АТФазами. Ишемия, интоксикации вызывают увеличение концентрации кальция в цитоплазме, что ведет к активации ферментов, повреждающих клетку: фосфолипаз (повреждение клеточной мембраны), протеаз (разрушение мембраны и белков цитоскелета), АТФаз (истощение запасов АТФ) и эндонуклеаз (фрагментация хроматина).

3. Недостаточность АТФ ведет к потере целости плазматической мембраны и следовательно к смерти клетки.

4. Ранняя потеря плазматической мембраной избирательной проницаемости. Она возникает при дефиците АТФ, и при активации фосфолипаз. Плазматическая мембрана может быть повреждена прямым воздействием бактериальных токсинов, вирусных белков, комплементом, физическими, химическими агентами.

ФОРМЫ ПОВРЕЖДЕНИЯ КЛЕТОК

Различают:

    Ишемическое и гипоксическое повреждение; Повреждение, вызванное свободными радикалами, включая активированный кислород; Токсическое повреждение.

Ишемическое и гипоксическое повреждение. Чаще обусловлено окклюзией артерий. Основными механизмами гибели клетки при гипоксии являются нарушение окислительного фосфорилирования, приводящее к недостаточности АТФ, повреждению мембран клетки. Важнейшим медиатором необратимых биохимических и морфологических изменений является кальций.

Повреждение клетки, вызванное свободными радикалами. Возникает под воздействием химических веществ, радиации, кислорода, старении клеток, разрушении опухолей макрофагами. Свободные радикалы вступает в реакции с неорганическими и органическими соединениями - белками, липидами и углеводами.

Для повреждения клетки наибольшее значение имеют три реакции, в которые вступают свободные радикалы.

    Свободнорадикальное перекисное окисление липидов (СПОЛ) мембран, ведущее к повреждение мембран, органелл и самих клеток. Окислительное превращение белков. Свободные радикалы вызывают перекрестное связывание аминокислот (метионин, гистидин, цистин, лизин). Разрушает ферменты посредством нейтральных протеаз. Повреждение ДНК. Свободные радикалы вступают в реакцию с тимином, входящим в состав ДНК, это ведет к гибели клетки или ее злокачественному превращению. Токсическое повреждение. Химические вещества (в виде водорастворимых соединений) могут действовать непосредственно, связываясь с молекулами или органеллами клетки. Например, ртуть связывает сульфгидрильные группы клеточной мембраны и вызывает повышение проницаемости клеточной мембраны и торможение АТФаза-зависимого транспорта. При попадании в организм хлорида ртути в наибольшей степени страдают клетки желудочно-кишечного тракта, почек. Цианид воздействует на ферменты митохондрий. Противоопухолевые химиотерапевтические препараты (в том числе антибиотики) вызывают повреждение клеток посредством цитотоксического действия.

Химические соединения (жирорастворимые) вначале превращаются в токсичные метаболиты, которые затем действуют на клетки-мишени. При этом образуются свободные радикалы.

МОРФОЛОГИЯ ПОВРЕЖДЕНИЯ КЛЕТОК

В классической морфологии нелетальное повреждение клеток называется дистрофией. В большинстве случаев она относится к обратимым повреждениям.

Некроз наряду с апоптозом является одним из двух морфологических выражений смерти клетки.

Апоптоз – это генетически запрограммированная смерть клетки.

Апоптоз является разновидностью смерти клетки, для которой характерна конденсация и фрагментация ДНК.

Основная биологическая роль апоптоза в норме - установление нужного равновесия между процессами пролиферации и гибели клеток, что в одних ситуациях обеспечивает стабильное состояние организма, в других-рост, в третьих-атрофию тканей и органов.

В норме апоптоз имеет место при:

Эмбриогенезе на стадиях преимплантации, имплантации плодного яйца и органогенеза. Исчезновение клеток путем апоптоза хорошо документировано при инволюции Мюллерова и Вольфова протоков, межпальцевых перепонок, при формировании просветов в полостных органах (в сердце).

Атрофии зрелых тканей под влиянием эндокринных органов при росте и старении организма (возрастная атрофия тимуса, возрастная инволюция эндометрия, предстательной железы, молочных желез после прекращения лактации, апоптоз В - и Т-лимфоцитов после прекращения действия на них стимулирующего действия соответствующих цитокинов при завершении иммунных реакций.

Уничтожаются клетки в пролиферирующих клеточных популяциях (эпителий крипт тонкой кишки).

Значение апоптоза в патологии.

Апоптоз клеток воспалительного инфильтрата наблюдается в очагах иммунного (лимфоциты) и гнойного (полиморфно-ядерные лейкоциты) воспаления.

Он развивается в корковых клетках тимуса при воздействии кортикостероидных гормонов и формировании иммунологической толерантности.

Наступает смерть клеток в опухолях, как подвергающихся регрессии , так и с активным ростом клеток.

Наступает смерть иммунных клеток (В, Т-лимфоцитов).

Происходит патологическая атрофия гормонозависимых тканей, (атрофия предстательной железы после кастрации).

Развивается патологическая атрофия паренхиматозных органов после перекрытия протока (поджелудочной железы, околоушной слюнной железы, мочеточника).

Смерть клетки, вызванная цитотоксическими Т-клетками, например отторжение трансплантата.

Гибель клеток при вирусных заболеваниях (вирусном гепатите тельца Каунсильмена).

Клеточная смерть, вызванная различными воздействиями (радиация, высокие, низкие температуры, цитотоксические противоопухолевые препараты, гипоксия).

Механизмы апоптоза.

1. Конденсация хроматина. Обусловлена расщеплением ядерной ДНК. При этом создается характерная для апоптоза картина ядра. Фрагментация ДНК развивается с участием кальций чувствительной эндонуклеазы.

2. Нарушения объема и формы клеток. Они связаны с активностью трансглютаминазы.

3. Фагоцитоз апоптозных телец макрофагами и другими клетками. Обеспечивается рецепторами этих клеток, которые связывают и поглощают апоптозные клетки (на макрофаге им является витронектиновый рецептор д3-интегрин, который обеспечивает фагоцитоз апоптозных нейтрофилов).

4. Зависимость апоптоза от активации гена – это является одной из важных его особенностей. Это обеспечивается за счет протоонкогенов. Выявлены апоптозспецифические гены, которые стимулируют или тормозят смерть клетки.

5. Онкогены и супрессорные гены, играют регуляторную роль в индукции апоптоза (онкоген р53 в норме стимулирует апоптоз; р53 необходим для развития апоптоза после повреждения ДНК радиацией).

НЕКРОЗ

Некроз (от греч. nekros - мертвый) - гибель клеток и тканей в живом организме. Понятие "некроз" является видовым по отношению к более общему понятию "смерть". Напротив, термин "смерть" используется для обозначения прекращения жизнедеятельности всего организма в целом.

Как указывал проф. (1923), некроз может захватывать отдельные участки тела, целые органы, ткани, группы клеток и клетки. В настоящее время имеется понятие фокального некроза, когда речь идет о гибели части клетки.

В условиях патологии некроз может иметь самостоятельное значение или входить в качестве одного из важнейших элементов практически во все известные патологические процессы или завершать эти процессы (дистрофии, воспаление, расстройства кровообращения, опухолевый рост и др.).

Морфогенез некроза

Морфогенетические стадии:

Паранекроз - подобные некротическим, но обратимые изменения;

Некробиоз - необратимые дистрофические изменения, характеризующиеся преобладанием катаболических реакций над анаболическими ;

Смерть клетки, время которой установить трудно;

Аутолиз - разложение мертвого субстрата под действием гидролитических ферментов.

Установление момента смерти клетки имеет важное теоретическое и клиническое значение в случае решения вопроса о жизнеспособности тканей, подлежащих хирургическому удалению, а также в трансплантологии.

Для определения смерти клетки чаще используют морфологические критерии необратимого повреждения клетки. Наиболее достоверными являются разрушение внутренних мембран и отложения электронно-плотных депозитов, содержащих белки и соли кальция в митохондриях, что обнаруживается при электронной микроскопии. Однако на светооптическом уровне изменения в структуре клетки становятся видимыми лишь на стадии аутолиза. Поэтому, говоря о микроскопических признаках некроза, мы фактически говорим о морфологических изменениях в стадии аутолиза, являющихся результатом действия гидролитических ферментов лизосомального происхождения. В настоящее время установлено, что большинство органелл клетки (ядра, митохондрии, рибосомы) также имеют свои собственные гидролитические ферменты, которые принимают активное участие в процессах аутолиза.

Макроскопические признаки некроза

Общими для всех форм некроза являются изменения цвета, консистенции, в ряде случаев запаха некротических тканей. Некротизированная ткань может иметь плотную и сухую консистенцию, что наблюдается при коагуляционном некрозе. Ткань при этом подвергается мумификации.

В других случаях мертвая ткань дряблая, содержит большое количество жидкости, подвергается миомаляции (от греч. malakia - мягкость). Такой некроз называется колликвационным. Цвет некротических масс зависит от наличия примесей крови и различных пигментов. Мертвая ткань бывает белой или желтоватой, нередко окруженная красно-бурым венчиком. При пропитывании некротических масс кровью они могут приобретать окраску от красной до бурой, желтой и зеленой в зависимости от преобладания в них тех или иных гемоглобиногенных пигментов. При гнилостном расплавлении мертвая ткань издает характерный дурной запах.

Микроскопические признаки некроза

Заключаются в изменениях ядра и цитоплазмы клеток. Ядра последовательно подвергаются сморщиванию (кариопикноз), распаду на глыбки (кариорексис) и лизируются (кариолизис). Изменения ядер связаны с активацией гидролаз - рибонуклеаз и дезоксирибонуклеаз. В цитоплазме происходит денатурация и коагуляция белков, сменяемая колликвацией. Коагуляция цитоплазмы сменяется распадом ее на глыбки (плазморексис) и лизисом органелл (плазмолизис). При фокальных изменениях говорят о фокальном коагуляционном некрозе и фокальном колликвационном некрозе.

Некроз развивается не только в паренхиматозных элементах тканей и органов, но и в их строме. При этом разрушаются как клетки стромы, нервные окончания, компоненты экстрацеллюлярного матрикса. Расщепление ретикулярных, коллагеновых и эластических волокон происходит с участием нейтральных протеаз (коллагеназ, эластазы), гликопротеидов - протеаз, липидов - липаз. При микроскопическом исследовании обнаруживаются распад, фрагментация и лизис ретикулярных, коллагеновых и эластических волокон (эластолизис), в некротизированной ткани нередко откладывается фибрин. Описанные изменения характерны для фибриноидного некроза. В жировой ткани некроз носит свои специфические черты в связи с накоплением в некротических массах жирных кислот и мыл, что ведет к образованию липогранулем.

Ультраструктурные признаки некроза. Отражают изменения органелл клетки:

    В ядре: агрегация хроматина, фрагментация фибрилл, полное разрушение; В митохондриях: набухание, уменьшение плотности гранул матрикса, образование в нем агрегатов неправильной формы, отложение солей кальция; В цитоплазматической сети: набухание, фрагментация и распад мембранных структур; В полисомах и рибосомах: распад полисом, отделение рибосом от поверхности цистерн, уменьшение четкости контуров и размеров, а также количества рибосом; В лизосомах: агрегация мелких плотных гранул матрикса и его просветление, разрыв мембран; В цитоплазматическом матриксе: исчезновение гранул гликогена, снижение активности ферментов.

Этиология некроза

По этиологическим фактором, выделяют пять видов некроза:

    Травматический, Токсический, Трофоневротический, Аллергический, Сосудистый.

Этиологические факторы могут оказывать непосредственное действие на ткань или опосредованное - через сосудистую, нервную, иммунную системы.

По механизму действия этиологического фактора некроз бывает:

    Прямым Непрямым.

Прямой некроз может быть травматическим, токсическим. Непрямой некроз - трофоневротическим, аллергическим , сосудистым.

Травматический некроз результат прямого действия на ткань физических (механических, температурных, вибрационных, радиационных и др.), химических (кислот, щелочей) факторов.

Токсический некроз развивается при воздействии на ткани токсичных факторов бактериальной и другой природы.

Трофоневротический некроз обусловлен нарушением циркуляции и иннервации тканей при заболеваниях центральной и периферической нервной системы (например пролежни).

Аллергический некроз является результатом иммунного цитолиза тканей в ходе реакций гиперчувствительности немедленного или замедленного типа. Классическим примером может служить фибриноидный некроз при феномене Артюса.

Сосудистый некроз связан с абсолютной или относительной недостаточностью циркуляции в артериях, венах и лимфатических сосудах. Наиболее частая форма сосудистого некроза обусловлена нарушением кровообращения в артериях при тромбозе, эмболии, длительным спазме.

Патогенез некроза

Из всего многообразия патогенетических путей некроза можно выделить пять наиболее значимых:

    Связывание клеточных белков с убихиноном; Дефицит АТФ; Генерация активных форм кислорода (АФК); Нарушение кальциевого гомеостаза; Потеря селективной проницаемости клеточными мембранами.

Убихинон состоит из 76 аминокислотных оснований, широко распространен во всех клетках эукариотов. Синтез убихинона, инициируется различными видами повреждений. Связываясь с белками, убихинон уменьшает длительность их жизни, путем их частичной денатурации. При некрозе клеток центральной нервной системы (болезнь Альцгеймера, Паркинсона), в гепатоцитах при алкогольном поражении печени (тельца Маллори) обнаруживаются цитоплазматические тельца, построенные из комплекса белков с убихиноном.

Дефицит АТФ постоянно обнаруживается в гибнущих клетках. Однако для развития некроза одного дефицита АТФ недостаточно.

Генерация активных форм кислорода (АФК) происходит постоянно в живых клетках в процессе гликолиза. При этом образуются различные АФК - синглетный кислород, супероксидный анион-радикал, гидроксильный радикал, пероксид водорода и др. АФК повышают проницаемость мембран, потенцируют дефицит АТФ и избыток внутриклеточного кальция, что приводит к развитию повреждения клетки и ткани.

Нарушения кальциевого гомеостаза характеризуются накоплением внутриклеточного кальция в гибнущих клетках. В живых клетках концентрация кальция внутри клеток в тысячу раз меньше, чем вне клеток. При этом кальций накапливается прежде всего в митохондриях. Происходит активация Са2+-зависимых протеаз, фосфолипаз, что приводит к необратимым повреждениям мембран, еще большим нарушениям их проницаемости и смерти клеток.

Потеря селективной проницаемости цитоплазматических мембран является одним из характерных признаков некроза при воздействии комплемента, вирусных инфекциях, гипоксических повреждениях. Происходит повреждение трансмембранных протеинов, рецепторов, ферментных систем, регулирующих прохождение в клетку определенных веществ.

Реакция на некроз

Может быть местной и системной.

Развитие некроза, как правило, сопровождается возникновением местной реакции - демаркационного острого воспаления. Воспалительная реакция на некроз может вызвать дополнительные повреждения сохраненных клеток и тканей в зоне демаркационного воспаления. Это особенно важно помнить в случаях инфаркта миокарда, когда некроз кардиомиоцитов обнаруживается не только в зоне ишемии, но и в зоне перифокального воспаления, что значительно увеличивает площадь поражения.

Системная реакция на некроз связана с синтезом клетками печени двух белков острой фазы воспаления - С-реактивного белка (СРВ) и плазменного амилоидассоциированного белка (ААР).

Клинико-морфологические формы некроза. Эти формы выделяют в зависимости от особенностей морфологических и клинических проявлений некроза, учитывая этиологию, патогенез и структурно-функциональные особенности органа, в котором некроз развивается.

Различают следующие формы некроза:

Коагуляционный;

    Колликвационный; Гангрена; Секвестр; Инфаркт.

Колликвационный некроз развивается в тканях, богатых жидкостью с высокой активностью гидролитических ферментов. Классический пример - очаг серого размягчения головного мозга.

Гангрена (от греч. gangrania - пожар) - некроз тканей, соприкасающихся с внешней средой. Ткани имеют черную окраску в результате образования сульфида железа из железа гемоглобина и сероводорода воздуха. Гангрена может развиваться в различных частях тела, легких, кишечнике, матке.

Разновидности гангрены:

    Сухая, Влажная Пролежень

При сухой гангрене ткани мумифицируются, на границе с сохранной живой тканью четко определяется зона демаркационного воспаления. Встречается в конечностях и на теле при атеросклерозе, отморожениях, ожогах, болезни Рейно и вибрационной болезни.

Влажная гангрена возникает в тканях при действии гнилостных микроорганизмов. Ткань набухает, становится отечной, издает зловонный запах, демаркационная зона не определяется. Влажная гангрена встречается в легких, кишечнике и матке. У ослабленных корью детей влажная гангрена может развиться на коже щек, промежности и называется номой (греч. nоmе - водяной рак).

Пролежень является разновидностью гангрены трофоневро-тического генеза. Возникает в местах наибольшего давления у ослабленных больных, страдающих сердечно-сосудистыми, инфекционными, онкологическими и нервными заболеваниями. Пролежни локализуются обычно на участках тела, подвергающихся у лежачих больных наибольшему давлению (лопатки, крестец, затылок, локти и др.).

Секвестр - участок мертвой ткани, который не подвергается аутолизу, не замещается соединительной тканью, свободно располагается среди живых тканей. Секвестры обычно вызывают развитие гнойного воспаления, могут удаляться через свищевые ходы. Секвестрации чаще подвергается костная ткань, однако секвестры редко могут обнаруживаться и в мягких тканях.

Инфаркт (от лат, infarcire - начинать, набивать) - это сосудистый некроз (ишемический). Причины инфаркта - тромбоз, эмболия, длительный спазм артерий, функциональное перенапряжение органа в условиях гипоксии (недостаточности коллатерального кровообращения).

Различают инфаркты по форме и цвету. Форма инфаркта зависит от ангиоархитектоники органа, развитости коллатерального кровообращения и может быть клиновидной и неправильной. Клиновидная форма - для органов с магистральным типом ветвления сосудов, слабо развитыми коллатералями (селезенка, почка, легкое).

Неправильная форма инфаркта наблюдается в органах с рассыпным или смешанным типом ветвления артерий (миокард, головной мозг).

По цвету инфаркт может быть белым (селезенка, головной мозг), белым с геморрагическим венчиком (сердце, почки), красным (геморрагическим) - головной мозг, легкие, печень. Геморрагический венчик формируется за счет зоны демаркационного воспаления, которая закономерно возникает на границе мертвых и живых тканей. Красный цвет инфаркта обусловлен пропитыванием некротизированных тканей кровью, как это бывает при инфарктах легкого на фоне хронического венозного полнокровия.

Исходы некроза. Нередко некроз ткани или органа имеет неблагоприятный исход и приводит больного к смерти. Таковы, например, инфаркты миокарда, головного мозга, некроз коркового вещества почек, некроз надпочечников, прогрессирующий некроз печени, панкреонекроз, К неблагоприятным исходам некроза относится также гнойное расплавление, что может быть причиной прогрессирования гнойного воспаления вплоть до генерализации инфекционного процесса и развития сепсиса.

Благоприятные исходы некроза связаны с процессами отграничения и репарации, которые начинаются и распространяются из зоны демаркационного воспаления. К ним относятся организация (рубцевание - замещение некротических масс соединительной тканью), инкапсуляция (отграничение некротизированного участка соединительнотканной капсулой); при этом некротические массы петрифицируются (откладываются солями кальция) и оссифицируются (образуется кость). На месте колликвационного некроза головного мозга образуется глиальный рубчик (при небольших размерах некроза) или киста.

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА НЕКРОЗА И АПОПТОЗА

Апоптоз - генетически запрограммированная смерть клеток в живом организме. Некроз и апоптоз являются разновидностями смерти клеток в живом организме. Что же общего в этих процессах и каковы различия между этими процессами.

Общим является:

Оба процесса связаны с прекращением жизнедеятельности клеток в живом организме.

Они встречаются как в норме, так и при патологии, но разных ситуациях.

Отличия апоптоза от некроза связаны с различиями в их распространенности, генетическими, биохимическими , морфологическими и клиническими проявлениями.

Некроз может захватывать территорию, начиная от части клетки до целого органа. Апоптоз распространяется всегда только на отдельные клетки или их группы.

Апоптоз возникает в клетках при определенных генетических перестройках.

При апоптозе усиливается экспрессия генов, контролирующих пролиферацию и дифференцировку клеток из группы клеточных онкогенов (c-fos, c-myc, c-bcl-2) и антионкогенов (р53). Активация клеточных онкогенов должна вести к усилению пролиферации клеток, однако при одновременной активации антионкогена р53 наступает апоптоз. Описанные взаимоотношения генов демонстрируют возможность координации процессов пролиферации и гибели клеток, заложенной в генетическом аппарате клеток.

Биохимические отличия апоптоза. В отличие от некроза разрушение ядра при апоптозе происходит с участием специальных Са2+, Mg2+ - зависимых эндонуклеаз, расщепляющих молекулы ДНК, что приводит к формированию однотипных по размерам фрагментов ДНК. Масса этих фрагментов кратна массе одной нуклеосомы, а каждый фрагмент содержит от одной до нескольких нуклеосом. Своеобразное расщепление ДНК при апоптозе имеет и свое морфологическое выражение в виде особой структуры хроматина.

В цитоплазме клетки, подвергшейся апоптозу, никогда не наблюдается активации гидролитических ферментов, как это бывает при некрозе. Напротив, все органеллы долгое время остаются сохранными и подвергаются конденсации, что связывают с процессами сшивания белковых молекул трансглютаминазами, а также обезвоживания клеток за счет действия особых селективных ферментных транспортных систем , регулирующих обмен ионов калия, натрия, хлора и воды.

Морфологические отличия апоптоза от некроза. Эти отличия касаются в основном ультраструктурных перестроек. Но при световой микроскопии клетки в состоянии апоптоза и их фрагменты (апоптозные тельца) отличаются небольшими размерами, сравнимыми с размерами лимфоцитов, с высоким ядерно-цитоплазматическим соотношением, округлыми контурами и конденсированными хроматином и цитоплазмой. Существенным отличием является отсутствие воспалительной реакции на апоптоз.

Ультраструктурные отличия апоптоза от некроза

Потеря микроворсинок, межклеточных контактов. Клетка приобретает округлую форму, теряет связь с соседними клетками. В отличие от некроза речь идет всегда об изменениях в отдельных клетках.

Размеры клеток уменьшаются в связи с конденсацией цито-плазматических органелл; меняется форма клетки. Клетка расщепляется на апоптозные тельца, каждое из которых имеет свой фрагмент ядра, ограниченный двух контурной ядерной мембраной, и индивидуальный набор органелл.

В отличие от некроза при апоптозе имеется сохранность ин-тегративности органелл. Митохондрии не набухают, нет разрыва внутренней мембраны. Характерными для апоптоза являются агрегация рибосом в полукристаллоидные структуры, появление пучков микрофиламентов под цитолеммой. Наблюдается кратковременная дилатация агранулярной эндоплазматической сети с формированием пузырей, наполненных жидкостью, которые выводятся из клетки. Поверхность клетки приобретает кратерообразные выпячивания.

При апоптозе в отличие от некроза под кариолеммой конденсируется ядерный хроматин в виде полусфер и глыбок. В ядре осмиофильные тельца, Ядро меняет свою форму, становится изрезанным, фрагментируется, ядерные поры концентрируются только в участках, где отсутствует маргинация хроматина.

Клетка в состоянии апоптоза фагоцитируется макрофагами. Фагоцитоз происходит настолько быстро, что в условиях in vivo апоптозные клетки сохраняются лишь в течение нескольких минут, что затрудняет их наблюдение.


Клетка является структурно-функциональной единицей тканей и органов. В ней протекают процессы, лежащие в основе энергетического и пластического обеспечения структур и функций тканей.

Различные патогенные факторы действующие на клетку могут обусловить повреждение . Под повреждением клетки понимают такие изменения ее структуры, обмена веществ, физико-химических свойств и функций, которые ведут к нарушению жизнедеятельности.

Нередко процесс повреждения обозначают термином альтерация, что не совсем точно, поскольку alteratio переводится как изменение, отклонение и является, таким образом, более широким понятием. Однако в медицинской литературе эти термины применяются обычно как синонимы.

    ПРИЧИНЫ ПОВРЕЖДЕНИЯ КЛЕТОК

Повреждение клетки может быть результатом действия на нее множества патогенных факторов. Их условно подразделяют на три основные группы: физического, химического и биологического характера.

Среди факторов физического характера причинами повреждения клеток наиболее часто являются следующие:

    механические воздействия. Они обуславливают нарушение структуры плазмолеммы и мембран субклеточных образований;

    колебания температуры. Повышенная температура среды, в которой находится клетка, до 45-50С и более, может привести к денатурации белка, нуклеиновых кислот, декомпозиции липопротеидных комплексов, повышению проницаемости клеточных мембран и другим изменениям. Значительное снижение температуры может обусловить существенное замедление или необратимое прекращение метаболических процессов в клетке, кристаллизацию внутриклеточной жидкости и разрыв мембран;

    изменения осмотического давления в клетке, в частности, вследствие накопления в ней продуктов неполного окисления органических субстратов, а также избытка ионов. Последнее, как правило, сопровождается током жидкости в клетку по градиенту осмотического давления, набуханием ее и растяжением (вплоть до разрыва) ее плазмолеммы и мембран органелл. Снижение внутриклеточного осмотического давления или повышение его во внеклеточной среде ведет к потере клеткой жидкости, ее сморщиванию (пикнозу) и нередко к гибели;

    воздействие ионизирующей радиации, обусловливающей образование свободных радикалов и активацию перекисных свободно-радикальных процессов, продукты которых повреждают мембраны и денатурируют ферменты клеток. Патогенное действие на клетку могут также оказывать гравитационные, электромагнитные и другие факторы физического характера.

Повреждение клеток нередко вызывают воздействия факторов химической природы . К их числу относятся разнообразные вещества экзогенного и эндогенного происхождения: органические кислоты, щелочи, соли тяжелых металлов, продукты нарушенного метаболизма. Так, цианиды подавляют активность цитохромоксидазы. Этанол и его метаболиты ингибируют многие ферменты клетки. Вещества, содержащие соли мышьяка, угнетают пируватоксидазу. Неправильное применение лекарственных средств также может привести к повреждению клеток. Например, передозировка строфантина обусловливает значительное подавление активности К + - Na + - АТФазы сарколеммы клеток миокарда, что ведет к дисбалансу интрацеллюлярного содержания ионов и жидкости.

Важно, что повреждение клетки может быть обусловлено как избытком, так и дефицитом одного и того же фактора. Например, избыточное содержание кислорода в тканях активирует процесс перекисного свободнорадикального окисления липидов (ПСОЛ), продукты которого повреждают ферменты и мембраны клеток. С другой стороны, снижение содержания кислорода обусловливает нарушение окислительных процессов, понижение образования АТФ и, как следствие, расстройство функций клетки.

Повреждение клеток нередко обусловливается факторами иммунных и аллергических процессов. Они могут быть вызваны, в частности, сходством антигенов, например, микробов и клеток организма.

Повреждение может быть также результатом образования антител или Т-лимфоцитов, действующих против неизменных клеток организма вследствие мутаций в гемоне В- или Т-лимфоцитов иммунной системы.

Важную роль в поддержании метаболических процессов в клетке играют вещества, поступающие в нее из окончаний нейронов, в частности нейромедиаторы, трофогены, нейропептиды. Уменьшение или прекращение их транспорта является причиной расстройства обмена веществ в клетках, нарушения их жизнедеятельности и развития патологических состояний, получивших название нейродистрофий.

Кроме указанных факторов, повреждение клеток нередко бывает обусловлено значительно повышенной функцией органов и тканей. Например, при длительной чрезмерной физической нагрузке возможно развитие сердечной недостаточности в результате нарушения жизнедеятельности кардиомиоцитов.

Повреждение клетки может быть результатом действия не только патогенных факторов, но и следствием генетически запрограммированных процессов. Примером может служить гибель эпидермиса, эпителия кишечника, эритроцитов и других клеток в результате процесса их старения. К механизмам старения и смерти клетки относят постепенное необратимое изменение структуры мембран, ферментов, нуклеиновых кислот, истощение субстратов метаболических реакций, снижение устойчивости клеток к патогенным воздействиям.

По происхождению все причинные факторы повреждения клетки делят на: 1) экзогенные и эндогенные; 2) инфекционного и неинфекционного генеза.

Действие повреждающих факторов на клетку осуществляется прямо или опосредовано . В последнем случае речь идет о формировании цепи вторичных реакций, образовании веществ – посредников, реализующих повреждающее действие. Действие повреждающего агента может опосредоваться через: - изменения нервных или эндокринных воздействий на клетки (например, при стрессе, шоке); - расстройство системного кровообращения (при сердечной недостаточности); - отклонение физико-химических параметров (при состояниях, сопровождающихся ацидозом, алкалозом, образованием свободных радикалов, продуктов ПСОЛ, дисбалансом ионов и жидкости); - иммунно-алллергические реакции при аутоаллергических заболеваниях; - образование избытка или недостатка биологически активных веществ (гистамина, кининов, простакландинов). Многие из этих и других соединений, участвующих в развитии патологических процессов, получили название посредников – медиаторов (например, медиаторы воспаления, аллергии, канцерогенеза и др.).

ТЕМА: Повреждение клетки

ПРИЧИНЫ И ВИДЫ ПовреждениЯ клетки

Повреждение клетки – типовой патологический процесс, основу которого составляют нарушения внутриклеточного гомеостаза, приводящие к нарушению структурной целостности клетки и её функциональных способностей.

Повреждение клетки – этотакие изменения её структуры, метаболизма, физико-химических свойств и функции, которые ведут к нарушению жизнедеятельности клетки.

Причины повреждения клетки.

По природе повреждающего фактора: физические, химические, биологические (рис. 1).

По происхождению повреждающие факторы подразделяются на экзогенные и эндогенные .

Экзогенные факторы (действуют на клетку извне):

физические воздействия (механические, термические, лучевые и др.),

химические агенты (кислоты, щёлочи, этанол и др.),

инфекционные факторы (вирусы, риккетсии, бактерии, гельминты и др.).

Эндогенные факторы (образуются и действуют внутри клетки):

физической природы (например, избыток свободных радикалов, колебания осмотического давления),

химические факторы (например, накопление или дефицит ионов Н+, K+, Ca2+ и др., углекислого газа, метаболитов и др.),

биологические агенты (например, лизосомальные ферменты, иммуноглобулины, дефицит или избыток гормонов, ферментов и др.).

Рис. 1. Причины повреждения клеток

Виды повреждения клетки. В зависимости от скорости развития основных проявлений повреждение клетки может быть острым и хроническим . Острое повреждение развивается быстро, как правило, в результате однократного, но интенсивного повреждающего воздействия, в то время как хроническое повреждение протекает медленно и является следствием многократных, но менее интенсивных патогенных влияний.

Различают непосредственное (первичное) и опосредованное (вторичное) повреждения . Последнее возникает как следствие первичных нарушений постоянства внутренней среды организма (гипоксия, ацидоз, гипер- и гипоосмия, гипогликемия и др.)

В зависимости от степени нарушения внутриклеточного гомеостаза повреждение бывает обратимым и необратимым . Например, обратимым могут быть повреждения кардиомиоцитов при кратковременной (рефлекторной) ишемии миокарда (не более 10-15 мин). Если повреждающие агенты вызывают стойкие изменения внутриклеточного гомеостаза, неустранимые при вовлечении внеклеточных и внутриклеточных защитно-компенсаторных механизмов, развиваются необратимые повреждения клеток, приводящие, как правило, к их гибели или значительному сокращению сроков жизни. В качестве примеров можно привести повреждения миокардиоцитов при длительной ишемии миокарда, клеток кожи при действии больших доз ультрафиолетовых лучей.

В зависимости от периода жизненного цикла, на который приходится действие повреждающего агента, повреждение клетки может быть митотическим и интерфазным.

Выделяют два патогенетических варианта повреждения клеток:

1. Насильственный. Развивается в случае действия на клетку патогенных факторов, интенсивность которых превышает возмущающие воздействия, к которым клетка адаптирована. Наиболее чувствительны к данному варианту повреждения функционально малоактивные клетки, обладающие малой мощностью собственных гомеостатических механизмов.

2. Цитопатический. Возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов клетки. В этом случае фактором, запускающим механизмы повреждения, являются естественные для данной клетки возмущающие стимулы, которые в этих условиях становятся повреждающими. К цитопатическому варианту относятся все виды повреждения клетки, возникающего вследствие отсутствия каких-либо необходимых ей компонентов (гипоксическое, нервно-трофическое, при голодании, гиповитаминозах, недостаточности антиоксидантной системы, генетических дефектах и др.). К цитопатическому повреждению наиболее чувствительны функционально активные клетки (нейроны, кардиомиоциты).

Проявления повреждения клеток могут быть как специфическими , т.е. характерными только для какого-то конкретного болезнетворного агента, так и неспецифическими .

Специфические изменения. Примерами специфических проявлений повреждения могут служить иммунный гемолиз эритроцитов при наличии в организме специфических антиэритроцитарных антител, образование радиотоксинов при радиационном повреждении, избирательное торможение отдельных клеточных ферментов при химическом повреждении, например, подавление активности цитохромоксидазы при отравлении цианидами, угнетение холинэстеразы фосфорорганическими соединениями.

Неспецифические изменения. В то же время в поврежденных клетках наблюдаются стереотипные неспецифические изменения их жизнедеятельности, общие для действия разнообразных повреждающих агентов. Примерами неспецифических проявлений повреждения клетки являются угнетенение ферментов мембран, клеточных «насосов», нарушение энергетического обмена, обмена воды, электролитов, развитие ацидоза, изменение структуры и функции внутриклеточных органелл: митохондрий, лизосом, эндоплазматическогго ретикуллума и др.

МЕХАНИЗМЫ повреждения клетки

К наиболее важным механизмам повреждения клетки относятся:

Расстройства энергетического обеспечения клетки;

Повреждение мембран и ферментов;

Дисбаланс ионов и жидкости;

Нарушение в геноме или экспрессии генов;

Нарушение регуляции внутриклеточных процессов.

1. Расстройства энергетического обеспечения клетки . Энергоснабжение клетки может расстраиваться на этапах ресинтеза, транспорта и утилизации энергии АТФ.

Ресинтез АТФ нарушается в результате дефицита кислорода и субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, а также повреждения и разрушения митохондрий (в которых осуществляются реакции цикла Кребса и сопряжённый с фосфорилированием АДФ перенос электронов к молекулярному кислороду).

Транспорт энергии. АТФ в норме доставляется от мест ресинтеза (митохондрий) к эффекторным структурам (миофибриллам, ионным насосам и др.) с помощью АДФ-АТФ-транслоказы и креатинфосфокиназы (КФК). При повреждении этих ферментов нарушается функция эффекторных структур.

Утилизация энергии может бытьнарушена за счёт уменьшения активности АТФаз (АТФаза миозина, Na+,K+-АТФаза плазмолеммы, протонная и калиевая АТФаза, Са2+-АТФаза и др.), КФК, адениннуклеотидтрансферазы.

Таким образом, нарушение жизнедеятельности клеток может развиваться даже в условиях нормального или повышенного содержания в клетке АТФ.

Рис. 2. Механизмы нарушения энергообеспечения в повреждённой клетке

2. Повреждение клеточных мембран и ферментов . Биологические мембраны выполняют множество функций, нарушение любой из которых может привести к изменению жизнедеятельности клетки в целом и даже к ее гибели.

Повреждение клеточных мембранпроисходит за счёт следующих механизмов.

Активация гидролаз . Под влиянием патогенных факторов активность мембраносвязанных, свободных (солюбилизированных) и лизосомальных липаз, фосфолипаз, протеаз может значительно увеличиться (например, при гипоксии и ацидозе). В результате фосфолипиды и белки мембран подвергаются гидролизу. Это сопровождается значительным повышением проницаемости мембран и снижением активности ферментов.

Расстройства репарации мембран. При воздействии повреждающих факторов репаративный синтез поврежденных или утраченных мембранных макромолекул подавляется, что приводит к недостаточному восстановлению мембран.

Нарушение конформации макромолекул (их пространственной структуры) приводит к изменению физико-химического состояния клеточных мембран и их рецепторов, что приводит к потере их функций.

Разрыв мембран. Перерастяжение и разрывы мембран набухших клеток и органоидов в результате их гипергидратации (следствие значительного увеличения осмотического и онкотического давления), что обусловлено избытком в них гидрофильных молекул органических соединений (молочная и пировиноградная кислоты, альбумины, глюкоза и др.), а также ионов, накопившихся в связи с расстройствами клеточного метаболизма.

Свободнорадикальные и перекисные реакции. В норме свободнорадикальные и перекисные реакции являются необходимым звеном транспорта электронов, синтеза простагландинов и лейкотриенов, фагоцитоза, метаболизма катехоламинов и др. В то же время, свободные радикалы – это высокоактивные молекулы, способные разрушать структуры клетки.

Основным источником свободных радикалов в организме является молекулярный кислород. К кислородным радикалам относятся: NO* (монооксид азота), RO* (алкоксильный радикал), RO* 2 (пероксидный радикал), O* 2 - (супероксидный радикал), HO* 2 (гидроперекисный радикал), HO* (гидроксильный радикал).

В нормальных условиях радикалы кислорода не накапливаются в клетках. Состояние клеток, характеризующееся избыточным содержанием в них радикалов кислорода, называется окислительным стрессом. Окислительный стресс развивается тогда, когда окислительно-восстановительный гомеостаз в клетке нарушается. Этот дисбаланс может быть обусловлен гиперпродукцией активных форм кислорода или недостаточностью системы антиоксидантной защиты.

Выделяют несколько основных групп антиоксидантов:

1. ферментативные – супероксиддисмутаза, каталаза, ферменты глутатионового цикла (глутатионпероксидаза, глутатионредуктаза, глутатион-S-трансфераза);

2. неферментативные – витамин Е, коэнзим Q, флавоноиды (кверцетин, рутин, гесперетин и др.), каротиноиды, аскорбиновая кислота, SH-содержащие соединения (глутатион и др.).

Рис. 3. Общие механизмы повреждения мембран клеток

В свободнорадикальные реакции вовлекаются белки, нуклеиновые кислоты и, особенно, липиды (свободнорадикальное перекисное окисление липидов – СПОЛ).

Этапы СПОЛ : образование активных форм кислорода → генерация свободных радикалов органических и неорганических веществ → продукция перекисей и гидроперекисей липидов. При действии патогенных факторов генерация свободных радикалов и СПОЛ значительно возрастает, что усиливает повреждение клеток.

Детергентные эффекты амфифилов. В результате активации липопероксидных реакций и гидролаз в клетке накапливаются гидроперекиси липидов, свободные жирные кислоты и фосфолипиды – амфифилы (вещества, способные фиксироваться как в гидрофобной, так и в гидрофильной зоне мембран). Это ведёт к формированию обширных амфифильных кластеров (простейшие трансмембранные каналы), микроразрывам и разрушению мембран.

3. Дисбаланс ионов и воды. Дисбаланс ионов и воды в клетке развивается одновременно с расстройствами энергетического обеспечения и повреждением мембран и ферментов. В результате существенно изменяется трансмембранный перенос многих ионов. В наибольшей мере это относится к K+, Na+, Ca2+, Mg2+, Cl–, т.е. ионам, которые принимают участие в таких жизненно важных процессах, как возбуждение, проведение потенциалов действия (ПД) и др.

К проявлениям ионного и водного дисбаланса относят: изменение соотношения отдельных ионов в цитозоле; нарушение трансмембранного соотношения ионов; гипергидратация клеток; гипогидратация клеток; нарушение электрогенеза.

Изменение ионного состава (дизиония) обусловлено повреждением мембранных АТФаз и дефектами мембран. Так, вследствие нарушения работы Na+,K+-ATФазы происходит накопление в цитозоле избытка Na+ и потеря клеткой К+. Вследствие нарушения работы Na+-Ca2+-ионообменного механизма (обмен двух ионов Na+, входящих в клетку, на один ион Са2+, выходящий из неё), а также Са2+-АТФаз происходит увеличение содержания Са2+ в цитозоле. Повышение концентрации ионов Са2+ в цитоплазме вызывает контрактуру фибриллярных структур клетки (миофибрилл), активацию фосфолипазы А2, разобщение окисления и фосфорилирования.

Гипергидратация. Основная причина гипергидратации поврежденных клеток – повышение содержания ионов Na+, а также органических веществ, что сопровождается увеличением в них осмотического давления и набуханием клеток. Это сочетается с растяжением и микроразрывами мембран (например, при осмотическом гемолизе эритроцитов).

Гипогидратация клеток наблюдается, например, при лихорадке, гипертермии, полиурии, инфекции (холере, брюшном тифе, дизентерии). Эти состояния ведут к потере организмом воды, что сопровождается выходом из клеток жидкости, а также органических и неорганических водорастворимых соединений.

Нарушения электрогенеза (изменения характеристик мембранного потенциала – МП и потенциалов действия – ПД) имеют существенное значение, поскольку нередко являются одним из важных признаков повреждения клеток. Примером могут служить изменения ЭКГ при повреждении клеток миокарда, электроэнцефалограммы при патологии нейронов головного мозга, электромиограммы при изменениях в мышечных клетках.

Рис. 5. Дисбаланс ионов и жидкости в клетке при её повреждении

4. Нарушения в геноме или экспрессии генов. К таким нарушениям относятся:

мутации (например, мутация гена инсулина приводит к развитию сахарного диабета);

дерепрессия патогенного гена (например, дерепрессия онкогена сопровождается трансформацией нормальной клетки в опухолевую);

репрессия жизненно важного гена (например, подавление экспрессии гена фенилаланин-4-монооксигеназы обусловливает гиперфенилаланинемию и развитие умственной отсталости);

трансфекция (внедрение в геном чужеродной ДНК). Например, трансфекция ДНК вируса иммунодефицита приводит к возникновению СПИДа;

нарушения митоза (например, деление ядер эритрокариоцитов без деления цитоплазмы наблюдается при мегалобластных анемиях) и мейоза (нарушение расхождения половых хромосом ведет к формированию хромосомных болезней).

5. Нарушение регуляции внутриклеточных процессов. Механизмы нарушения регуляции внутриклеточных процессов при её повреждении включают в себя:

изменение числа рецепторов клетки к биологически активным веществам (БАВ),

изменение чувствительности рецепторов клетки к БАВ.

нарушение функции внутриклеточных посредников («мессенджеров») регуляторных воздействий.

Рецепторы клеток для БАВ (материальные субстраты чувствительности и реактивности клеток) представляют собой генетически детерминированные, лабильные, белковые структуры, осуществляющие распознавание действующего фактора с последующей трансформацией этого сигнала в адекватный ответ клетки.

В патогенезе ряда заболеваний, в том числе сердечно-сосудистых и онкологических, важное значение имеет нарушение отношений между БАВ, рецепторным аппаратом и реакциями клетки на их взаимодействие. Например, при ишемии миокарда наблюдается снижение активности фофодиэстераз, разрушающих цАМФ (внутриклеточный посредник), что приводит к нарушению формирования потенциала действия в кардиомиоцитах и является одной из возможных причин развития сердечных аритмий.

Виды клеточной гибели. некроз и апоптоз

Клетки погибают как в норме, так и в условиях патологии. Различают два принципиально разных варианта смерти клеток – некроз (гибель клетки вследствие её значительного – летального – повреждения) и апоптоз (гибель клетки в результате включения специальной программы смерти).

Некроз (греч. necros – мёртвый) – патологическая форма гибели клетки вследствие её необратимого повреждения.

Некроз является следствием прямого или опосредованного действия на клетку повреждающих факторов значительной разрушающей силы.

Основные звенья патогенеза некроза те же, что и повреждения клеток, но при развитии некроза они максимально интенсифицированы и развиваются на фоне недостаточности защитно-компенсаторных механизмов. Основным механизмом некроза является невосстанавливаемое повреждение клеточной мембраны, сопровождающееся нарушением её барьерной функции, работы ионных насосов, электролитного баланса, энергетического обмена и функции ядра. Фрагментация цитоплазматической и внутриклеточной мембран, хаотичные разрывы ДНК, высвобождение и активация лизосомальных ферментов приводят к полной дезинтеграции клетки.

Содержимое клетки попадает в окружающее тканевое пространство и подвергается фагоцитозу. Некроз распространяется на множество клеток, что ведёт к образованию некротической зоны и развитию воспалительной реакции.

Некрозу могут предшествовать периоды паранекроза и некробиоза.

Паранекроз – обратимое повреждение клетки (в клетке: помутнение цитоплазмы, вакуолизация, появление грубодисперсных осадков, увеличение проникновения в клетку различных красителей).

Некробиоз (от necros - мертвый и bios - живой) –состояние «между жизнью и смертью»; изменения в клетке, предшествующие ее смерти. При некробиозе в отличие от некроза возможно возвращение клетки в исходное состояние после устранения причины, вызвавшей некробиоз.

Апоптоз (греч. apo – отделениеи ptosis – падение, «опадание листьев») – это генетически контролируемая физиологическая форма гибели клетки. Апоптоз – это программируемая гибель клетки.

В этом принципиальное отличие апоптоза от некроза. Апоптоз является компонентом многих физиологических процессов. Биологическая роль апоптоза заключается в поддержании равновесия между процессами пролиферации и гибели клеток (т.е. поддержание внутреннего гомеостаза организма на клеточном, тканевом и системном уровнях). Апоптоз – энергозависимый процесс. Нарушение или блокада апоптоза может стать причиной патологии (опухоли, иммунодефициты, реакции иммунной аутоагрессии и др.).

Апоптоз является активным процессом саморазрушения клетки, по морфологическим и другим признакам он существенно отличается от некроза (см. табл.).

Механизм апоптоза. В ходе апоптоза выделяют четыре стадии: инициация, программирование, реализация программы, удаление погибшей клетки.

1. Стадия инициации. На этой стадии информационные сигналы воспринимаются клеточными рецепторами и передаются сигналы внутрь клетки.

Пусковыми факторами апоптозамогут быть как внешние (внеклеточные) факторы, так и внутриклеточные сигналы. Сигнал воспринимается клеткой, далее последовательно передается молекулам-посредникам (мессенджерам) различного порядка и достигает ядра, где происходит включение программы клеточного «самоубийства».

Индукторами экзогенного апоптоза являются стероидные гормоны (половые, тиреоидные, минералокортикоиды и др.), антигены, антитела, цитокины. Их действие осуществляется через ядерные рецепторы, специализированные мембранные «рецепторы смерти» (Fas, TNF-RI, TNF-RII, DR-3 и др.) и рецепторы, выполняющие иные функции, например функцию активации клетки (T-клеточный рецептор (TCR), цитокиновые рецепторы), что сопровождается развитием активационного апоптоза.

Эндогенный запуск программы апоптоза клетки возможен при лишении её ростовых факторов (IL-2, IL-3, IL-4, INF-α, колониестимулирующих факторов – гранулоцитарно-макрофагального (ГМ-КСФ), гранулоцитарного (Г-КСФ), эритропоэтина и др.), нарушении контактов с внеклеточным матриксом и другими клетками, накоплении нерепарируемых разрывов ДНК (например, при повреждении клетки вирусами, ионизирующей радиацией, ультрафиолетовым излучением и др.).

Таблица. Дифференциальные признаки некроза и апоптоза

Признаки Некроз Апоптоз
Пусковой фактор Разрушение мембраны под действием патологических факторов Деградация ДНК под действием физиологических и патологических стимулов
Распространенность Группа клеток Одиночная клетка
Биохимические изменения в клетке Активация лизосомальных ферментов Активация эндонуклеаз, фрагментирующих ДНК
Энергозависимость Нет Есть
Целостность цитоплазматической и внутриклеточных мембран Нарушена Сохранена
Морфологические изменения клетки Увеличение размеров клетки, разрыхление мембраны, набухание цитоплазмы, митохондрий, лизис ядра и гранул Уменьшение размеров клетки, уплотнение и вздутие мембраны, кариопикноз, кариорексис, маргинация хроматина, конденсация и уплотнение гранул
Воспалительный ответ Есть Нет
Элиминация гибнущей клетки Лизис клетки, фагоцитоз Фрагментация клетки, поглощение фрагментов клетки (апоптотических телец) соседними клетками и фагоцитами

2. Стадия программирования .В результате запуска апоптогенным сигналом программы активации генов-индукторов апоптоза (Р53, BAX, PIG, FAS/APO-1, IGF-BP3 и др.) и/или угнетения апоптозингибирующих генов (генов семейства BCL-2) в клетке синтезируются и активируются ферменты , способные разрушать клеточные белки (протеазы – каспазы, катепсины, кальпаины, гранзимы) и нуклеиновые кислоты (нуклеазы – Са 2+ /Мg 2+ -зависимая эндонуклеаза и др.). Основным проявлением деструктивных изменений клетки при апоптозе является деградация хроматина, основой которого служит расщепление ДНК.

3. Стадия реализации программы (исполнительная, эффекторная) заключается в гибели клетки, осуществляемой посредством активации протеаз и нуклеаз.

Непосредственными исполнителями «умертвления» клетки являются Са2+,Mg2+ - зависимые эндонуклеазы (катализируют распад нуклеиновых кислот) и эффекторные каспазы (расщепляют белки). При этом в клетке формируются и от неё отпочковываются фрагменты, содержащие остатки органелл, цитоплазмы, хроматина и цитолеммы – апоптозные тельца .

4. Стадия удаления погибшей клетки . На поверхности апоптозных телец имеются лиганды, с которыми взаимодействуют рецепторы фагоцитирующих клеток. Фагоциты обнаруживают, поглощают и разрушают апоптозные тельца. В результате содержимое разрушенной клетки не попадает в межклеточное пространство и при апоптозе отсутствует воспалительная реакция.

При различных патологических процессах в организме могут наблюдаться как ускорение, так и замедление апоптоза.

Заболевания, связанные с угнетением апоптоза : опухолевые заболевания (рак молочной железы, рак предстательной железы и др.), аутоиммунные болезни (системная красная волчанка, ревматоидный артрит и др.), вирусные инфекции (герпес, аденовирусы).

Заболевания, связанные с усилением апоптоза :нейродегенеративные заболевания (болезнь Альцгеймера, паркинсонизм, боковой амиотрофический склероз), токсические заболевания печени, гипо- и апластические анемии.



Рассказать друзьям