Строение, свойства и функции воды. Структура воды

💖 Нравится? Поделись с друзьями ссылкой

Самое важное, уникальное по свойствам и составу вещество нашей планеты - это, конечно, вода. Ведь именно благодаря ей на Земле жизнь есть, в то время как на других известных сегодня объектах Солнечной системы ее нет. Твердая, жидкая, в виде пара - она нужна и важна любая. Вода и ее свойства составляют предмет изучения целой научной дисциплины - гидрологии.

Количество воды на планете

Если рассматривать показатель количества данного оксида во всех агрегатных состояниях, то его на планете около 75% от общей массы. При этом следует учитывать связанную воду в органических соединениях, живых существах, минералах и прочих элементах.

Если учитывать только жидкое и твердое состояние воды, показатель падет до 70,8%. Рассмотрим, как распределяются эти проценты, где содержится рассматриваемое вещество.

  1. Соленой воды в океанах и морях, солончаковых озерах на Земле 360 млн км 2 .
  2. Пресная вода распределена неравномерно: ее в ледниках Гренландии, Арктики, Антарктиды заковано во льды 16,3 млн км 2 .
  3. В пресных реках, болотах и озерах сосредоточено 5,3 млн км 2 оксида водорода.
  4. Подземные воды составляют 100 млн м 3 .

Именно поэтому космонавтам из далекого космического пространства видно Землю в форме шара голубого цвета с редкими вкраплениями суши. Вода и ее свойства, знание особенностей строения являются важными элементами науки. К тому же, в последнее время человечество начинает испытывать явную нехватку пресной воды. Может быть, такие знания помогут в решении данной проблемы.

Состав воды и строение молекулы

Если рассмотреть эти показатели, то сразу станут понятны и свойства, которые проявляет это удивительное вещество. Так, молекула воды состоит из двух атомов водорода и одного атома кислорода, поэтому имеет эмпирическую формулу Н 2 О. Кроме того, при построении самой молекулы большую роль играют электроны обоих элементов. Посмотрим, что собой представляют структура воды и ее свойства.

Очевидно, что каждая молекула ориентирована вокруг другой, и все вместе они формируют общую кристаллическую решетку. Интересно то, что оксид построен в форме тетраэдра - атом кислорода в центре, а две пары электронов его и два атома водорода вокруг асимметрично. Если провести через центры ядер атомов линии и соединить их, то получится именно тетраэдрическая геометрическая форма.

Угол между центром атома кислорода и ядрами водородов составляет 104,5 0 С. Длина связи О-Н = 0,0957 нм. Наличие электронных пар кислорода, а также его большее в сравнении с водородами сродство к электрону обеспечивают формирование в молекуле отрицательно заряженного поля. В противовес ему ядра водородов образуют положительно заряженную часть соединения. Таким образом, выходит, что молекула воды - диполь. Это определяет то, какой может быть вода, и ее физические свойства также зависят от строения молекулы. Для живых существ эти особенности играют жизненно важную роль.

Основные физические свойства

К таковым принято относить кристаллическую решетку, температуры кипения и плавления, особенные индивидуальные характеристики. Все их и рассмотрим.

  1. Строение кристаллической решетки оксида водорода зависит от агрегатного состояния. Оно может быть твердым - лед, жидким - основная вода при обычных условиях, газообразным - пар при повышении температуры воды свыше 100 0 С. Красивые узорные кристаллы формирует лед. Решетка в целом рыхлая, но соединение очень прочное, плотность низкая. Видеть ее можно на примере снежинок или морозных узоров на стеклах. У обычной воды решетка не имеет постоянной формы, она изменяется и переходит из одного состояния в другое.
  2. Молекула воды в космическом пространстве имеет правильную форму шара. Однако под действием земной силы тяжести она искажается и в жидком состоянии принимает форму сосуда.
  3. То, что по структуре оксид водорода - диполь, обуславливает следующие свойства: высокая теплопроводность и теплоемкость, которая прослеживается в быстром нагревании и долгом остывании вещества, способность ориентировать вокруг себя как ионы, так и отдельные электроны, соединения. Это делает воду универсальным растворителем (как полярным, так и нейтральным).
  4. Состав воды и строение молекулы объясняют способность этого соединения образовывать множественные водородные связи, в том числе с другими соединениями, имеющими неподеленные электронные пары (аммиак, спирт и прочие).
  5. Температура кипения жидкой воды - 100 0 С, кристаллизация наступает при +4 0 С. Ниже этого показателя - лед. Если же увеличивать давление, то температура кипения воды резко возрастет. Так, при высоких атмосферах в ней можно растопить свинец, но она при этом даже не закипит (свыше 300 0 С).
  6. Свойства воды весьма значимы для живых существ. Например, одно из самых важных - поверхностное натяжение. Это формирование тончайшей защитной пленки на поверхности оксида водорода. Речь идет о воде в жидком состоянии. Эту пленку разорвать механическим воздействием очень сложно. Учеными установлено, что понадобится сила, равная весу в 100 тонн. Как ее заметить? Пленка очевидна, когда вода капает из крана медленно. Видно, что она словно в какой-то оболочке, которая растягивается до определенного предела и веса и отрывается в виде круглой капельки, слегка искаженной силой тяжести. Благодаря поверхностному натяжению многие предметы могут находиться на поверхности воды. Насекомые, имеющие особые приспособления, могут свободно передвигаться по ней.
  7. Вода и ее свойства аномальны и уникальны. По органолептическим показателям данное соединение - бесцветная жидкость без вкуса и запаха. То, что мы называем вкусом воды, - это растворенные в ней минералы и другие компоненты.
  8. Электропроводность оксида водорода в жидком состоянии зависит от того, сколько и каких солей в нем растворены. Дистиллированная вода, не содержащая никаких примесей, электрический ток не проводит.

Лед - это особое состояние воды. В структуре этого ее состояния молекулы связаны друг с другом водородными связями и формируют красивую кристаллическую решетку. Но она достаточно неустойчива и легко может расколоться, растаять, то есть деформироваться. Между молекулами сохраняется множество пустот, размеры которых превышают размеры самих частиц. Благодаря этому плотность льда меньше, чем жидкого оксида водорода.

Это имеет большое значение для рек, озер и прочих пресных водоемов. Ведь в зимний период вода в них не замерзает полностью, а лишь покрывается плотной коркой более легкого льда, всплывающего наверх. Если бы данное свойство не было характерно для твердого состояния оксида водорода, то водоемы промерзали бы насквозь. Жизнь под водой была бы невозможна.

Кроме того, твердое состояние воды имеет большое значение как источник огромного количества питьевых пресных запасов. Это ледники.

Особенным свойством воды можно назвать явление тройной точки. Это такое состояние, при котором лед, пар и жидкость могут существовать одновременно. Для этого требуются такие условия, как:

  • высокое давление - 610 Па;
  • температура 0,01 0 С.

Показатель прозрачности воды варьируется в зависимости от посторонних примесей. Жидкость может быть полностью прозрачной, опалесцентной, мутной. Поглощаются волны желтого и красного цветов, глубоко проникают лучи фиолетовые.

Химические свойства

Вода и ее свойства - важный инструмент в понимании многих процессов жизнедеятельности. Поэтому они изучены очень хорошо. Так, гидрохимию интересуют вода и ее химические свойства. Среди них можно назвать следующие:

  1. Жесткость. Это такое свойство, которое объясняется наличием солей кальция и магния, их ионов в растворе. Подразделяется на постоянную (соли названных металлов: хлоридов, сульфатов, сульфитов, нитратов), временную (гидрокарбонаты), которая устраняется кипячением. В России воду перед использованием смягчают химическим путем для лучшего качества.
  2. Минерализация. Свойство, основанное на дипольном моменте оксида водорода. Благодаря его наличию молекулы способны присоединять к себе множество других веществ, ионов и удерживать их. Так формируются ассоциаты, клатраты и прочие объединения.
  3. Окислительно-восстановительные свойства. Как универсальный растворитель, катализатор, ассоциат, вода способна взаимодействовать с множеством простых и сложных соединений. С одними она выступает в роли окислителя, с другими - наоборот. Как восстановитель реагирует с галогенами, солями, некоторыми менее активными металлами, с многими органическими веществами. Последние превращения изучает органическая химия. Вода и ее свойства, в частности, химические, показывают, насколько она универсальна и уникальна. Как окислитель она вступает в реакции с активными металлами, некоторыми бинарными солями, многими органическими соединениями, углеродом, метаном. Вообще химические реакции с участием данного вещества нуждаются в подборе определенных условий. Именно от них и будет зависеть исход реакции.
  4. Биохимические свойства. Вода является неотъемлемой частью всех биохимических процессов организма, являясь растворителем, катализатором и средой.
  5. Взаимодействие с газами с образованием клатратов. Обычная жидкая вода может поглощать даже неактивные химически газы и располагать их внутри полостей между молекулами внутренней структуры. Такие соединения принято называть клатратами.
  6. Со многими металлами оксид водорода формирует кристаллогидраты, в которые он включен в неизменном виде. Например, медный купорос (CuSO 4 *5H 2 O), а также обычные гидраты (NaOH*H 2 O и другие).
  7. Для воды характерны реакции соединения, при которых происходит образование новых классов веществ (кислот, щелочей, оснований). Они не являются окислительно-восстановительными.
  8. Электролиз. Под действием электрического тока молекула разлагается на составные газы - водород и кислород. Один из способов получения их в лаборатории и промышленности.

С точки зрения теории Льюиса вода - это слабая кислота и слабое основание одновременно (амфолит). То есть можно сказать о некоей амфотерности в химических свойствах.

Вода и ее полезные свойства для живых существ

Сложно переоценить то значение, которое имеет оксид водорода для всего живого. Ведь вода и есть сам источник жизни. Известно, что без нее человек не смог бы прожить и недели. Вода, ее свойства и значение просто колоссальны.

  1. Это универсальный, то есть способный растворять и органические, и неорганические соединения, растворитель, действующий в живых системах. Именно поэтому вода - источник и среда для протекания всех каталитических биохимических преобразований, с формированием сложных жизненно важных комплексных соединений.
  2. Способность образовывать водородные связи делает данное вещество универсальным в выдерживании температур без изменения агрегатного состояния. Если бы это было не так, то при малейшем снижении градусов она превращалась бы в лед внутри живых существ, вызывая гибель клеток.
  3. Для человека вода - источник всех основных бытовых благ и нужд: приготовление пищи, стирка, уборка, принятие ванны, купание и плавание и прочее.
  4. Промышленные заводы (химические, текстильные, машиностроительные, пищевые, нефтеперерабатывающие и другие) не сумели бы осуществлять свою работу без участия оксида водорода.
  5. Издревле считалось, что вода - это источник здоровья. Она применялась и применяется сегодня как лечебное вещество.
  6. Растения используют ее как основной источник питания, за счет чего они продуцируют кислород - газ, благодаря которому существует жизнь на нашей планете.

Можно назвать еще десятки причин того, почему вода - это самое широко распространенное, важное и необходимое вещество для всех живых и искусственно созданных человеком объектов. Мы привели только самые очевидные, главные.

Гидрологический цикл воды

Иными словами, это ее круговорот в природе. Очень важный процесс, позволяющий постоянно пополнять исчезающие запасы воды. Как он происходит?

Основных участников трое: подземные (или грунтовые) воды, поверхностные воды и Мировой океан. Важна также и атмосфера, конденсирующая и выдающая осадки. Также активными участниками процесса являются растения (в основном деревья), способные поглощать огромное количество воды в сутки.

Итак, процесс происходит следующим образом. Грунтовые воды заполняют подземные капилляры и стекаются к поверхности и Мировому океану. Затем поверхностные воды поглощаются растениями и транспирируются в окружающую среду. Также происходит испарение с огромных площадей океанов, морей, рек, озер и прочих водоемов. Попав в атмосферу, вода что делает? Конденсируется и проливается обратно в виде осадков (дождь, снег, град).

Если бы не происходили эти процессы, то запасы воды, особенно пресной, давно бы уже закончились. Именно поэтому охране и нормальному гидрологическому циклу уделяется людьми большое внимание.

Понятие о тяжелой воде

В природе оксид водорода существует в виде смеси изотопологов. Это связано с тем, что водород формирует три вида изотопа: протий 1 Н, дейтерий 2 Н, тритий 3 Н. Кислород, в свою очередь, также не отстает и образует три устойчивые формы: 16 О, 17 О, 18 О. Именно благодаря этому существует не просто обычная протиевая вода состава Н 2 О (1 Н и 16 О), но еще и дейтериевая, и тритиевая.

При этом устойчива по структуре и форме именно дейтериевая (2 Н), которая включается в состав практически всех природных вод, но в малом количестве. Именно ее называют тяжелой. Она несколько отличается от обычной или легкой по всем показателям.

Тяжелая вода и ее свойства характеризуются несколькими пунктами.

  1. Кристаллизуется при температуре 3,82 0 С.
  2. Кипение наблюдается при 101,42 0 С.
  3. Плотность составляет 1,1059 г/см 3 .
  4. Как растворитель в несколько раз хуже легкой воды.
  5. Имеет химическую формулу D 2 O.

При проведении опытов, показывающих влияние подобной воды на живые системы, было установлено, что жить в ней способны лишь некоторые виды бактерий. Для приспособления и акклиматизации колониям потребовалось время. Но, приспособившись, они полностью восстановили все жизненно важные функции (размножение, питание). Кроме того, стали очень устойчивы к воздействию радиоактивного излучения. Опыты на лягушках и рыбах положительного результата не дали.

Современные области применения дейтерия и образованной им тяжелой воды - атомная и ядерная энергетика. Получить в лабораторных условиях такую воду можно при помощи электролиза обычной - она образуется как побочный продукт. Сам дейтерий формируется при многократных перегонках водорода в специальных устройствах. Применение его основано на способности замедлять нейтронные синтезы и протонные реакции. Именно тяжелая вода и изотопы водорода - основа для создания ядерной и водородной бомбы.

Опыты на применении дейтериевой воды людьми в небольших количествах показали, что задерживается она недолго - полный вывод наблюдается через две недели. Употреблять ее в качестве источника влаги для жизни нельзя, однако техническое значение просто огромно.

Талая вода и ее применение

Свойства такой воды издревле были определены людьми как целебные. Давно было замечено, что при таянии снега животные стараются напиться водой из образовавшихся лужиц. Позже были тщательно исследованы ее структура и биологическое воздействие на организм человека.

Талая вода, ее признаки и свойства находятся посередине между обычной легкой и льдом. Изнутри она образована не просто молекулами, а набором кластеров, сформированных кристаллами и газом. То есть внутри пустот между структурными частями кристалла находятся водород и кислород. По общему виду строение талой воды сходно со строением льда - сохраняется структурность. Физические свойства такого оксида водорода незначительно меняются в сравнении с обычным. Однако биологическое воздействие на организм отличное.

При замораживании воды первой фракцией превращается в лед более тяжелая часть - это дейтериевые изотопы, соли и примеси. Поэтому эту сердцевину следует удалять. А вот остальная часть - чистая, структурированная и полезная вода. Каково воздействие на организм? Учеными Донецкого НИИ были названы следующие виды улучшений:

  1. Ускорение восстановительных процессов.
  2. Укрепление иммунитета.
  3. У детей после ингаляций такой водой происходит восстановление и излечение простудных заболеваний, проходит кашель, насморк и прочее.
  4. Улучшается дыхание, состояние гортани и слизистых оболочек.
  5. Общее самочувствие человека, активность повышаются.

Сегодня существует ряд сторонников лечения именно талой водой, которые пишут свои положительные отзывы. Однако есть ученые, в том числе медики, которые эти взгляды не поддерживают. Они считают, что вреда от такой воды не будет, но и пользы мало.

Энергетика

Почему свойства воды могут изменяться и восстанавливаться при переходе в разные агрегатные состояния? Ответ на этот вопрос следующий: у данного соединения существует своя информационная память, которая записывает все изменения и приводит к восстановлению структуры и свойств в нужное время. Биоэнергетическое поле, через которое проходит часть воды (та, что поступает из космоса), несет в себе мощный заряд энергии. Эту закономерность часто используют при лечении. Однако с медицинской точки зрения не каждая вода способна оказать благоприятный эффект, в том числе и информационный.

Структурированная вода - что это?

Это такая вода, которая имеет несколько иное строение молекул, расположение кристаллических решеток (такое, которое наблюдается у льда), но это все же жидкость (талая также относится к этому типу). В этом случае состав воды и ее свойства с научной точки зрения не отличаются от тех, что характерны для обычного оксида водорода. Поэтому структурированная вода не может иметь такого широкого лечебного эффекта, который ей приписывают эзотерики и сторонники нетрадиционной медицины.















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: сформировать представление о целостной картине мира на примере вещества воды, осуществив интеграцию знаний учащихся, полученных в курсах физики, химии и биологии.

Задачи урока:

  1. Образовательные: усвоение всеми учащимися стандартного минимума фактических сведений о строении и функциях воды на всех уровнях организации живого.
  2. Развивающие: совершенствование надпредметных умений сравнивать и анализировать, устанавливать причинно-следственные связи; переводить информацию в графический вид (таблицу), постановки и решения проблем; оперировать понятиями и связывать с ранее полученными знаниями в курсах ботаники, зоологии, анатомии; рассуждать по аналогии, развивать память, произвольное внимание.
  3. Воспитательные: развивать интерес к окружающим явлениям, умение работать в парах и в коллективе, вести диалог, слушать товарищей, оценивать себя и других, формировать культуру речи.

Планируемые результаты: умение характеризовать функции вещества на основе строения и свойств; обобщение полученных знаний о функциях воды на разных уровнях организации живого в форме таблицы.

Тип урока: изучение нового материала и первичное закрепление знаний.

Методы обучения : беседа, рассказ учителя, показ иллюстраций, презентации, индивидуальная работа с текстом, контроль знаний.

Формы организации учебной деятельности : работа в парах (составление обобщающей таблицы), индивидуальная, фронтальная, эксперимент.

Оборудование: фотографии, компьютер, мультимедийный проектор, на столах учащихся раздаточный материал для урока, демонстрационные опыты.

Ход урока

Организационный момент (2 мин.): поздороваться, представиться детям.

Введение (5 мин.):

Вода – самое распространенное и удивительное на Земле вещество (например, расширяется при охлаждении, замерзает уже при 0 0 С, кипит при 100 0 С, выполняет множество функций и даже может хранить информацию). Ею заполнены океаны, моря, озера и реки; пары воды входят и в состав воздуха. Вода содержится в клетках всех живых организмов (животных, растений, грибов, бактерий) в значительных количествах: организме млекопитающих массовая доля воды составляет примерно 70%, а в огурцах и арбузах ее около 90%, в костях человека – 45 %, а в мозге до 90 %.

Цели урока: почему воды больше всего в составе живых организмов? Почему вода покрывает большую часть суши? Как вода сохраняет информацию? На эти вопросы нам с вами предстоит ответить в конце урока.

Как будем работать: беседуем, я рассказываю, показываю иллюстрации и схемы (Презентация), в процессе объяснения заполняем пропущенные слова в распечатках (Приложение 1). В конце урока я проконтролирую, как вы меня поняли. Мы заполним обобщающую таблицу, а я оценю ваши старания.

Демонстрационные опыты:

Опыт № 1:

Цель опыта: доказать растворимость веществ в воде.

Ход опыта: насыпать в колбу с водой соль или сахар. Размешать.

Результат: соль (сахар) полностью растворились.

Вывод: вода – хороший растворитель.

Опыт № 2

Цель опыта: доказать способность воды передвигаться по сосудам стебля за счет корневого давления и присасывающей силы испарения.

Ход опыта: поставить на сутки укоренившийся побег бальзамина в раствор чернил.

Результат: стебель и некоторые листья бальзамина окрасились в синий цвет.

Вывод: вода передвигается по сосудам стебля за счет сил сцепления между молекулами при помощи корневого давления и присасывающей силы испарения..

Опыт № 3:

Цель опыта: доказать способность воды двигаться в область меньшей концентрации растворителя.

Ход опыта: в две чашки Петри поместить одинаковые кусочки картофеля. В одну чашку налить воду, в другую – концентрированный раствор соли.

Результат: картофель в простой воде набух, а в концентрированном растворе соли сморщился.

Вывод: молекулы воды двигаются в область меньшей концентрации растворителя.

Объяснение нового материала (20 мин.):

Проводится в форме беседы. Изучаем вещества по определенному плану (пишу на доске): строение – свойства – функции на системных уровнях организации живого.

Строение молекулы и межмолекулярные связи

Свойства

Молекула воды имеет угловую форму: атомы водорода по отношению к кислороду образуют угол, равный примерно 105 0. Поэтому молекула воды – диполь: та часть молекулы, где находится водород, заряжена положительно, а часть, где находится кислород – отрицательно.

Вода – хороший растворитель. Растворы образуются путем взаимодействия растворенного вещества с частицами растворителя. Процесс растворения твердых веществ в жидкостях можно представить так: под влиянием растворителя от поверхности твердого вещества постепенно отрываются отдельные ионы или молекулы и равномерно распределяются по всему объему растворителя.
Опыты № 1 и № 3

Вода – реагент в реакциях гидролиза (разрушение сложных химических веществ под действием воды до более простых с новыми свойствами) и ряде других реакций
ферменты
крахмал + вода → глюкоза

Водородные связи между молекулами воды

Растворы ряда веществ образуются за счет водородных связей между веществом и молекулами растворителя (сахара, газы)

Водородных связей много, поэтому необходимо много энергии для их разрыва.

Вода обладает хорошей теплопроводностью и большой теплоемкостью . Вода медленно нагревается и медленно остывает.

Водородные связи слабые

Молекулы воды подвижны относительно друг друга

Силы межмолекулярного сцепления образуют пространства между молекулами

Вода практически не сжимается

Образование водородных связей между молекулами воды и других веществ

Вода характеризуется оптимальным для биологических систем значением силы поверхностного натяжения , текучесть воды Опыт № 2

Вода замерзает при 0 0С, при замерзании образуется много водородных связей, возникают пространства между молекулами
Схема строения льда: пространства
между молекулами

Максимальная плотность воды при 4 С° равна 1 г/см3, лед имеет меньшую плотность, и всплывает на ее поверхность.


Функции на системных уровнях организации живого

Вода обеспечивает диффузию - пассивный транспорт веществ в клетку и из нее в область меньшей концентрации (осмос) и пиноцитоз , а также транспорт веществ из клетки.
Когда вещество переходит в раствор, его молекулы или ионы могут двигаться более свободно, и, следовательно, реакционная способность вещества возрастает. Образовавшиеся в результате распада веществ ионы быстро вступают в химические реакции, поэтому вода – основная среда всех биохимических процессов в организме (реакциях обмена веществ).

  1. Обеспечивает подготовительный этап окисления полимеров: гидролиз крахмала до глюкозы, белков до аминокислот.
  2. Вода – источник кислорода, выделяемого при фотосинтезе, и водорода, который используется для восстановления продуктов ассимиляции углекислого газа.
  3. Эндогенная вода, образующаяся при окислении органических веществ.

Гидрофильные вещества проникают внутрь клетки.
Гидрофобные вещества (белки, липиды) могут образовывать с водой поверхности раздела, на которых протекают многие химические реакции. Из гидрофобных веществ состоит клеточная мембрана, которая сохраняет целостность клетки, но избирательно пропускает вещества; жироподобными веществами из копчиковой железы птицы смазывают перья.
Растворяя газы, вода обеспечивает возможность дыхания и фотосинтеза организмов водных экосистем. А сероводород, образующийся при разложении остатков организмов, делает водоем безжизненным.

Вода – терморегулятор.
1) Вода обеспечивает равномерное распределение тепла по всему организму. При изменении температуры окружающей среды, внутри клетки температура оказывается неизменной или ее колебания оказываются значительно меньшими, чем в окружающей среде, поэтому вода обеспечивает сохранение структуры клетки (чем активнее клетка, тем больше в ней воды).
2) Охлаждение организма (потоиспарение, испарение воды растениями) происходит при участии воды.
3) Вода – благоприятная среда обитания для многих живых организмов (непосредственно водная и полости, заполненные водой, в почве).
4) Водные бассейны регулируют температуру на нашей планете. Большая теплоемкость определяет климатическую роль океанов. Поэтому морской климат мягче континентального, погода подвержена меньшим колебаниям температуры

«Смазочный материал» в суставах, плевральной полости и околосердечной сумке.

  1. Создается тургорное давление, которое определяет объем и упругость клеток и тканей.
  2. Гидростатический скелет поддерживает форму у круглых червей, медуз и других организмов.
  3. Околоплодный пузырь с жидкостью поддерживает и защищает плод млекопитающих.

Капиллярный кровоток, движение веществ в капиллярах почвы, восходящий и нисходящий ток растворов в растениях.
Поверхностное натяжение воды образует пленку – часть среды обитания некоторых животных (клоп-водомерка, личинки комаров).

Лед защищает водоемы от промерзания.
Обитатели водных экосистем остаются активными в зимний период.

Вода может хранить информацию (Приложение 2).

Закрепление (13 мин.):

Биологические задачи:

  1. Показать синюю или зеленую хризантему. Как создают такие растения? Являются ли они результатом селекционной работы?
  2. Почему кожа на пальцах при длительном купании сморщивается?
  3. Почему сморщивается яблоко, лежащее в тепле?

Разделить класс на три группы (по рядам). Первая группа выписывает в тетрадь функции воды на уровне живой клетки. Вторая группа – на уровне живого организма. Третья группа – на уровне экосистем и биосферы. В конце работы оценить себя по количеству найденных функций. Работа ведется по парам.

Функции воды

В живой клетке В живом организме В экосистемах и биосфере

1. Транспорт веществ в клетке.

1. Охлаждение организмов.

1. Дыхание и фотосинтез водных организмов.

2. Основная среда всех биохимических процессов.

2. «Смазочный материал» в суставе, плевральной полости, околосердечной сумке, глазном яблоке.

2. Регуляция температуры на планете.

3. Участвует в ряде химических реакций.

3. Гидростатический скелет.

3. Благоприятная среда обитания для живых организмов.

4. Сохранение структуры клетки.

4. Защита плода млекопитающих.

4. Защита водоемов от промерзания.

5. Тургорное давление.

5. Капиллярный кровоток, нисходящий и восходящий ток в растениях.

5. Часть среды обитания животных.

6. Подъем почвенных растворов по капиллярам почвы.

Подведение итогов урока, оценка работы (2 мин.)

Вода может находиться в трех агрегатных состояниях -- газообразном, жидком и твердом. В каждом из этих состояний структура воды неодинакова. В зависимости от состава находящихся в ней веществ вода приобретает новые свойства. Твердое состояние воды также бывает, по крайней мере, двух типов: кристаллическое -- лед и некристаллическое -- стеклообразное, аморфное (состояние витрификации). При мгновенном замораживании с помощью, например, жидкого азота молекулы не успевают построиться в кристаллическую решетку, и вода приобретает твердое стеклообразное состояние. Именно это свойство воды позволяет замораживать без повреждения живые организмы, такие, как одноклеточные водоросли, листочки мха Мпіuт, состоящие из двух слоев клеток. Замораживание же с образованием кристаллической воды приводит к повреждению клеток.

Для кристаллического состояния воды характерно большое разнообразие форм. Давно замечено, что кристаллические структуры воды напоминают радиолярии, листья папоротника, цисты. По этому поводу А. А. Любищев высказал предположение, что законы кристаллизации в чем-то сходны с законами образования живых структур.

Физические свойства воды. Вода -- самое аномальное вещество, хотя принята за эталон меры плотности и объема для других веществ.

Плотность. Все вещества увеличивают объём при нагревании, уменьшая при этом плотность. Однако при давлении 0,1013 МПа (1 атм.) у воды в интервале от 0 до 4 0 С при увеличении температуры объём уменьшается и максимальная плотность наблюдается (при этой температуре 1 см 3 воды имеем массу 1г). При замерзании объем воды резко возрастает на 11%, а при таянии льда при 0°С так же резко уменьшается. С увеличением давления температура замерзания воды понижается через каждые 13,17 МПа (130 атм.) на 1 0 С. Поэтому на больших глубинах при минусовых температурах вода в океане не замерзает. С увеличением температуры до 100 0 С плотность жидкой воды понижается на 4% (при 4°С плотность ее равна 1).

Точки кипения и замерзания (плавления). При давлении 0,1013 МПа (1 атм.) точки замерзания и кипения воды находятся при 0°С и 100°С, что резко отличает Н20 от соединений водорода с элементами VI группы периодической системы Менделеева. В ряду Н2Те, H2Se, H2S и т.д. с увеличением относительной молекулярной массы точки кипения и замерзания этих веществ повышаются. При соблюдении этого правила вода должна была бы иметь точки замерзания между -- 90 и -- 120°С, а кипения -- между 75 и 100 °С. Температура кипения воды возрастает с увеличением давления, а температура замерзания (плавления) -- падает (прил.1).

Теплота плавления. Скрытая теплота плавления льда очень высока -- около 335 Дж/г (для железа -- 25, для серы -- 40). Это свойство выражается, например, в том, что лед при нормальном давлении может иметь температуру от -- 1 до -- 7°С. Скрытая теплота парообразования воды (2,3 кДж/г) почти в 7 раз выше скрытой теплоты плавления.

Теплоемкость. Величина теплоемкости воды (т.е. количество теплоты, необходимое для повышения температуры на 1 °С) в 5 --30 раз выше, чем у других веществ. Лишь водород и аммиак обладают большей теплоемкостью. Кроме того, лишь у жидкой воды и ртути удельная теплоемкость с повышением температуры от 0 до 35°С падает (затем начинает возрастать). Удельная теплоемкость воды при 16°С условно принята за единицу, служа эталоном для других веществ. Поскольку теплоемкость песка в 5 раз меньше, чем у жидкой воды, то при одинаковом нагреве солнцем вода в водоеме нагревается в 5 раз слабее, чем песок на берегу, но во столько же раз дольше сохраняет теплоту. Высокая теплоемкость воды защищает растения от резкого повышения температуры при высокой температуре воздуха, а высокая теплота парообразования участвует в терморегуляции у растений.

Высокие температуры плавления и кипения, высокая теплоемкость свидетельствуют о сильном притяжении между соседними молекулами, вследствие чего жидкая вода обладает большим внутренним сцеплением.

Вода как растворитель. Полярность молекулы воды обусловливает ее свойство растворять вещества лучше, чем другие жидкости. Растворение кристаллов неорганических солей осуществляется благодаря гидратации входящих в их состав ионов. Хорошо растворяются в воде органические вещества, с карбоксильными, гидроксильными. Карбонильными и с другими группами, которых вода образует водородные связи. (прил. 1)

Вода в растении находится как в свободном, так и в связанном состоянии (прил.2). Свободная вода - подвижна, она имеет практически все физико-химические свойства чистой воды, хорошо проникает через клеточные мембраны. Существуют специальные мембранные белки, образующие внутри мембраны каналы, проницаемые для воды (аквапорины). Свободная вода вступает в различные биохимические реакции, испаряется в процессе транспирации, замерзает при низких температурах.

Связанная вода - имеет измененные физические свойства главным образом в результате взаимодействия с неводными компонентами. Условно принимают под связанной водой ту, которая не замерзает при понижении температуры до - 10°С.

Связанная вода в растениях бывает:

1) Осмотически - связанная

2) Коллоидно-связанная

3) Капиллярно-связанная

Осмотически-связанная вода - связана с ионами или низкомолекулярными веществами. Вода гидратирует растворенные вещества - ионы, молекулы. Вода электростатически связывается и образует мономолекулярный слой первичной гидратации. Вакуолярный сок содержит сахара, органические кислоты и их соли, неорганические катионы и анионы. Эти вещества удерживают воду осмотически.

Коллоидно-связанная вода - включает воду, которая находится внутри коллоидной системы и воду, которая находится на поверхности коллоидов и между ними, а также иммобилизованную воду. Иммобилизация представляет собой механический захват воды при конформационных изменениях макромолекул или их комплексов, при этом вода оказывается заключенной в замкнутом пространстве макромолекулы. Значительное количество коллоидно-связанной воды находится на поверхности фибрилл клеточной стенки, а также в биоколлоидах цитоплазмы и матриксе мембранных структур клетки.

Воду, гидратирующую коллоидные частицы (прежде всего белки), называют коллоидно-связанной, а растворенные вещества (минеральные соли, сахара, органические кислоты и др.) - осмотически-связанной. Некоторые исследователи считают, что вся вода в клетке в той или иной степени связана. Физиологи условно понимают под связанной водой ту, которая не замерзает при понижении температуры до-10 °С. Важно отметить, что всякое связывание молекул воды (добавление растворенных веществ, гидрофобные взаимодействия и др.) уменьшает их энергию. Именно это лежит в основе снижения водного потенциала клетки по сравнению с чистой водой.

Содержание воды в различных органах растений колеблется в довольно широких пределах. Оно изменяется в зависимости от условий внешней среды, возраста и вида растений. Так, содержание воды в листьях салата составляет 93-95%, кукурузы -- 75-77%. Количество воды неодинаково в разных органах растений: в листьях подсолнечника воды содержится 80-83%, в стеблях - 87-89%, в корнях -- 73-75%. Содержание воды, равное 6-11%, характерно главным образом для воздушно-сухих семян, в которых процессы жизнедеятельности заторможены. Вода содержится в живых клетках, в мертвых элементах ксилемы и в межклетниках. В межклетниках вода находится в парообразном состоянии. Основными испаряющими органами растения являются листья. В связи с этим естественно, что наибольшее количество воды заполняет межклетники листьев. В жидком состоянии вода находится в различных частях клетки: клеточной оболочке, вакуоли, протоплазме. Вакуоли -- наиболее богатая водой часть клетки, где содержание ее достигает 98%. При наибольшей оводненности содержание воды в протоплазме составляет 95%. Наименьшее содержание воды характерно для клеточных оболочек. Количественное определение содержания воды в клеточных оболочках затруднено; по-видимому, оно колеблется от 30 до 50%.

Формы воды в разных частях растительной клетки также различны. В вакуолярном клеточном соке преобладает вода, удерживаемая сравнительно низкомолекулярными соединениями (осмотически-связанная) и свободная вода. В оболочке растительной клетки вода связана главным образом высокополимерными соединениями (целлюлозой, гемицеллюлозой, пектиновыми веществами), т. е. коллоидно-связанная вода. В самой цитоплазме имеется вода свободная, коллоидно- и осмотически-связанная. Вода, находящаяся на расстоянии до 1 нм от поверхности белковой молекулы, связана прочно и не имеет правильной гексагональной структуры (коллоидно-связанная вода). Кроме того, в протоплазме имеется определенное количество ионов, а, следовательно, часть воды осмотически связана.

Физиологическое значение свободной и связанной воды различно. Большинство исследователей полагает, что интенсивность физиологических процессов, в том числе и темпов роста, зависит в первую очередь от содержания свободной воды. Имеется прямая корреляция между содержанием связанной воды и устойчивостью растений против неблагоприятных внешних условий. Указанные физиологические корреляции наблюдаются не всегда.

Кандидат химических наук Александр Смирнов, профессор МИРЭА.

Воде дана таинственная власть
Быть соком жизни на Земле.

Леонардо да Винчи

Рис. 1. Структура воды при температуре 20оС, размер по горизонтали - 400 мкм. Белые пятна - это эмулоны.

Рис. 2. Структура водных растворов при 20оС: А - дистиллированная вода; Б - дегазированная минеральная вода боржоми; В - спиртовая настойка 70%.

Рис. 3. Эмулоны в бидистиллированной воде при температурах 4оС (А), 20оС (Б), 80оС (В). Размеры снимков 1,5 × 1,5 мм.

Рис. 4. Изменение амплитуды сигналов акустической эмиссии и температуры воды в процессе таяния льда.

Рис. 5. Относительное изменение температуры при нагревании воды.

Подробности для любознательных. Схема опыта. За короткое время из стаканчика с положительным электродом (анодом) через «мостик» утекло 0,5 грамма воды.

«Парящий водяной мостик» длиной около 3 сантиметров.

Наэлектризованная стеклянная палочка искажает форму «мостика» и разбивает его на струйки.

Так могут выглядеть эмулоны, образующие нитевидную структуру «мостика».

Воду принято рассматривать и как практически нейтральный растворитель, в котором протекают биохимические реакции, и как субстанцию, разносящую по телу живых организмов различные вещества. Вместе с тем вода - непременный участник всех физико-химических процессов и, в силу своей огромной важности, самое изучаемое вещество. Изучение свойств воды не раз приводило к неожиданным результатам. Казалось бы, какие неожиданности может таить в себе несложная реакция окисления водорода 2H 2 + O 2 → 2H 2 O? Но работы академика Н. Н. Семёнова показали, что реакция эта - разветвлённая, цепная. Было это более семидесяти лет назад, и про цепную реакцию деления урана ещё не знали. Вода в стакане, реке или озере не просто огромные количества отдельных молекул, а их объединения, надмолекулярные структуры - кластеры. Для описания структуры воды предложен ряд моделей, которые более или менее правильно объясняют только некоторые её свойства, а в отношении других противоречат эксперименту.

теоретически кластеры рассчитывают обычно только для нескольких сотен молекул или для слоёв вблизи межфазной границы. Однако ряд экспериментальных фактов свидетельствует, что в воде могут существовать гигантские, по молекулярным масштабам, структуры (работы члена-корреспондента РАН Е. Е. Фесенко).

В тщательно очищенной дважды дистиллированной воде и некоторых растворах нам удалось методом акустической эмиссии обнаружить и с помощью лазерной интерферометрии визуализировать структурные образования, состоящие из пяти фракций размерами от 1 до 100 мкм. Эксперименты позволили установить, что каждый раствор имеет свою, присущую только ему структуру (рис. 1, 2).

Надмолекулярные комплексы образованы сотнями тысяч молекул воды, сгруппированных вокруг ионов водорода и гидроксила в виде ионных пар. Для этих надмолекулярных комплексов мы предлагаем название «эмулоны», чтобы подчеркнуть их сходство с частицами, образующими эмульсию. Комплексы состоят из отдельных фракций размерами от 1 до 100 мкм, причём фракций, имеющих размеры 30, 70 и 100 мкм, значительно больше остальных.

Содержание отдельных фракций эмулонов зависит от концентрации ионов водорода, температуры, концентрации раствора и предыстории образца (рис. 3). В бидистиллированной воде при 4 о С комплексы плотно упакованы и образуют текстуру, напоминающую паркет. Как известно, вода при этой температуре имеет максимальную плотность. При повышении температуры до 20 о С в структуре воды происходят существенные изменения: количество свободных эмулонов становится наибольшим. При дальнейшем нагреве они постепенно разрушаются, число их уменьшается, и этот процесс в основном заканчивается при 75 о С, когда скорость звука в воде достигает максимума.

За счёт дальнодействия электростатических сил эмулоны в воде образуют довольно стабильную сверхрешётку, которая, однако, чутко реагирует на электромагнитные, акустические, тепловые и другие внешние воздействия.

Обнаруженные надмолекулярные комплексы непротиворечиво включают в себя все ранее полученные сведения об организации воды в нанообъёмах и позволяют объяснить многие экспериментальные факты, которые не имели стройного, логичного обоснования. К ним относится, например, образование «парящего водяного мостика», описанного в ряде работ.

Суть эксперимента заключается в том, что если поставить рядом два небольших химических стакана с водой, опустить в них платиновые электроды под постоянным напряжением 15-30 кВ, то между сосудами образуется водяная перемычка диаметром 3 мм и длиной до 25 мм. «Мостик» парит длительное время, имеет слоистую структуру, и по нему происходит перенос воды от анода к катоду. Этот феномен и все его свойства - следствие наличия в воде эмулонов, которые, по-видимому, обладают дипольным моментом. Можно предсказать и ещё одно свойство явления: при температуре воды выше 75 о С «мостик» не возникнет.

Легко объясняются и аномальные свойства талой воды. Как отмечалось в литературе, многие свойства талой воды - плотность, вязкость, электропроводность, показатель преломления, растворяющая способность и другие - отличаются от равновесных параметров. Сведéние этих эффектов к удалению из воды дейтерия в результате фазового перехода (температура плавления «тяжёлого льда» D 2 O 3,82 о С) несостоятельно, поскольку концентрация дейтерия крайне незначительна - один атом дейтерия на 5-7 тыс. атомов водорода.

Изучение плавления льда методом акустической эмиссии позволило впервые установить, что после полного расплавления льда талая вода, находящаяся в метастабильном состоянии, становится источником акустических импульсов, что служит экспериментальным подтверждением образования в воде надмолекулярных комплексов (рис. 4).

Эксперименты показывают, что талая вода на протяжении почти 17 часов может находиться в активном метастабильном состоянии (после плавления льда его микрокристаллики сохраняются только доли секунды и совсем не определяют свойства талой воды). Это загадочное явление объясняется тем, что при разрушении гексагональной кристаллической решётки льда резко меняется структура вещества. Кристаллы льда разрушаются быстрее, чем перестраивается в устойчивое равновесное состояние образовавшаяся из него вода.

Уникальность фазового перехода лёд↔вода заключается в том, что в талой воде концентрация ионов водорода H + и гидроксила OH – непродолжительное время сохраняется неравновесной, какой она была во льду, то есть в тысячу раз меньшей, чем в обычной воде. Через некоторое время концентрация ионов H + и OH – в воде принимает своё равновесное значение. Поскольку ионы водорода и гидроксила играют решающую роль в формировании надмолекулярных комплексов воды (эмулонов), вода на некоторое время остаётся в метастабильном состоянии. Реакция её диссоциации H 2 O → H + + OH – требует значительной затраты энергии и протекает очень медленно. Константа скорости этой реакции составляет всего 2,5∙10 –5 c –1 при 20 о С. Поэтому время возвращения талой воды в равновесное состояние теоретически должно составлять 10-17 часов, что и наблюдается на практике. Исследования динамики изменения концентрации ионов водорода в талой воде во времени подтверждают это. Необычные свойства талой воды служат причиной разговоров о «памяти» воды. Но под «памятью» воды следует понимать зависимость её свойств от предыстории и ничего больше. Можно разными способами - замораживанием, нагреванием, кипячением, обработкой ультразвуком, воздействием различных полей и др. - перевести воду в метастабильное состояние, но оно будет неустойчивым, недолго сохраняющим свои свойства. Оптическим методом мы обнаружили в талой воде присутствие лишь одной фракции надмолекулярных образований с размерами 1-3 мкм. Возможно, что пониженная вязкость и более редкая пространственная сетка из эмулонов в талой воде увеличивают растворяющую способность и скорость диффузии.

Реальность существования эмулонов подтверждает классический метод термического анализа (рис. 5). На графике наблюдаются чётко выраженные пики, свидетельствующие о структурных перестройках в воде. Наиболее значимые соответствуют 36 о C - температуре минимальной теплоёмкости, 63 о C - температуре минимальной сжимаемости, и особенно характерен пик при 75 о C - температуре максимальной скорости звука в воде. Их можно трактовать как своеобразные фазовые переходы, связанные с разрушением эмулонов. Это позволяет сделать вывод: жидкая вода - очень своеобразная дисперсная система, включающая как минимум пять структурных образований с различными свойствами. Каждая структура существует в определённом, характерном для неё температурном интервале. Превышение температуры над пороговым уровнем, критичным для данной структуры, приводит к её распаду.

Литература

Зацепина Г. Л. Физические свойства и структура воды. - М.: Изд-во Московского университета. - 1998. - 185 с.

Кузнецов Д. М., Гапонов В. Л., Смирнов А. Н. О возможности исследования кинетики фазовых переходов в жидкой среде методом акустической эмиссии // Инженерная физика, 2008, № 1, с. 16-20.

Кузнецов Д. М., Смирнов А. Н., Сыроешкин А. В. Акустическая эмиссия при фазовых превращениях в водной среде // Российский химический журнал - М.: Рос. хим. об-во им. Д. И. Менделеева, 2008, т. 52, № 1, с. 114-121.

Смирнов А. Н. Структура воды: новые экспериментальные данные. // Наука и технологии в промышленности, 2010, № 4, с. 41-45.

Смирнов А. Н. Акустическая эмиссия при протекании химической реакции и физико-химических процессов // Российский химический журнал. - М.: Рос. хим. об-во им. Д. И. Менделеева, 2001, т. 45, с. 29-34.

Смирнов А. Н., Сыроешкин А. В. Супранадмолекулярные комплексы воды // Российский химический журнал. - М.: Рос. хим. об-во им. Д. И. Менделеева, 2004, т. 48, № 2, с. 125-135.

Подробности для любознательных

Как возникает «мостик»

Образование «водяного мостика» описано в работах нидерландского физика Элмара Фукса с коллегами.

В две стоящие рядом небольшие ёмкости с водой погружают платиновые электроды и подают на них постоянное напряжение 15-20 кВ. На фотографиях из отчётливо видно, что вначале в анодном стакане, а затем и в катодном на поверхности воды возникают возвышения, которые сливаются, образуя между ёмкостями водяную перемычку круглого сечения диаметром 2-4 мм. После этого стаканы можно отодвинуть один от другого на 20-25 мм. Перемычка существует довольно долго, образуя «парящий водяной мостик». Вдоль «мостика» перетекает вода. Концы «мостика» разноимённо заряжены, поэтому вода в ёмкостях приобретает различные значения рН: 9 и 4. «Мостик» состоит из тонких струек; при поднесении к нему заряженной стеклянной палочки он расщепляется на несколько рукавов. Высокая техника эксперимента позволила зарегистрировать движение шаровидных образований по поверхности «водяного мостика» .

Пептиды, или короткие белки, содержатся во многих продуктах питания — мясе, рыбе, некоторых растениях. Когда мы съедаем кусок мяса, белок расщепляется в процессе пищеварения на короткие пептиды; они всасываются в желудок, тонкий кишечник, попадают в кровь, клетку, затем в ДНК и регулируют активность генов.

Перечисленные препараты желательно периодически применять всем людям после 40 лет для профилактики 1-2 раза в год, после 50 лет — 2-3 раза в год. Остальные препараты — по необходимости.

Как принимать пептиды

Поскольку восстановление функциональной способности клеток происходит постепенно и зависит от уровня существующего их поражения, эффект может наступить как через 1-2 недели после начала приема пептидов, так и через 1-2 месяца. Рекомендуется проведение курса в течение 1-3 месяцев. Важно учитывать, что трехмесячный прием натуральных пептидных биорегуляторов имеет пролонгированное действие, т.е. работает в организме еще порядка 2-3-х месяцев. Полученный эффект удерживается в течение полугода, а каждый следующий курс приема обладает эффектом потенцирования, т.е. эффектом усиления уже полученного.

Поскольку каждый пептидный биорегулятор имеет направленность действия на определенный орган и не влияет никак на другие органы и ткани, одновременный прием препаратов разного действия не только не противопоказан, но зачастую рекомендован (до 6-7 препаратов одновременно).
Пептиды совместимы с любыми лекарственными препаратами и биологическими добавками. На фоне приема пептидов дозы одновременно принимаемых лекарственных препаратов целесообразно постепенно снижать, что положительным образом скажется на организме больного.

Короткие регуляторные пептиды не подвергаются трансформации в желудочно-кишечном тракте, поэтому они могут спокойно, легко и просто применяться в капсулированном виде практически всеми желающими.

Пептиды в ЖКТ распадаются до ди- и три-пептидов. Дальнейший распад до аминокислот происходит в кишечнике. Это означает, что пептиды можно принимать даже без капсулы. Это очень важно, когда человек по каким-то причинам не может глотать капсулы. Это же касается и сильно ослабленных людей или детей, когда дозировку необходимо уменьшить.

Пептидные биорегуляторы можно принимать как в профилактических, так и в терапевтических целях.

  • Для профилактики нарушения функций различных органов и систем обычно рекомендуется по 2 капсулы 1 раз в день утром натощак в течение 30 дней, 2 раза в год.
  • В лечебных целях, для коррекции нарушения функций различных органов и систем с целью повышения эффективности комплексного лечения заболеваний рекомендуется по 2 капсулы 2-3 раза в день в течение 30 дней.
  • Пептидные биорегуляторы представлены в капсулированном виде (натуральные пептиды Цитомаксы и синтезированнные пептиды Цитогены) и в жидком виде.

    Эффективность натуральных (ПК) в 2-2,5 раза ниже, чем капсулированных. Поэтому их прием в лечебных целях должен быть более продолжительным (до полугода). Жидкие пептидные комплексы наносятся на внутреннюю поверхность предплечья в проекции хода вен или на запястье и растираются до полного впитывания. Через 7-15 минут происходит связывание пептидов с дендритными клетками, которые осуществляют их дальнейший транспорт до лимфоузлов, где пептиды делают «пересадку» и отправляются с током крови к нужным органам и тканям. Хотя пептиды — это белковые вещества, их молекулярная масса гораздо меньше, чем у белков, поэтому они легко проникают через кожу. Еще больше улучшает проникновение пептидных препаратов их липофилизация, то есть соединение с жировой основой, именно поэтому практически все пептидные комплексы наружного применения имеют в своем составе жирные кислоты.

    Не такдавно появилась первая в мировой практике серия пептидных препаратов для сублингвального применения

    Принципиально новый способ применения и наличие в составе каждого из препаратов целого ряда пептидов обеспечивают им максимально быстрое и эффективное действие. Данный препарат, попадая в подъязычное пространство с густой сетью капилляров, способен проникать прямо в кровоток, минуя всасывание через слизистую пищеварительного тракта и метаболическую первичную дезактивацию печени. С учетом непосредственного попадания в системный кровоток, скорость наступления эффекта в несколько раз превышает скорость при приеме препарата перорально.

    Линия Revilab SL — это комплексные синтезированные препараты, имеющие в своем составе 3-4 компонента очень коротких цепочек (по 2-3 аминокислоты). По концентрации пептидов — это среднее между капсулированными пептидами и ПК в растворе. По быстроте действия — занимает лидирующую позицию, т.к. всасывается и попадает к цели очень быстро.
    Данную линию пептидов имеет смысл вводить в курс на начальном этапе, а затем переходить на натуральные пептиды.

    Еще одна инновационная серия — линия мультикомпонентных пептидных препаратов. Линия включает в себя 9 препаратов, каждый из которых содержит целый ряд коротких пептидов, а также антиоксиданты и строительный материал для клеток. Идеальный вариант для тех, кто не любит принимать много препаратов, а предпочитает получить все в одной капсуле.

    Действие данных биорегуляторов нового поколения направлено на замедление процессов старения, поддержание нормального уровня обменных процессов, профилактику и коррекцию различных состояний; реабилитацию после тяжелых заболеваний, травм и операций.

    Пептиды в косметологии

    Пептиды можно включать не только в лекарства, но и в другие продукты. Например, российскими учеными разработана великолепная клеточная косметика с натуральными и синтезированными пептидами, которая оказывает воздействие на глубокие слои кожи.

    Внешнее старение кожи зависит от многих факторов: образа жизни, стрессов, солнечного света, механических раздражителей, климатических колебаний, увлечений диетами и т.д. С возрастом кожа обезвоживается, теряет эластичность, становится шероховатой, на ней появляется сеть морщин и глубоких бороздок. Всем нам известно, что процесс естественного старения закономерен и необратим. Противостоять ему невозможно, но его можно замедлить благодаря революционным ингредиентам косметологии — низкомолекулярным пептидам.

    Уникальность пептидов состоит в том, что они свободно проходят через роговой слой в дерму до уровня живых клеток и капилляров. Восстановление кожи идет глубоко изнутри и, как результат, — кожа долгое время сохраняет свою свежесть. К пептидной косметике не происходит привыкания — даже если перестать ею пользоваться, кожа просто физиологически будет стареть.

    Косметические гиганты создают все новые и новые «чудодейственные» средства. Мы доверчиво покупаем, используем, но чуда не происходит. Мы слепо верим надписям на банках, не подозревая, что зачастую это всего лишь маркетинговый прием.

    Например, большинство косметических компаний вовсю производят и рекламируют кремы от морщин с коллагеном в качестве основного ингредиента. Между тем, ученые пришли к выводу, что молекулы коллагена настолько велики, что просто не могут проникнуть в кожу. Они оседают на поверхности эпидермиса, а потом смываются водой. То есть, покупая кремы с коллагеном, мы буквально выкидываем деньги в трубу.

    В качестве еще одного популярного активного ингредиента антиэйдж-косметики используется ресвератрол. Он действительно является мощным антиоксидантом и иммуностимулятором, но только в виде микроинъекций. Если втирать его в кожу, чуда не произойдет. Опытным путем было доказано, что на выработку коллагена кремы с ресвератролом практически не влияют.

    НПЦРИЗ в соавторстве с учеными Санкт-Петербургского института биорегуляции и геронтологии разработал уникальную пептидную серию клеточной косметики (на основе натуральных пептидов) и серию (на основе синтезированных пептидов).

    В их основу заложена группа пептидных комплексов с различными точками приложения, оказывающих мощное и видимое омолаживающее действие на кожу. В результате применения происходит стимуляция регенерации клеток кожи, кровообращения и микроциркуляции, а также синтеза коллаген-эластинового каркаса кожи. Все это проявляется в лифтинге, а также улучшении текстуры, цвета и влажности кожи.

    В настоящее время разработано 16 видов кремов, в т.ч. омолаживающие и для проблемной кожи (с пептидами тимуса), для лица против морщин и для тела против растяжек и рубцов (с пептидами костно-хрящевой ткани), против сосудистых звездочек (с пептидами сосудов), антицеллюлитный (с пептидами печени), для век от отеков и темных кругов (с пептидами поджелудочной железы, сосудов, костно-хрящевой ткани и тимуса), против варикоза (с пептидами сосудов и костно-хрящевой ткани) и др. Все кремы, помимо пептидных комплексов, содержат и другие мощные активные ингредиенты. Важно, что кремы не содержат химических компонентов (консервантов и пр.).

    Эффективность действия пептидов доказана в многочисленных экспериментальных и клинических исследованиях. Конечно, чтобы выглядеть прекрасно, одних кремов мало. Нужно омолаживать свой организм и изнутри, применяя время от времени различные комплексы пептидных биорегуляторов и микронутриентов.

    Линейка косметических средств с пептидами, помимо кремов, включает в себя также шампунь, маску и бальзам для волос, декоративную косметику, тоники, сыворотки для кожи лица, шеи и области декольте и пр.

    Следует учитывать также, что на внешний вид существенно влияет потребляемый сахар.
    Из-за процесса под названием «гликация» сахар разрушительно действует на кожу. Избыток сахара увеличивает скорость деградации коллагена, что приводит к морщинам.

    Гликацию относят к основным теориям старения, наряду с окислительной и фотостарением.
    Гликация – взаимодействие сахаров с белками, в первую очередь коллагена, с образованием поперечных сшивок – это естественный для нашего организма, постоянный необратимый процесс в нашем теле и коже, приводящий к отвердению соединительной ткани.
    Продукты гликации – частицы A.G.E. (Advanced Glycation Endproducts) – оседают в клетках, накапливаются в нашем теле и приводят ко множеству негативных эффектов.
    В результате гликации кожа теряет тонус и становится тусклой, она обвисает и выглядит старой. Это напрямую связано с образом жизни: снизьте потребление сахара и мучного (что полезно и для нормального веса) и каждый день ухаживайте за кожей!

    Для противостояния гликации, торможения деградации белков и возрастных изменений кожи компания разработала антивозрастной препарат с мощным дегликирующим и антиоксидантным эффектом. Действие данного средства основано на стимулировании процесса дегликации, воздействующего на глубинные процессы старения кожи и способствующего разглаживанию морщин и повышению ее упругости. Препарат включает в себя мощный комплекс для борьбы с гликацией — экстракт розмарина, карнозин, таурин, астаксантин и альфа-липоевую кислоту.

    Пептиды — панацея от старости?

    По словам создателя пептидных препаратов В.Хавинсона, старение во многом зависит от образа жизни: «Никакие препараты не спасут, если человек не обладает набором знаний и правильным поведением — это соблюдение биоритмов, правильное питание, физкультура и прием тех или иных биорегуляторов». Что касается генетической предрасположенности к старению, то от генов, по его словам, мы зависим лишь на 25 процентов.

    Ученый утверждает, что пептидные комплексы обладают огромным восстановительным потенциалом. Но возводить их в ранг панацейности, приписывать пептидам несуществующие свойства (скорее всего по коммерческим соображениям) категорически неправильно!

    Заботиться о своем здоровье сегодня — означает дать себе шанс жить завтра. Мы сами должны улучшать свой образ жизни — заниматься спортом, отказываться от вредных привычек, лучше питаться. И конечно же, по мере возможности применять пептидные биорегуляторы, способствующие сохранению здоровья и увеличению продолжительности жизни.

    Пептидные биорегуляторы, разработанные российскими учеными несколько десятков лет назад, стали доступны широкому потребителю только в 2010 году. Постепенно о них узнает все больше людей во всем мире. Секрет сохранения здоровья и моложавости многих известных политиков, артистов, ученых кроется в применении пептидов. Вот только некоторые из них:
    Министр энергетики ОАЭ Шейх Саид,
    Президент Белоруссии Лукашенко,
    Президент Казахстана Назарбаев,
    Король Таиланда,
    академик Ж.И. Алферов, летчик-космонавт Г.М. Гречко и его жена Л.К.Гречко,
    артисты: В.Леонтьев, Е.Степаненко и Е.Петросян, Л. Измайлов, Т.Повалий, И.Корнелюк, И.Винер (тренер по художественной гимнастике) и многие-многие другие...
    Пептидные биорегуляторы применяют спортсмены 2-х олимпийских сборных России — по художественной гимнастике и гребле. Применение препаратов позволяет увеличить стрессоустойчивость наших гимнасток и способствует успехам сборной на международных чемпионатах.

    Если в молодости мы можем себе позволить делать профилактику здоровья периодически, когда нам хочется, то с возрастом, к сожалению, такой роскоши у нас нет. И если Вы не хотите завтра быть в таком состоянии, что Ваши близкие измучаются с Вами и будут ждать Вашей кончины с нетерпением, если Вы не хотите умереть среди чужих людей, потому что ничего не помните и все вокруг кажутся Вам чужими на самом деле, Вы должны с сегодняшнего дня принять меры и заботиться даже не столько о себе, сколько о своих близких.

    В Библии написано: «Ищите и обрящете». Возможно, Вы нашли свой способ оздоровления и омоложения.

    Все в наших руках, и только мы сами можем о себе позаботиться. Никто за нас этого не сделает!













    Рассказать друзьям