Изменение степени вакуолизации в процессе дифференциации клеток. Рост организма и дифференцировка клеток

💖 Нравится? Поделись с друзьями ссылкой

Возникновение целого растительного организма определяется не только размножением и растяжением клеток, но и их дифференциацией.

Дифференциация связана со специализацией клеток для выполнения различных функций в организме. Наиболее ранняя дифференциация клеток происходит во время эмбриогенеза, когда образуются ризогенные и каулогенные зачатки. Хотя дальнейшая судьба клеток, составляющих эти зачатки, различна, они внешне не отличаются друг от друга.

В результате дальнейшего развития происходит дифференциация клеток, связанная с выполнением следующих функций: защитных (эпидермис и субэпидермис), фотосинтетических (губчатая и палисадная паренхима листа), поглотительной (клетки корневой системы), проводящих (проводящие ткани) и механических (механические ткани стебля и проводящих пучков). Кроме того, меристематические ткани, которые в наименьшей степени отличаются от эмбриональных клеток, специализированы для размножения клеток и первоначальной их дифференциации. Эти ткани выполняют также функции генеративного размножения. Клетки разных типов дифференциации скреплены между собой массой паренхимных клеток, подвергшихся наименьшей дифференциации, состоящей главным образом в их растяжении.

В настоящее время считается, что каждое дифференцированное состояние живых клеток характеризуется определенным сочетанием активных и неактивных участков генома и, следовательно, определенным соотношением синтезов различных белков. При этом то или иное дифференцированное состояние достигается не произвольно, а закономерно, путем смены различных состояний. Именно поэтому не наблюдается прямой передифференцировки клеток одного типа в клетки другого типа. Между ними обязательно имеется этап дедифференциации, который включает в себя активацию деления клеток в дифференцированных тканях.

Дифференциация клеток в организме возникает в результате межклеточного взаимодействия и, наиболее вероятно, в результате воздействия метаболитов, вырабатываемых одними клетками, на другие. В качестве примеров роли межтканевых взаимодействий можно привести детерминирующую роль верхушечной меристемы в образовании листового зачатка, развивающегося листа или стеблевой почки в формировании камбиальных тяжей и проводящих пучков. Показано, что теми метаболитами, которые определяют дифференциацию клеток в проводящую ткань, являются ауксин и сахароза. Если зачаток листа (Osmunda cinnamomea) изолировали на ранних этапах развития, то он превращался в стеблевое образование, а при сохранении физиологического контакта с более развитыми детерминированными листьями - в лист. Так же влиял гомогенат детерминированных листьев, причем стимул проходил через миллипоровый фильтр, но не проникал через пластинку слюды.

В некоторых случаях авторы предполагают наличие специальных веществ, необходимых для того или иного типа дифференциации: антезины, флориген - как факторы образования цветов, индукторы образования клубеньков у бобовых, фактор роста клеток листа, гормон образования колленхимы, фактор, активирующий ризогенез. Но в большинстве случаев возникновение клеток разных типов дифференциации объясняется с помощью известных групп фитогормонов.

Возможны два типа регулирующего действия фитогормонов на дифференциацию. В одних случаях гормон необходим на каком-то одном этапе, а дальнейший ход процесса может осуществляться и без него. Здесь гормон выступает в роли фактора, влияющего на выбор клетками того или иного пути дифференциации, но после того как выбор сделан, гормон больше не нужен. Такой характер действия фитогормонов можно видеть, например, во время индукции корнеобразования с помощью ауксина и кинетина: после того как произошло заложение корневых зачатков, дальнейшее присутствие ауксина и кинетина оказывается уже не нужным и даже ингибирующим. Возможно, это связано с тем, что в развивающемся корне возникает собственная система образования этих фитогормонов.

Другой способ, которым осуществляется действие фитогормонов на дифференциацию, состоит в том, что присутствие фитогормона необходимо для поддержания клеток в определенном дифференцированном состоянии. В этом случае уменьшение концентрации или полное исчезновение фитогормона приводит к утрате клетками данного состояния. Например, состояние «недифференцированного» каллусного роста ткани риса, овса, спаржи поддерживается лишь в присутствии ауксина, а при его отсутствии происходит органогенез листьев, корней и стеблей.

Примером, показывающим, что между этими крайними случаями могут быть переходы, является образование тяжа проводящих тканей в месте присоединения листа к стеблю. Клетки коровой паренхимы под влиянием ауксина, поступающего из листа, делятся и образуют вначале прокамбиальный тяж, который затем формирует ксилемные и флоэмные клетки. Если лист удалить на стадии прокамбиального тяжа, то клетки возвращаются вновь в паренхимное состояние; но если вместо листа нанести на черешок агаровый кубик или ланолиновую пасту с ауксином, то начавшийся процесс дифференциации завершится образованием проводящего пучка. Этот пример показывает, что имеется определенный период во время дифференциации, характеризующийся тем, что изменения, происходящие в нем, являются обратимыми. Различие между двумя крайними случаями, приведенными выше, по-видимому, состоит в разной продолжительности этого периода обратимости вызванных фитогормоном изменений.

В большинстве случаев переход клеток к дифференциации связан с прекращением их размножения. Это послужило причиной возникновения гипотезы о том, что дифференциация клеток наступает вследствие физиологического блокирования их деления, в результате чего метаболизм клетки направляется не на замыкание митотического цикла, а в сторону от него. При дедифференциации происходит возвращение клеток в митотический цикл. Эта гипотеза подтверждается данными по индукции органогенеза и дифференциации в культуре ткани при удалении из среды факторов, необходимых для размножения каллусных клеток.

В этом смысле можно интерпретировать и наши данные о том, что устранение из среды ауксина - фактора, необходимого для размножения клеток, приводило к их растяжению, а добавление кинетина при этом вызывало возникновение меристемоподобных и дифференцированных клеток. Однако следует признать, что имеющихся данных еще недостаточно, чтобы считать одноактное блокирование митотического цикла одной из причин перехода к дифференциации клеток.

В нашей работе были приведены литературные и собственные экспериментальные данные, которые позволяют считать, что при переходе к растяжению и дифференциации клеток деление их прекращается не одноактно, а за счет постепенного увеличения длительности митотического цикла на протяжении нескольких циклов. Кроме того, существуют типы дифференциации клеток, которые не связаны с прекращением деления. Особенно часто такие случаи наблюдаются у животных клеток, но имеются и у растительных. Например, дифференцированное состояние, характерное для камбиальных клеток, не связано с прекращением их деления, с прерыванием митотического цикла.

Влияние фитогормонов на дифференциацию клеток наиболее часто изучается на примерах индукции образования элементов проводящей ткани из недифференцированных клеток, а также по влиянию на активность камбия и на образование его дериватов - ксилемы и флоэмы. В опытах Ветмора и Рира каллусную ткань высаживали на так называемую поддерживающую среду, в которой была уменьшена концентрация сахарозы (1% вместо 4%) и давалось минимальное количество ауксина 0,05 мг/л ИУК вместо 1 мг/л 2,4-Д по сравнению со средой для активной пролиферации каллуса (морковь). При нанесении на поверхность каллуса, находящегося на поддерживающей среде ауксина (0,05-1 мг/л) и сахарозы (1,5-4%) в недифференцированной каллусной массе возникали клубочки проводящей ткани, расположенные по окружности от места введения. Диаметр этой окружности зависел от концентрации ауксина (чем выше концентрация, тем больше диаметр).

Это говорит о том, что существует определенная концентрация ауксина, при которой возможна дифференциация клеток. Состав возникших клубочков регулировался соотношением сахарозы и ауксина: сахароза способствовала преобладанию флоэмных элементов, а ИУК - ксилемных. Особенно интересно, что индукция дифференциации происходила при создании градиента концентраций ауксина и сахарозы, тогда как в его отсутствие клетки при этих же концентрациях ауксина и сахарозы могли делиться, но дифференциации не наступало.

Можно предположить, что для индукции дифференциации клеток необходимо возникновение локальных очагов делящихся клеток, окруженных неделящимися клетками. При размножении клетки, оказавшиеся в центре очага, превращались в ксилемные, а снаружи - во флоэмные. Это совпадает с распределением первичной ксилемы и флоэмы в верхушках стеблей и кончиках корней.

Подобного рода опыты, в которых были получены такие же результаты, проводились с каллусной тканью фасоли. В этих опытах было показано, что сахароза несет специфические регулирующие функции помимо роли источника углерода. Ее действие воспроизводилось только мальтозой и трегалозой. В месте образования клубочков концентрация ИУК составляла 25 γ/л, а сахарозы - 0,75%. Было показано, что если сначала давать ИУК, а затем сахарозу, то дифференциация клеток наступала; если же сначала вносить сахарозу, а затем ИУК, то дифференциации не: происходило. Это дало возможность авторам предположить, что роль ИУК состоит лишь в индукции деления клеток, а дальнейшая дифференциация молодых клеток определяется сахарозой.

Индукция возникновения трахеидных элементов под влиянием ИУК наблюдалась также в изолированной сердцевинной паренхиме стебля табака, колеуса, под влиянием НУК и ГК в эксплантантах из клубня топинамбура, под влиянием ИУК и кинетина в паренхиме стебля капусты, при этом большую роль в судьбе клеток играло соотношение ИУК и кинетина. В других работах кинетин также выступал как фактор, усиливающий дифференциацию ксилемных элементов и образование лигнина. В опытах со срезами междоузлий колеуса было показано, что возникновение проводящих тканей под влиянием ИУК угнеталось рентгеновским облучением и актиномицином D, причем актиномицин D действовал только в течение первых двух дней индукции.

Таким образом, сам феномен индуцирующего влияния сахарозы и ИУК на дифференциацию клеток в элементы проводящей ткани установлен достаточно основательно. Однако физиологический и биохимический анализ этого действия только начинается.

Следует обратить внимание на то, что в кусочках паренхимной ткани под влиянием ауксина индуцируются элементы проводящей ткани, но сама проводящая ткань в виде тяжей не образуется. Ранее мы уже приводили факт индуцирующего действия ауксина на дифференциацию паренхимных клеток стебля в проводящие ткани листового тяжа. В этом случае в результате индукции возникает тяж проводящей ткани, а не клубочек дифференцированных клеток. Вероятно, это связано с тем, что ауксин поступает не в результате простой диффузии, а с помощью полярного транспорта. Значение полярного транспорта ауксина в регенерации проводящих тканей колеуса показано в работах Джэкобса и Томпсона. Опыты этих авторов свидетельствуют о том, что, по-видимому, и в целом растении возникновение проводящей ткани контролируется фитогормонами, в частности ауксином.

В опытах Торри с изолированными корнями гороха было показано, что активация камбия и образование вторичных проводящих тканей в них контролируется ауксином. В изолированных корнях редиса ауксин и кинетин индуцировали эти процессы, а мезоинозит значительно усиливал их. Дигби и Уоринг показали, что ИУК и ГК в отдельности слабо стимулировали деятельность камбия и образование ксилемы в побегах тополя и винограда с удаленными почками. Значительная активация наблюдалась лишь при их совместном применении. При этом преобладание ГК в смеси приводило к сдвигу в сторону более активного образования флоэмы, а преобладание ИУК - в сторону ксилемы.

Взаимодействие ГК с ИУК и самостоятельное действие ГК на образование проводящих тканей наблюдалось и в других работах с целыми растениями. У покоящихся сеянцев яблони НУК вызывала активацию камбия, но при этом образовывались только паренхимные клетки, появление трахеид происходило лишь при совместном действии НУК и бензиладенина.

Таким образом, можно предположить, что в целом растении контроль активности образования проводящих тканей осуществляется с помощью регулирования концентрации фитогормонов (ауксинов, цитокининов и гиббереллинов).

Дифференциация клеток в трахеиды, членики сосудов и в ситовидные трубки связана с их дегенерацией вплоть до отмирания. При возникновении органогенных структур в недифференцированном каллусе индуцируется образование меристематических клеток, значительно более энергичных в смысле интенсивности метаболизма и способности к дальнейшей дифференциации, чем клетки исходной каллусной ткани.

Существует два способа индукции возникновения организованных структур в недифференцированном каллусе: адвентивный эмбриогенез и органогенез.

Адвентивный эмбриогенез состоит в том, что при соответствующих условиях некоторые клетки каллуса многократно делятся с образованием плотного глобулярного скопления мелких меристематических клеток, которые затем дают начало эмбриоиду. Условия, способствующие возникновению эмбриоидов, различны, но во всех случаях необходимо уменьшение концентрации или полное исключение из состава среды ауксина. Хальперин и Ветерел связывают это с тем, что концентрации ауксина, применяемые для массового размножения клеток, слишком высоки для того, чтобы в возникшей предэмбриоидной глобуле мог произойти процесс поляризации на каулогенную и ризогенную часть.

Однако каковы факторы, необходимые для возникновения предэмбриоидной глобулы, пока неизвестно. В некоторых случаях этому способствует кокосовое молоко, кинетин, соли аммония, однако в других они либо не нужны, либо не играют решающей роли.

Следует отметить, что эмбриоиды, по-видимому, не возникают из свободной одиночной клетки, а всегда н какой-нибудь величины каллусной массе. В этой каллусной массе дать начало эмбриоиду может и одна клетка. Поэтому важная роль в образовании эмбриоидов принадлежит, вероятно, факторам межклеточного взаимодействия, действующим на коротких дистанциях, в пределах небольших каллусных комочков.

Органогенез также начинается с образования скоплений мелких, богатых цитоплазмой клеток - меристематических очагов. Эти очаги дают начало либо стеблевым почкам, либо корневым зачаткам, т. е. они имеют начальную поляризованность. В некоторых случаях в массе каллусной ткани образуются одновременно стеблевые почки и корневые зачатки, между которыми затем устанавливается связь с помощью проводящих пучков. Факторами, определяющими характер возникающих зачатков и индуцирующими их возникновение, являются ауксин и кинетин. Индукция стеблевых почек вызывается повышением концентрации кинетина и уменьшением концентрации ауксина в среде, индукция корнеобразования больше зависит от ауксина, чем от кинетина, при этом благоприятно сказывается замена 2,4-Д на ИУК или НУК. Гиббереллин чаще всего подавляет образование стеблевых почек, но может усилить рост стебля после его возникновения. В некоторых случаях ткань не способна к образованию корней, и поэтому возникшие стеблевые почки помещают в условия, способствующие возникновению у них адвентивных корней. Здесь обнаруживается зависимость тех или иных этапов органогенеза от последовательности применения фитогормонов, на что обращают внимание Стюард с сотрудниками.

Работы по индукции органогенеза и эмбриогенеза и по индукции образования элементов проводящей ткани имеют общее в том, что первоначально при этих процессах возникает неоднородность в однородной недифференцированной ткани, так как процессу преобразования в новые типы клеток подвергается лишь часть обрабатываемых клеток.

Вероятно, при возникновении этой неоднородности в системе необходимо, чтобы концентрация ауксина в ткани была значительно ниже оптимальной для размножения клеток. Тогда в ткани может установиться определенный градиент концентрации и возникнуть лишь локальные очаги размножения клеток. Эти очаги сами становятся источниками ауксина, вследствие чего воссоздается система полярного его транспорта и появляются условия для построения упорядоченной системы.

Другие фитогормоны, по-видимому, либо способствуют либо мешают этому процессу в значительной степени, но могут оказывать и самостоятельное, независимое действие. Следует отметить, что условия, необходимые для возникновения первоначальной неоднородности, и условия, необходимые для последующего развития возникающих структур, могут значительно различаться, в том числе и по отношению к экзогенным фитогормонам. Так, например, кинетин очень важен для возникновения меристематических очагов и начальной их специализации у ткани табака, а гиббереллины в это время действуют отрицательно. Но в последующем рост и развитие возникших зачатков, напротив, тормозится кинетином, но стимулируется гиббереллином.

Неоднородный характер реакции клеток во время индукции различных типов дифференциации затрудняет изучение роли фитогормонов, особенно на первоначальных фазах реакции, обычными физиологическими и биохимическими методами. В этом случае большое значение приобретают цитологические и цитохимические методы, с помощью которых получены первые успехи в идентификации первоначальных изменений в индуцируемых клетках. Показано, что те клетки, которые в будущем превратятся в органогенный зачаток, первоначально приобретают отличие от окружающих клеток, состоящее в повышенном содержании крахмала. Гиббереллин вызывает гидролиз крахмала (вероятно, за счет активации амилазы) и одновременно подавляет органогенез.

Имеются многочисленные примеры влияния фитогормонов на образование генеративных органов, определение пола у растений с раздельнополыми цветами, изменение формы листа и характера дифференциации клеток в листьях, полученные при обработке целого растения. Во всех этих случаях фитогормоны также выступают в роли факторов, регулирующих дифференциацию клеток. Однако при обработке фитогормонами целых растений наблюдаемый эффект может быть связан не только с их непосредственным действием на дифференцирующиеся клетки, но и с влиянием на всю гормональную систему. Поэтому такие работы нуждаются в тщательной проверке с применением методов анализа фитогормонов в растениях, прежде чем их можно будет использовать как примеры влияния фитогормонов на тот или иной тип дифференциации.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Дифференциация - это стойкое структурно-функциональное преобразование клеток в различные специализированные клетки. Дифференцировка клеток биохимически связана с синтезом специфических белков, а цитологически - с образованием специальных органелл и включений. При дифференцировке клеток происходит избирательная активация генов. Важным показателем клеточной дифференцировки является сдвиг ядерно-цитоплазменного отношения в сторону преобладания размеров цитоплазмы над размером ядра. Дифференцировка происходит на всех этапах онтогенеза. Особенно отчетливо выражены процессы дифференциации клеток на этапе развития тканей из материала эмбриональных зачатков. Специализация клеток обусловлена их детерминацией.

Детерминация - это процесс определения пути, направления, программы развития материала эмбриональных зачатков с образованием специализированных тканей. Детерминация может быть оотипической (программирующей развитие из яйцеклетки и зиготы организма в целом), зачатковой (программирующей развитие органов или систем, возникающих из эмбриональных зачатков), тканевой (программирующей развитие данной специализированной ткани) и клеточной (программирующей дифференцировку конкретных клеток). Различают детерминацию: 1) лабильную, неустойчивую, обратимую и 2) стабильную, устойчивую и необратимую. При детерминации тканевых клеток происходит стойкое закрепление их свойств, вследствие чего ткани теряют способность к взаимному превращению (метаплазии). Механизм детерминации связан со стойкими изменениями процессов репрессии (блокирования) и экспрессии (деблокирования) различных генов.

Клеточная гибель - широко распространенное явление как в эмбриогенезе, так и в эмбриональном гистогенезе. Как правило, в развитии зародыша и тканей гибель клеток протекает по типу апоптоза. Примерами программированной гибели являются гибель эпителиоцитов в межпальцевых промежутках, гибель клеток по краю срастающихся небных перегородок. Программированная гибель клеток хвоста происходит при метаморфозе личинки лягушки. Это примеры морфогенетической гибели. В эмбриональном гистогенезе также наблюдается гибель клеток, например при развитии нервной ткани, скелетной мышечной ткани и др. Это примеры гистогенетической гибели. В дефинитивном организме путем апоптоза погибают лимфоциты при их селекции в тимусе, клетки оболочек фолликулов яичников в процессе их отбора для овуляции и др.

Понятие о диффероне . По мере развития тканей из материала эмбриональных зачатков возникает клеточное сообщество, в котором выделяются клетки различной степени зрелости. Совокупность клеточных форм, составляющих линию дифференцировки, называют диффероном, или гистогенетическим рядом. Дифферон составляют несколько групп клеток: 1) стволовые клетки, 2) клетки-предшественники, 3) зрелые дифференцированные клетки, 4) стареющие и отмирающие клетки. Стволовые клетки - исходные клетки гистогенетического ряда - это самоподдерживающаяся популяция клеток, способных дифференцироваться в различных направлениях. Обладая высокими пролиферативными потенциями, сами они (тем не менее) делятся очень редко.

Клетки-предшественники (полустволовые, камбиальные) составляют следующую часть гистогенетического ряда. Эти клетки претерпевают несколько циклов деления, пополняя клеточную совокупность новыми элементами, и часть из них затем начинают специфическую дифференцировку (под влиянием факторов микроокружения). Это популяция коммитированных клеток, способная дифференцироваться в определенном направлении.

Зрелые функционирующие и стареющие клетки завершают гистогенетический ряд, или дифферон. Соотношение клеток различной степени зрелости в дифферонах зрелых тканей организма неодинаково и зависит от основных закономерных процессов физиологической регенерации, присущих конкретному виду ткани. Так, в обновляющихся тканях обнаруживаются все части клеточного дифферона - от стволовой до высокодифференцированной и гибнущей. В типе растущих тканей преобладают процессы роста. Одновременно в ткани присутствуют клетки средней и конечной частей дифферона. В гистогенезе митотическая активность клеток постепенно снижается до низкой или крайне низкой, наличие стволовых клеток подразумевается только в составе эмбриональных зачатков. Потомки стволовых клеток некоторое время существуют как пролиферативный пул ткани, но их популяция быстро расходуется в постнатальном онтогенезе. В стабильном типе тканей имеются лишь клетки высокодифференцированной и гибнущей частей дифферона, стволовые клетки обнаруживаются лишь в составе эмбриональных зачатков и полностью расходуются в эмбриогенезе.

Изучение тканей с позиций их клеточно-дифферонного состава позволяет различать монодифферонные - (например, хрящевая, плотная оформленная соединительная и др.) и полидифферонные (например, эпидермис, кровь, рыхлая волокнистая соединительная, костная) ткани. Следовательно, несмотря на то, что в эмбриональном гистогенезе ткани закладываются как монодифферонные, в дальнейшем большинство дефинитивных тканей формируются как системы взаимодействующих клеток (клеточных дифферонов), источником развития которых являются стволовые клетки разных эмбриональных зачатков.

Ткань - это фило- и онтогенетически сложившаяся система клеточных дифферонов и их неклеточных производных, функции и регенераторная способность которой определяется гистогенетическими свойствами ведущего клеточного дифферона.

Ткань является структурным компонентом органа и в то же время частью одной из четырех тканевых систем - покровных, тканей внутренней среды, мышечных и невральных.

Дифференцировка клеток

Дифференцировка клеток - процесс реализации генетически обусловленной программы формирования специализированного фенотипа клеток , отражающего их способность к тем или иным профильным функциям. Иными словами, фенотип клеток есть результат координированной экспрессии (то есть согласованной функциональной активности) определённого набора генов.

В процессе дифференцировки менее специализированная клетка становится более специализированной. Например, моноцит развивается в макрофаг , промиобласт развивается в миобласт, который образуя синцитий , формирует мышечное волокно. Деление, дифференцировка и морфогенез - основные процессы, путём которых одиночная клетка (зигота) развивается в многоклеточный организм, содержащий самые разнообразные виды клеток. Дифференцировка меняет функцию клетки, её размер, форму и метаболическую активность.

Дифференцировка клеток происходит не только в эмбриональном развитии, но и во взрослом организме (при кроветворении , сперматогенезе , регенерации поврежденных тканей).

Потентность

Дифференцировка в процессе развития эмбриона

Общее название для всех клеток, ещё не достигших окончательного уровня специализации (то есть способных дифференцироваться), - стволовые клетки. Степень дифференцированости клетки (её «потенция к развитию») называется потентностью. Клетки, способные дифференцироваться в любую клетку взрослого организма, называются плюрипотентными . Для обозначения плюрипотентных клеток в организме животных используется также термин «эмбриональные стволовые клетки». Зигота и бластомеры являются тотипотентными , так как они могут дифференцироваться в любую клетку, в том числе и в экстраэмбриональные ткани.

Дифференцировка клеток млекопитающих

Самая первая дифференцировка в процессе развития эмбриона происходит на этапе формирования бластоцисты , когда однородные клетки морулы , разделяются на два клеточных типа: внутренний эмбриобласт и внешний трофобласт . Трофобласт участвует в имплантации эмбриона и дает начало эктодерме хориона (одна из тканей плаценты). Эмбриобласт даёт начало всем прочим тканям эмбриона. По мере развития эмбриона клетки становятся всё более специализированными (мультипотентные, унипотентные), пока не станут окончательно дифференцировавшимися клетками, обладающими конечной функцией, как например, мышечные клетки. В организме человека насчитывается порядка 220 различных типов клеток.

Небольшое количество клеток во взрослом организме сохраняют мультипотентность. Они используются в процессе естественного обновления клеток крови, кожи и др., а также для замещения повреждённых тканей. Так как эти клетки обладают двумя основными функциями стволовых клеток - способностью обновляться, поддерживая мультипотентность, и способностью дифференцироваться - их называют взрослыми стволовыми клетками.

Дедифференцировка

Дедифференцировка - это процесс, обратный дифференцировке. Частично или полностью дифференцировавшаяся клетка возвращается в менее дифференцированное состояние. Обычно является частью регенеративного процесса и чаще наблюдается у низших форм животных, а также у растений. Например, при повреждении части растения клетки, соседствующие с раной, дедифференцируются и интенсивно делятся, формируя каллус . При помещении в определённые условия клетки каллуса дифференцируются в недостающие ткани. Так при погружении черенка в воду из каллуса формируются корни. С некоторыми оговорками к явлению дедифференцировки можно отнести опухолевую трансформацию клеток.

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Дифференцировка клеток" в других словарях:

    Д. тканей см. Клеточка, Ткани растений …

    См. Клеточка, Ткани растений … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (лат. differentia различие) возникновение различий между однородными клетками и тканями, их изменение в ходе онтогенеза, приводящее к специализации … Большой медицинский словарь

    Клеток процесс реализации генетически обусловленной программы формирования специализированного фенотипа клеток, отражающего их способность к тем или иным профильным функциям. Иными словами, фенотип клеток есть результат координированной… … Википедия

    дифференцировка - и, ж. différencier, нем. differenzieren. устар. Действие по знач. гл. дифференицировать. Усовершенствования при нашей цивилизации клонятся все более и более к развитию только некоторых наших способностей, к развитию одностороннему, к… … Исторический словарь галлицизмов русского языка

    Возникновение различий между однородными клетками и тканями, изменения их в ходе развития особи, приводяшие к формированию специализир. клеток, органов и тканей. Д. лежит в основе морфогенеза и происходит в осн. в процессе зародышевого развития,… … Биологический энциклопедический словарь

    Процесс превращения стволовых клеток в клетки, дающие начало какой либо одной линии клеток крови. Этот процесс приводит к образованию красных кровяных клеток (эритроцитов), тромбоцитов, нейтрофилов, моноцитов, эозинофилов, базофилов и лимфоцитов … Медицинские термины

    Превращение в процессе индивидуального развития организма (онтогенеза) первоначально одинаковых, неспециализированных клеток зародыша в специализированные клетки тканей и органов … Большой Энциклопедический словарь

    дифференцировка - Специализация до этого однородных клеток и тканей организма Тематики биотехнологии EN differentiation … Справочник технического переводчика

    дифференцировка - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ДИФФЕРЕНЦИРОВКА – процесс формирования специфических свойств у клеток в ходе индивидуального развития и появления различий между однородными клетками и тканями, приводящий к образованию специализированных клеток, тканей и… … Общая эмбриология: Терминологический словарь

Дифференцировка представляет собой созидательный процесс направленного изменения, в результате которого из общих черт, присущих всем клеткам, возникают структуры и функции, свойственные тем или иным специализированным клеткам. Процесс дифференцировки сводится к приобретению (или утрате) различными клетками структурных или функциональных особенностей, в результате чего эти клетки становятся специализированными для различных видов активностей, свойственных живым организмам, и формируют соответствующие органы в организме. У человека, например, растущие клетки в результате последовательных изменений в процессе дифференцировки превращаются в различные клетки, из которых состоит человеческий организма клетка нервной, мышечной,пищеварительной, выделительной, сердечно-сосудистой, дыхательной и других систем.[ ...]

При дифференцировке, несмотря на сохранение всей наследственной информации, клетки утрачивают способность к делению. При этом чем больше специализирована клетка, тем труднее изменить (а иногда невозможно) направление ее дифференцировки, что определяется ограничениями, накладываемыми на нее организмом в целом.[ ...]

После дифференцировки в первичном лимфоидном органе часть лимфоцитов с током крови переносится во вторичные лимфоидные органы (лимфатические узлы, селезенка, аппендикс, миндалины, аденоиды и пейеровы бляшки тонкого кишечника). Именно здесь Т-клетки и В-клетки реагируют с антигенами. Т-лимфоциты первоначально распознают чужеродный антиген, а затем становятся хранителями иммунологической памяти и переносчиками этой информации антителообразующими клетками. В-лимфоциты образуются в огромном количестве (ежедневно по нескольку миллионов). Они активируются Т-клетками и дифференцируются или трансформируются в плазматические клетки, непосредственно образующие антитела (растворимые иммуноглобулины) против распознанных антигенов.[ ...]

Молодые клетки каллуса могут дифференцироваться в клетки трахеид и элементы флоэмы. И в этих случаях большое значение имеет отношение ауксин/цитокинин и концентрация сахарозы. Ауксин в сочетании с сахарозой индуцирует формирование проводящих пучков, причем низкий уровень сахарозы благоприятствует образованию ксилемы, а высокий - флоэмы. Значение гормонального фактора (ауксина) для дифференцировки проводящих пучков иллюстрируется одним экспериментом Камю (Camus). Если в каллус вводятся почки, то ниже почек образуются тяжи проводящих пучков из клеток каллуса. Очевидно, что образование проводящих пучков индуцируется почкой-это можно доказать, поместив между почкой и каллусом пластинку целлофана: легко проницаемый целлофан не препятствует индукции (рис. 16.1).[ ...]

Развитие (дифференцировка) зародышевых листков в ходе эмбриогенеза сопровождается тем, что из них формируются различные ткани и органы. В частности, из эктодермы развиваются эпидермис кожи, ногти и волосы, сальные и потовые железы, нервная система (головной мозг, спинной мозг, ганглии, нервы), рецепторные клетки органов чувств, хрусталик глаза, эпителий рта, носовой полости и анального отверстия, зубная эмаль. Из энтодермы развиваются эпителий пищевода, желудка, кишек, желчного пузыря, трахеи, бронхов, легких, мочеиспускательного канала, а также печень, поджелудочная железа, щитовидная, паращитовидная и зобная железы. Из мезодермы развиваются гладкая мускулатура, скелетные и сердечные мышцы, дерма, соединительная ткань, кости й хрящи, дентин зубов, кровь и кровеносные сосуды, брыжейка, почки, семенники и яичники. У человека первыми обособляются головной и спинной мозг. Через 26 дней после овуляции длина человеческого зародыша составляет около 3,5 мм. При этом уже видны зачатки рук, но зачатки ног только вступают в развитие. Через 30 дней после овуляции длина зародыша равна уже 7,5 мм. В это время уже можно различить сегментацию зачатков конечностей, глазные бокалы, полушария головного мозга, печень, желчный пузырь и даже разделение сердца на камеры.[ ...]

Точно так лишь клетки эпидермиса синтезируют кератин. Поэтому давно возникли вопросы о генетической идентичности ядер соматических клеток и о контрольных механизмах развития оплодотворенных яйцеклеток как пререквизита в познании механизмов, лежащих в основе дифференцировки клеток.[ ...]

Установлено, что дифференцировка возникает не в результате утраты или добавления генетической информации. Дифференцировка - это не результат изменения генетической потенции клетки, а дифференциальное выражение этих потенций под влиянием среды, в которой находятся клетка и ее ядро. Дифференцировка клеток - это в сущности изменение состава клеточных белков - набора ферментов, и обусловлена она тем, что в разных клетках из общего количества генов функционируют разные наборы ген, определяющие синтез различных наборов белков. Избирательное выражение информации, закодированной в генах данной клетки, достигается путем активации или репрессии процесса транскрипции (считывания) этих генов, т.е. путем избирательного синтеза первичного продукта генов - РНК, содержащей ту информацию, которую следует передать в цитоплазму.[ ...]

Процессы, происходящие во время дифференцировки клеток, в конце концов завершаются, и клетка достигает стационарного состояния зрелости, в котором непрерывно поддерживается ее метаболизм (конечно, за исключением таких клеток, как мертвые клетки ксилемы). Видимыми признаками дифференцированного состояния являются различия в строении клеточных стенок и некоторых цитоплазматических органелл, таких, как пластиды. Если вспомнить, что ряд тканей специфически приспособлен к выполнению определенных функций (фотосинтез, -секреция или запасание веществ), то становится очевидным, что дифференцировка должна также затрагивать некоторые стороны метаболизма. Такая дифференцировка почти наверняка должна быть связана с различиями в синтезе ферментов, что в свою очередь свидетельствует о сохранении между клетками различий в активности генов даже в зрелом состоянии.[ ...]

В некоторых типах тканей в процессе дифференцировки происходит раннее отмирание определеных клеток, таких, как сосудистые элементы ксилемы, тогда как соседние клетки паренхимы могут оставаться живыми в течение многих лет. Изменения, происходящие в протопласте при дифференцировке сосудистого элемента, могут почти в точности соответствовать изменениям, которые позднее происходят в клетках стареющего органа, например листа. Однако процесс вакуолизации и увеличения размеров не обязательно включает дегенеративные изменения, поскольку клетки паренхимы могут жить в течение многих лет, например клетки сердцевины и сердцевинных лучей некоторых древесных растений. Таким образом, представляется вероятным, что у травянистых растений многие типы дифференцированных растительных клеток редко полностью используют потенциальные жизненные возможности, и старение и отмирание происходит не по причине действия факторов, присущих самим клеткам, а в силу условий, преобладающих внутри органа или организма в целом. Например, постепенное старение листьев вызывается по-видимому, конкуренцией между зрелыми листьями и растущими зонами побега, и если лист удалить и индуцировать у него образование корней на черешке, то он проживет гораздо дольше, чем в том случае, если он останется связанным с материнским растением (с. 429). Следовательно, скорость старения органов растения часто находится под контролем всего растения, а не просто определяется внутренне присущими свойствами клеток этого органа. Однако определенным органам, по-видимому, свойствен «прирожденный» процесс старения, который не регулируется целым растением; так, цветки и плоды стареют независимо от того, остаются ли они на материнском растении или нет.[ ...]

Прокамбий развивается акропетально, и дифференцировка ксилемы и флоэмы идет в одном и том же направлении. Первые видимые в центральном цилиндре изменения можно обнаружить, когда за счет радиального увеличения размеров отдельных клеток намечаются будущие ксилсмпые группы. Таким образом, очевидно, что гистогенез может происходить на очень небольшом расстоянии от самой промеристемы (рис. 2.18).[ ...]

Фаза дифференциации. На этой фазе процесс дифференцировки уже проявляется в определенных внешних признаках, т. е. меняются форма и внешняя структура клетки. Протоплазма почти целиком расходуется на утолщение клеточной оболочки. Вновь образовавшиеся слои фибрилл целлюлозы накладываются на старые (аппозиция).[ ...]

Многоклеточные формы возникли после того, как клетка проделала длительный и сложный путь развития в качестве самостоятельного организма. В современных растениях сохранились следы этой истории. Переход от одноклеточного к многоклеточному состоянию сопровождался потерей индивидуальности и связанными с этим изменениями в структуре и функциях клетки. Внутри талломов многоклеточных водорослей складываются качественно иные отношения, чем между клетками одноклеточных водорослей. С возникновением многоклеточности связаны дифференцировка и специализация клеток в талломе, что следует рассматривать как первый шаг на пути становления тканей (г и с т о-г е н е з) и органов (органогенез). В зависимости от расположения клеток в талломе многоклеточные водоросли могут быть представлены нитчатыми или пластинчатыми формами.[ ...]

До сих пор мы обсуждали главным образом влияние на дифференцировку внутриклеточных факторов. Теперь мы рассмотрим другую ситуацию, а именно те случаи, когда характер дифференцировки зависит от внеклеточных факторов, например от влияния гормонов. По определению гормонами называются ростовые вещества, которые покидают синтезирующие их клет-, ки и влияют на другие клетки.[ ...]

Развитие любого растения включает такие процессы, как рост и дифференцировка. Термин рост характеризует количественные изменения, происходящие во время развития, иными словами, рост можно определить как процесс необратимого изменения размеров клетки, органа или всего организма. Внешняя форма органа представляет собой в первую очередь результат дифференциального роста’ вдоль определенных осей. Однако в процессе развития появляются не только количественные различия в числе и расположении клеток, составляющих те или иные органы, но между клетками, тканями и органами возникают также качественные различия, для характеристики которых применяется термин дифференцировка. Дифференцировка на клеточном и тканевом уровнях хорошо известна и служит главным образом предметом изучения анатомии растений. Кроме того, мы можем говорить о дифферсн-дировкс тела растения на побег и корень, а переход от вегетативной к репродуктивной фазе можно рассматривать как еще один пример дифференцировки. Следовательно, мы будем пользоваться термином дифференцировка в очень широком смысле, обозначая им любую ситуацию, в которой меристема« тические клетки дают начало двум или более типам клеток, тканей или органов, качественно отличающихся друг от друга.[ ...]

У многоклеточных организмов, в отличие от одноклеточных, рост и дифференцировка одной клетки координированы с ростом и развитием других клеток, т.е. между разными клетками происходит обмен информацией. Таким образом, в этих организмах развитие зависит от интегрированного роста и дифференцировки всех клеток и именно такая интеграция обеспечивает гармоничное развитие организма как целого.[ ...]

Обычно созревание включает вакуолизацию и увеличение, размеров клетки; некоторые аспекты этого процесса уже были рассмотрены ранее (с. 17-21). В процессе созреваиня клетки могут претерпевать как относительно небольшие.структурные изменения, например при образовании паренхимной ткани, так и значительные - при формировании тканей ксилемы и флоэмы. Именно различные пути созревания клеток приводят к их дифференцировке..[ ...]

Развитие - это качественные изменения организмов, которые определяются дифференцировкой клеток и морфогенезом, а также биохимическими изменениями в клетках и тканях, обеспечивающими в ходе онтогенеза прогрессивные изменения индивидов. В рамках современных представлений развитие организма понимают в качестве процесса, при котором структуры, образовавшиеся ранее, побуждают развитие последующих структур. Процесс развития детерминирован генетически и теснейшим образом связан со средой. Следовательно, развитие определяется единством внутренних и внешних факторов. Онтогенез в зависимости от характера развития организмов типируют на прямой и непрямой, в связи с чем различают прямое и непрямое развитие.[ ...]

Имеются сведения о том, что холинэстеразная активность обнаруживается даже у эмбриона и в клетках алейронового слоя семян пшеницы, овса, тыквы. Она отмечается на стадии дифференцировки корней и стеблей, в эпидермисе, флоэме, камбии и апикальных меристемах этих растений.[ ...]

С ростом рыбы увеличиваются размеры семенников. Процесс этот сопровождается их внутренней дифференцировкой, приводящей к образованию в гонаде у пластиножаберных зон семенных ампул или-фолликулов, в которых сперматогониаль-ные клетки проходят соответствующие фазы развития.[ ...]

Общим признаком воздействия динитроанилинов является опухолевое перерождение кончиков корней. Клетки многоядерные, небольшого размера, в паренхиме коры гипертрофированы, имеют тонкие стенки. Процессы дифференцировки неупорядочены, ксилема чрезмерно утолщается. Динитроанилины подавляют митоз, действуя в тех фазах деления, в которых должны образоваться и функционировать микротрубочки (метафаза, анафаза, телофаза). Волокна веретена состоят из микротрубочек. При нормальном делении микротрубочки перемещают хромосомы, упорядочивая их в метафазе определенным образом, и именно на стадии метафазы динитроанилины нарушают этот процесс. По своему действию они напоминают колхицин, поскольку также препятствуют полимеризации тубулина в микротрубочкн. Однако по точке приложения действия они отличаются от колхицина. Микротрубочки играют определенную роль в переносе веществ, необходимых для строительства клеточной стенки, в размещении ее скелетных элементов.[ ...]

Развитие одноклеточной зиготы в многоклеточный организм происходит в результате процессов роста и дифференцировки клеток. Рост представляет собой увеличение массы организма, происходящее в результате ассимиляции вещества. Он может быть связан с увеличением как размеров клетки, так и их числа; при этом исходные клетки извлекают из окружающей среды необходимые им вещества и используют их на увеличение своей массы или на построение новых подобных себе клеток. Так, зигота человека составляет примерно 110 бг, а новорожденный ребенок весит в среднем 3200г, т.е. за время внутриутробного развития происходит увеличение массы в миллиарды раз. С момента рождения и до достижения средних для взрослого человека размеров масса увеличивается еще в 20 раз.[ ...]

Итак, генетическая информация, необходимая для нормального развития эмбриона, не теряется в течение дифференцировки клеток. Другими словами, соматические клетки обладают свойством, получившим название тотипотентности, т. е. в их геноме содержится вся информация, полученная ими от оплодотворенной яйцеклетки, давшей им начало в результате дифференциации. Наличие этих данных с несомненностью означает, что дифференциация клеток подвержена генетическому контролю.[ ...]

Для оценки состояния Т-клеточного звена иммунной системы использовали фракционированные мононуклеарные клетки. Методом розетко-образования с эритроцитами барана (Е-РОК) определяли общее число Т-лимфоцитов (Петров и др., 1976; Ярилин, 1985; Лебедев, Понякина, 1990; Joundal et al., 1972).[ ...]

Не следует забывать, что пока идентифицировано только пять основных типов эндогенных гормонов, а за время жизненного цикла в дифференцировке растения должно участвовать большое число генов, активируемых в соответствующих клетках и в правильной последовательности. Поэтому трудно представить, как такое небольшое число гормонов может регулировать активность столь большого числа генов. Однако, возможно, что только определенные «главные» гены регулируют основные пути развития, а им подчиняется большое число генов, активирующихся на последующих стадиях дифференцировки. В самом деле поразительно, что при дифференцировке, например при развитии листа или цветка, часто происходит координированная экспрессия целых блоков генов. Число основных этапов развития высшего растения, в регуляции которых участвуют «главные» гены, совсем невелико, и не исключено, что взаимодействие между уже известными гормонами может играть важную роль в регуляции некоторых из этих этапов.[ ...]

Очевидно, что возможности развития большинства клеток каллуса каким-то образом ограничены и дальнейшие ограничения накладываются при дифференцировке проводящей ткани, стеблевых почек и зачатков корней. Так, деление клеток недифференцированного каллуса ничем не ограничено, но когда образуется почка, ее клетки, становясь частью листового прп-мордия, могут делиться только в определенных плоскостях, и до тех пор, пока они остаются частью листа, они не способны к неограниченному делению. Мы не знаем, каков механизм этого ограничения у клеток, входящих в состав ткани, но возможно, что регуляция поведения каждой клетки осуществляется соседними клетками через систему плазмодесм, соединяющих протопласты соседних клеток.[ ...]

Высшие растения - это многоклеточные организмы, построенные из большого числа разнообразных клеток, тканей и органов. Каждая отдельная клетка имеет свои регуляторные системы, управляющие процессами жизнедеятельности на внутриклеточном уровне. Кроме того, растению необходимы межклеточные регуляторные системы, которые координируют различные процессы - рост, дифференцировку, обмен веществ, размножение, движение - на уровне организма в целом.[ ...]

На способность харовых водорослей генерировать ПД указывалось еще в начале прошлого века. Как уже отмечалось, благодаря своим размерам, четкой дифференцировке внутриклеточных компартментов и т. д. они стали удобным объектом и в исследованиях, связанных с изучением характера передачи электрической информации между клетками.[ ...]

Коль скоро группа клеток вступила на какой-то путь развития, она обычно следует по этому «нормальному» пути до полного его завершения, и крайне редко клетки возвращаются к более ранней стадии развития или переходят на какой-либо другой путь. Так, листовые примордии не станут почками или стеблями, хотя иногда при формировании цветка могут возникать, аномалии развития, например возврат к вегетативной верхушке, по такие случаи сравнительно редки, поэтому считают, что на определенных критических стадиях те или иные части организма становятся «детерминированными» в отношении их дальнейшей дифференцировки. Мы уже приводили пример такой детерминации при развитии листовых примордиев (рис. 2.12).[ ...]

Сейчас очевидно, что каждый из классов фитогормонов вызывает широкий спектр ответных реакций в различных частях растения, и в общем специфический тип дифференцировки каждого органа, по-видимому, определяется «препрограммирова-нием» самих клеток-мишеней или тканей. Мы пока не знаем, что запрограммировано в этих клетках-мишенях, но ответная реакция на гормональный сигнал может обусловливаться природой рецепторов гормонов, образующихся в процессе развития клетки. Итак, во многих случаях специфический тип дифференцировки, который приводит в действие гормон, определяется не гормоном, а «программированием» или «компетенцией» клеток-мишеней.[ ...]

Таким образом, апексы побега и корня ведут себя так, как если бы они были детерминированы. На первый взгляд это противоречит общепринятому представлению, что клетки меристем побега и корня недифференцированы и что различные типы дифференцировки этих двух органов определяются структурой и организацией самих меристем.[ ...]

Одновременно с этими внутренними изменениями наружная твердая стенка ооспоры расщепляется на ее вершине на пять зубцов, давая выход проростку, возникающему из центральной клетки (рис. 269, 3). Первое деление центральной клетки происходит поперечной перегородкой, перпендикулярной к ее длинной оси, и приводит к образованию двух функционально различных клеток. Из одной, более крупной клетки в дальнейшем образуется стеблевой побег, который на начальной стадии развития называют предростком, из другой, меньшей клетки - первый ризоид. Оба они растут путем поперечных клеточных делений. Предросток растет вверх и довольно быстро зеленеет, заполняясь хлоропластами, первый ризоид направляется вниз и остается бесцветным (рис. 269, 4). После ряда клеточных делений, сообщающих им строение однорядных нитей, происходит их дифференцировка на узлы и междоузлия, и дальнейший их верхушечный рост протекает уже так, как было описано выше для стебля. Из узлов предростка возникают вторичные предростки, мутовки листьев и боковые ветви стебля, из узлов первого ризоида - вторичные ризоиды и их мутовчатые волоски. Таким путем и формируется таллом, состоящий из нескольких стеблевых побегов в верхней части и нескольких сложных ризоидов в нижней части (рис. 2G9, 5).[ ...]

Неспособность корней синтезировать некоторые витамины п тканей сердцевины табака синтезировать ауксины и цитокипи-пы является достаточно сильным доводом в пользу того, что дифференцировка клеток связана с активацией одних генов и подавлением других. Было бы интересно узнать, могут ли ме-ристематические клетки верхушки стебля табака синтезировать цитокинины. Если это так, то очевидно, что один из процессов, происходящих при днффереицировке клеток стебля, - подавление активности ферментов, ответственных за синтез ауксина и цитокинииа. Действительно, такими изменениями в биосинтетической способности можно объяснить переход от деления клеток к их растяжению, происходящий в апикальных участках как стебля, так и корня.[ ...]

Сюда входят одноклеточные и колониальные организмы. У большинства колонии образуются за счет выделения значительных масс слизи, реже путем слипания плотно сомкнутых клеток. Располагаются клетки в колониях беспорядочно или правильно, очень редко нитевидно. Клетки в большинстве без дифференцировки на основание и вершину. Размножаются хроококковые делением клеток, реже нанноцитами, плано-кокками и спорами. Класс охватывает 35 родов, неравномерно распределяющихся на 2 порядка.[ ...]

В основе организации всего научного материала лежит представление авторов о росте растения как о сложном процессе, связанном с увеличением размеров (ростом) клеток, тканей и оргайов, а также с их дифференцировкой. Авторы рассматривают рост как необратимые количественные изменения в клетках тканей и органов, тогда как диффереицировку- как качественные изменения, наблюдаемые в процессе развития.[ ...]

Сравнительно больше известно о факторах, регулирующих.активность камбия древесных растений средней полосы. Этим растениям свойственны сезонные изменения в активности клеточного деления сосудистого камбия как в побеге, так и в корне, и характер дифференцировки производных камбия различается в зависимости от времени года. Зимой камбий таких деревьев не активен, а весной снова начинается клеточное деление и новообразованные клетки дифференцируются в ксилему и флоэму.[ ...]

В 1967 г. И. Кроншав и К- Эсау в дифференцирующихся элементах флоэмы табака (№соИапа) обнаружили особые трубочки, представляющие собой глобулярные белки, названные Р-бел-ками. По своим морфологическим особенностям они схожи с микротрубочками. Диаметр трубочки Р-белка в клетках табака достигает 23 нм, в клетках тыквы- 18-23 нм; толщина их стенок составляет 6-7 нм. После завершения дифференцировки ситовидные элементы трубочек Р-белка, не исчезая полностью, распадаются на отдельные исчерченные нити. Подобно микротрубочкам трубочки Р-белка соединены между собой нитевидными перемычками.[ ...]

Повышенная чувствительность мужских половых клеток ранних фаз развития к действию рентгеновских лучей свойственна многим видам животных от дрозофилы (Ватти, 1965, 1966; Sobéis, 1966) до млекопитающих (Wang et al., 1960). Реакция половых клеток на рентгеновское облучение у будущих самок и самцов горбуши Oncorhynchus gorbuscha обнаруживает определенные различия еще до начала у них видимого процесса дифференцировки пола (Персов, 1969).[ ...]

Последовательные стадии развития можно рассматривать как процесс, при котором в различные критические точки времени и пространства происходит переключение на альтернативные пути дальнейшего развития. Это переключение может наблюдаться на клеточном уровне, например, когда две дочерние клетки, возникающие в результате неэквивалентного деления, дифференцируются по-разному; она может также происходить при дифференцировке органов или даже апекса побега как целого, например при переходе от вегетативной фазы развития к цветению. Далее мы уже видели, что если орган, такой, как зачаток листа, прошел определенную стадию развития, то он необратимо «детерминируется» как лист (в отличие от почки) п обычно не может превратиться ни в одну другую структуру (с. 53-54).[ ...]

Еще со времени Ю. Сакса рост клеток принято делить на трв фазы: эмбриональпуто, растяжения, дифферепцировки (рис. 59). Такое разделение носит условный характер. За последнее время внесены изыепения в само понимание основных особенностей, характеризующих эти фазы роста. Бели прежде считалось, что процесс деления клетки происходит лишь в эмбриональную фагу роста, то сейчас показано, что клетки могут иногда делиться и в фазу растяжения. Важно, что дифференцировка клетки отнюдь не является особенностью только третьей, последней фазы роста. Дифференцировка клеток, в смысле появления п накопления внутренних и физиологических различии между ними, проходит па протяжении всех трех фаз и является важной особенностью роста клеток. В третьей фазе эти внутренние физиологические различия лишь получают внешнее морфологическое выражение. Все же ряд существенных отличий между фазами роста имеется, и физиологи продолжают рассматривать их отдельно.[ ...]

Кроме биохимических изменений на молекулярном уровне и структурных изменений, видимых в обычный световой микроскоп, с помощью электронного микроскопа можно обнаружить изменения, происходящие на ультраструктурном уровне. Однако есть и исключения, например в клетках ситовидных трубок во время дифференцировки большинство органелл подвергается дезинтеграции. Наибольшая вариабельность характерна для пластид. Их структура чрезвычайно разнообразна в зависимости от того, находятся ли они в тканях листа, запасающих тканях, плодах (например, томата) или, частях цветка, таких, как лепестки.[ ...]

Половое размножение является наиболее эффективным путем воспроизводства организмов, дающим возможность «перетасовки» и комбинирования генов. Предполагают, что оно развилось из бесполого, возникнув около 1 млрд лет назад, причем первые этапы в этом процессе были связаны с усложнением в развитии гамет. Примитивные гаметы характеризовались недостаточной морфологической дифференцировкой, в результате чего для многих организмов ведущей была изогамия (от греч. isos - равный, gamos - брак), когда половые клетки были подвижными изогаметами, еще не дифференцированными на мужские и женские формы. Изогамия встречается у ряда видов простейших.[ ...]

В процессе развития происходит постепенная диффереици-ровка органов и тканей, что приводит к возникновению большого разнообразия типов клеток. Однако не все гены, входящие в состав генома, активны в каждый данный момент и в каждой данной части растения. Так, гены, контролирующие развитие цветков, обычно не экспрессируются ни у зародышей, ни во время чисто вегетативной фазы развития. Вместе с тем мы знаем, что клетки таких вегетативных органов, как лист, содержат гены для развития цветков, поскольку из клеток листьев некоторых видов могут регенерировать новые растения, способные к цветению. Следовательно, дифференцировка у растений не связана с генетическими (т. е. наследственными) различиями между ядрами различного типа клеток и тканей. В таком случае она должна определяться различиями в экспрессии генов в тех или иных частях растения или на тех или иных стадиях его жизненного цикла.[ ...]

Ауксин регулирует не только активацию камбия, по и диф-ферендировку его производных. Известно также, что ауксин является не единственным гормональным регулятором активности камбия и диффереицировки проводящей ткани. Наиболее просто н наглядно это было показано в опытах, в которых ранней весной до распускания почек брали веточки растений с рас-сеяннопоровой древесиной, удаляли с них почки и через верхнюю раневую поверхность вводили в эти сегменты стебля ростовые гормоны в ланолиновой пасте или в виде водного раствора. Примерно через 2 пед приготовляли срезы стебля для наблюдения за активностью камбия. Без введения гормонов клетки камбия не делились, по в варианте с ИУК можно было наблюдать деление клеток- камбия и дифференцировку новых элементов ксилемы, хотя оба эти процесса шли не очень активно (рис. 5.17). При введении только ГА3 клетки камбия делились, но производные клетки на его внутренней стороне (ксилема) не дифференцировались и сохраняли протоплазму. Однако при тщательном наблюдении можно было заметить, что в ответ на действие ГА3 образуется некоторое количество новой флоэмы с дифференцированными ситовидными трубками. Одновременная обработка ИУК и ГА3 приводила к активации клеточного деления в камбии, и образовывались нормально дифференцированные ксилема и флоэма. Измеряя толщину новой ксилемы и флоэмы, можно количественно подойти к изучению взаимодействия ауксина, гиббереллииа и других регуляторов (рис. 5.18). Такие опыты позволяют предположить, что концентрация ауксина и гиббереллииа регулирует не только скорость клеточного деления в камбии, но и влияет на соотношение инициальных клеток ксилемы и флоэмы. Сравнительно высокая концентрация ауксина благоприятствует образованию ксилемы, тогда как при высоких концентрациях гиббереллииа образуется больше флоэмы.[ ...]

Зиберс вырезал из молодых гипокотилей маленькие кусочки межпучковой ткани прежде, чем в этой ткани появлялись какие-либо признаки образования межпучкового камбия. Эти кусочки оп перевертывал и снова вставлял в гипокотилп. Последующее исследование показало, что в таких перевернутых кусочках ткани закладывался межпучковый камбий, по тип днффе-ренцировки был необычен, так как ксилема образовывалась ¿наружи, а флоэма внутри от камбия. Кроме того, этот межпучковый камбий не соединялся с камбием первичных проводящих пучков. Эти наблюдения показали, что, хотя исходное цельное кольцо прокамбия в верхушке побега (с. 57-58) разделяется на отдельные тяжи (каждый из которых развивается в первичный проводящий пучок), зоны между тяжами могут легко превращаться в камбий, даже если клетки этих зон морфологически неотличимы от окружающей основной ткани. Помимо этого, нормальный характер дифференцировки производных камбия (т. е. образование ксилемы внутри и флоэмы снаружи), по-видимому, определяется потенциями самих клеток, а не внешними факторами, такими, как гормоны, хотя последние, особенно ИУК и гиббереллины, необходимы для деления клеток камбия и их последующей дифференцировки.

Роль ядра и цитоплазмы в клеточной дифференциации Как возникают разнообразные типы клеток в многоклеточном организме Известно что организм человека развившийся всего из 1 исходной клетки – зиготы содержит более 100 различных типов клеток. Современная биология на базе представлений эмбриологии молекулярной биологии и генетики считает что индивидуальное развитие от одной клетки до многоклеточного зрелого организма – результат последовательного избирательного включения в работу разных генных участков хромосом в различных клетках....


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция №8

ДИФФЕРЕНЦИАЦИЯ КЛЕТОК

Дифференциация клеток.

Роль ядра и цитоплазмы в клеточной дифференциации

Как возникают разнообразные типы клеток в многоклеточном организме? Известно, что организм человека, развившийся всего из 1 исходной клетки – зиготы, содержит более 100 различных типов клеток. Каким образом возникает это разнообразие, сегодня до конца не ясно, так как еще мало конкретных данных, касающихся анализа путей появления тех или иных клеточных типов.

Современная биология на базе представлений эмбриологии, молекулярной биологии и генетики считает, что индивидуальное развитие от одной клетки до многоклеточного зрелого организма – результат последовательного, избирательного включения в работу разных генных участков хромосом в различных клетках. Это приводит к появлению клеток со специфическими для них структурами и особыми функциями, то есть к процессу, называемому дифференциацией .

Дифференциация – это возникновение из однородных клеток в течение индивидуального развития большого разнообразия клеточных форм, отличающихся по строению и функциям. Проявляющиеся в процессе дифференциации различия сохраняются клетками при размножении, то есть оказываются наследственно закрепленными (например, клетки печени при размножении дают только клетки печени, а мышечные клетки – только мышечные и т.д.).

Наиболее отчетливым признаком цитодифференциации является развитие цитоплазматических структур, связанных с функцией клеток и обусловливающих их специализацию (то есть органоидов специального назначения). Например, в клетках мышечной ткани образуются миофибриллы, которые и обеспечивают функцию сокращения. В клетках кожного эпителия – тонофибриллы, а затем поверхностные слои клеток ороговевают (белок кератогиалин превращается кератин) и отмирают. В эритроцитах синтезируется гемоглобин, затем клетки утрачивают ядра, а зрелые эритроциты после длительного периода функционирования погибают и заменяются новыми.

Все эти примеры указывают на конечные признаки дифференциации. Начальные же этапы проявления этих признаков удается обнаружить далеко не всегда, и состоят они в синтезе новых, ранее отсутствовавших в клетке белков. Например, специфические мышечные белки (актин и миозин) синтезируются в одноядерных клетках, которые затем сливаются, образуя симпласт, и уже в нем обнаруживаются миофибриллы. Даже используя электронный микроскоп, выявить момент начала синтеза новых белков удается не всегда.

В настоящее время доказано, что никогда в ядре не функционирует весь геном. Дифференцировка – это результат избирательной активности разных генов в клетках по мере развития многоклеточного организма.

Следовательно, можно утверждать, что любая клетка многоклеточного организма обладает одинаковым полным фондом генетического материала, всеми возможностями для проявления этого материала, но в разных клетках одни и те же гены могут находиться или в активном, или в репрессированном состоянии.

Это представление базируется на большом экспериментальном материале. Доказано, что целостное растение может быть получено из одной его соматической клетки. Этот метод получил название клонирование организмов . Опыты по клонированию животных первоначально проводились на примере земноводных: ядро зиготы у лягушек разрушали ультра-фиолетовыми лучами, на его место внедряли ядро из клетки кишечника, и в результате получали новый организм, абсолютно идентичный материнскому. Чем выше уровень организации организмов, тем труднее осуществить их клонирование. У млекопитающих этот процесс находится в стадии активного изучения, проводятся успешные опыты на мышах, на некоторых сельскохозяйственных животных.

Из этого вытекает, что клетки многоклеточных организмов обладают полным набором генетической информации, свойственной для данного организма, и в этом отношении они равнозначны. В этом состоит правило генетической тождественности клеток в пределах организма .

Но, как и в любом правиле, в нем имеются исключения: иногда при дифференцировке происходит количественное изменение генетического материала. Так, при дроблении яиц аскариды клетки, дающие начало соматическим тканям, теряют часть хромосомного материала, т.е. происходит деминуция: вместо 40 хромосом остается всего 8 хромосом. Сходный процесс описан у насекомых-галлиц (отр. Двукрылые), у которых число хромосом при деминуции уменьшается вдвое (с 32-х до 16-ти).

Эти примеры наглядно иллюстрируют роль цитоплазмы при дифференциации клеток. Если в случае с аскаридой предварительно отцентрифугировать яйцеклетки, то все компоненты цитоплазмы перемешиваются и при первом делении попадают в оба бластомера. При этом деминуции хромосом не происходит, то есть исчезает ядерная дифференциация.

У насекомых-галлиц деминуция происходит во всех ядрах, кроме одного, которое попадает в собранную у нижнего полюса зиготы плазму, богатую РНК. При облучении зародышевой плазмы ультрафиолетовыми лучами происходит разрушение РНК, при этом ядро претерпевает деминуцию вместе с другими ядрами зародыша, и развивается нормальное насекомое, но только стерильное, так как половые клетки не формируются.

Однако, первостепенную роль в дифференциации играет ядро. Роль ядра в дифференциации клеток можно показать на двух примерах.

I . Гигантская морская одноклеточная водоросль ацетабулярия имеет сложное строение. Она состоит из ризоида, в котором помещается ядро, стебелька до 5 см длиной и шапочки. Есть два вида ацетабулярии, которые отличаются формой шапочки: у первого вида длинный стебелек и шапочка в виде блюдца; у другого вида короткий стебелек и розетковидная шапочка.

На ризоид второго вида был пересажен стебелек с шапочкой первого вида. Через некоторое время шапочка удалялась и регенерировала шапочка розетковидной формы, т.е. признаки ее определялись ядром.

II . Опыты Б.Л. Астаурова над тутовым шелкопрядом.

Облучая яйцеклетки большими дозами рентгеновских лучей и активируя их после оплодотворения температурным воздействием, удалось не только разрушить ядро яйцеклетки, но и индуцировать андрогенез, то есть развитие особей за счет слияния 2-х ядер сперматозоидов (для тутового шелкопряда характерна полиспермия). В результате развивались личинки, обладавшие только отцовскими признаками.

Из этих опытов, поставленных на совершенно различных организмах, следует, что общие признаки организма, в том числе и видовые, определяются ядром, и ядро содержит всю необходимую информацию, обеспечивающую развитие организма.

В общей форме, вероятно, наиболее приемлема теория Т. Моргана, согласно которой сначала ядро воздействует на цитоплазму и программирует белковый синтез, а затем цитоплазма влияет на ядро, избирательно блокируя ряд генов, которые до этого функционировали. Цитоплазма, получившая определенную информацию, репрессирует все гены, которые не должны работать в данный момент.

Эмбриональная индукция

Второй системой (помимо генов), обеспечивающей правильное развитие организма и дифференциацию его клеток, являются индуцирующие механизмы (воздействие внешних факторов) и, прежде всего, эмбриональная индукция.

Эмбриональная индукция – это взаимодействие между частями развивающегося организма у многоклеточных беспозвоночных и всех хордовых, в процессе которого одна часть – индуктор, приходя в контакт с другой частью – реагирующей системой , определяет направление развития последней.

Эмбриональная индукция открыта в 1901 г. Х. Шпеманом на примере развития зародыша земноводных. Он установил, что для образования у этих животных нервной пластинки из эктодермы гаструлы необходим контакт эктодермы с хордомезодермальным зачатком. Клетки этого зачатка выделяют химические вещества, которые диффундируют в клетки эктодермы и заставляют их превращаться в нервные клетки. Вопрос о химической природе индуктора окончательно не решен до сих пор. Скорее всего, это могут быть белки, РНК, рибонуклеопротеиды и т.п.

Для осуществления эмбриональной индукции необходимо:

1) чтобы клетки реагирующей системы обладали компетенцией, то есть способностью реагировать на индуктор; она сохраняется только на некоторое время;

2) индуктор должен выделяться в определенное время и распространяться на определенный участок реагирующей системы;

3) действие индуктора должно продолжаться какое-то минимальное время, чтобы реагирующая система успела отреагировать.

Действие индукторов лишено видовой специфичности, т.е. действие собственных индукторов может быть заменено в эксперименте чужеродными, при этом результат будет тот же. Например, один из индукторов белкового характера, выделенный из куриных зародышей, вызывает аналогичные изменения и в зародыше земноводных.

Старение и смерть клетки

Наиболее подходящим объектом для изучения процессов старения на клеточном уровне являются клетки, утратившие способность к делению еще в эмбриональном периоде развития организма. К такому типу клеток относятся клетки нервной системы, скелетных мышц, миокарда. Продолжительность жизни этих клеток равна продолжительности жизни организма.

При сравнении клеток молодого организма с гомологичными клетками организмов более старшего возраста обнаруживается ряд изменений, которые с основанием могут считаться признаками старения. Для удобства изучения эти признаки можно разделить на несколько групп.

I . Морфологические признаки:

1) кариопикноз , то есть уменьшение ядра в объеме и его уплотнение;

2) стирание границ между клетками;

3) вакуолизация цитоплазмы;

4) увеличение количества амитозов.

II . Физико-химические признаки:

1) уменьшение степени дисперсности коллоидов цитоплазмы и ядра;

2) увеличение вязкости цитоплазмы и кариоплазмы;

3) более легкая коагуляция внутриклеточных белков при действии на них спирта, растворов солей.

III . Биохимические признаки:

1) накопление в цитоплазме оранжево-желтого пигмента липофу-сцина (это продукт окисления ненасыщенных липидов);

2) уменьшение содержания воды в клетке;

3) снижение активности ферментов;

4) увеличение содержания холестерина;

5) уменьшение содержания белка лецитина.

IV . Функциональные признаки:

1) понижается интенсивность внутриклеточного дыхания;

2) угнетается биосинтез белка;

3) увеличивается устойчивость клеток к действию различных пов-реждающих агентов.

Смерть клетки наступает в результате действия повреждающих факторов, при старении, а также в результате накопления в цитоплазме специализированных продуктов синтеза, как это наблюдается у клеток голокриновых желез.

В некоторых случаях переход клетки от жизни к смерти происходит очень быстро, (например, при действии повреждающих факторов высокой интенсивности). Тогда структурные и метаболические изменения клетки произойти не успевают, и клетка сохраняет почти в неизменном виде свою структуру. Если же процесс умирания затягивается, наблюдается ряд изменений, которые называются некротическими:

1) происходит угнетение функций митохондрий, нарушение окислительного фосфорилирования и активация гликолиза;

2) наблюдается нарушение гомеостатических свойств клетки, т.е. рН сдвигается в кислую сторону, соли, метаболиты освобождаются и переходят из клетки в окружающую среду;

3) в результате подкисления и изменения электролитного состава клетки происходит денатурация внутриклеточных белков;

4) вследствие выше перечисленных процессов разрушаются мембраны лизосом, освобождаются гидролитические ферменты, которые начинают свою разрушительную работу; они вызывают гидролиз белков, углеводов, жиров, ДНК и разрушают внутриклеточные структуры;

5) ядро умирающей клетки распадается на отдельные фрагменты (кариорексис ), которые затем растворяются (кариолизис ).

Гибель организма, как правило, происходит в результате смерти некоторой небольшой группы жизненно важных клеток, и после смерти организма многие его клетки остаются еще живыми и функционально полноценными.

Нарушения дифференциации клеток, ведущие

к патологическим изменениям. Злокачественный рост

Как отдельные клетки, так и целые многоклеточные организмы могут подвергаться различным воздействиям, которые приводят к их структурно-функциональным изменениям, к нарушениям их жизненных функций, т.е. к патологии.

Изучение различных патологических изменений клетки имеет большое прикладное значение, так как прямо связано с задачами медицины. Кроме того, изучение типов клеточного поражения, процессов их развития, способности клеток к репаративным процессам имеет большое общебиологическое значение, раскрывая пути взаимосвязи и регуляции между отдельными клеточными компонентами. Современная биология рассматривает клетку как единую, комплексную интегрированную систему, где отдельные функции взаимосвязаны и сбалансированы друг с другом.

Таким образом, первичное нарушение любой общеклеточной функции непременно вызовет цепь взаимосвязанных внутриклеточных событий. Это можно показать на следующем примере. Под действием алкоголя происходит набухание митохондрий и нарушение их функций, вследствие этого наблюдается недостаток АТФ и затухание синтеза белков. Из-за недостатка ферментов и структурных белков происходит падение синтеза РНК и ДНК, нарушение проницаемости мембран. Это влечет за собой набухание клетки, а затем гибель органоидов и клетки в целом.

В зависимости от интенсивности поражения, его длительности и характера, судьба клетки может быть различна. Такие измененные клетки:

1) или адаптируются, приспосабливаются к повреждающему фактору;

2) или могут репарировать повреждения и реактивироваться после снятия повреждающего воздействия;

3) или могут измениться необратимо и погибнуть.

Но к патологическим процессам на клеточном уровне относятся не только явления, связанные с деструкцией, разрушением клеток. Другой, не менее важный, уровень клеточной патологии – изменение регуляторных процессов. Это могут быть нарушения регуляции обменных процессов, приводящие к отложению различных веществ (например, «жировое перерождение тканей», патологическое отложение и накопление гликогена). Или же это могут быть нарушения дифференцировки, одним из которых является опухолевый рост.

Опухолевые клетки характеризуются следующими свойствами:

1. Безудержность, неограниченность размножения. У них практически отсутствует ограничение числа делений, в то время как нормальные клетки ограничены в своих делениях. Скорость самого процесса деления опухолевых клеток равна скорости митоза нормальных клеток, сокращается продолжительность интерфазы.

2. Нарушение уровня дифференцированости, изменение морфологии клеток. Это значит, что опухолевые клетки характеризуются более низким уровнем специализации, дифференцировки, чем исходные нормальные. Это размножающиеся клетки, остановившиеся на определенной стадии развития, как бы «недозрелые». Степень такой «недозрелости» опухолевых клеток может быть очень различной в одной и той же опухоли, что создает многообразие, полиморфность ее клеточного состава. Такой полиморфизм связан, кроме того, с тем, что в составе опухоли находятся как размножающиеся, так и дегенерирующие клетки.

3. Относительная автономность от регуляторных влияний со стороны организма. Эта особенность заключается в том, что опухолевые клетки не подчиняются регуляторным влияниям всего организма. В здоровом организме это влияние осуществляется на разных уровнях: межклеточном, межтканевом, гормональном, нервном. Степень опухолевой автономности может быть различна для разных опухолей. Так, рост некоторых опухолей может контролироваться со стороны эндокринной системы организма, другие опухоли растут вне зависимости от нее.

4. Способность к метастазированию. Вышеописанная автономизация опухолевых клеток позволяет им жить практически в любых участках организма. Отдельные опухолевые клетки могут с помощью тока крови или лимфы быть перенесены на новые места, там начать размножаться, давать новую колонию клеток, то есть метастазы. В этом отношении опухолевые клетки используют организм как какой-то субстрат, необходимый им для размножения и роста.

Таким образом, в отношении различных синтетических процессов, размножения, то есть по основным клеточным функциям, опухолевые клетки нельзя назвать «больными»; их патологичность – в неуправляемости и в ограничении способности к специализации. Это как бы клетки-«идиоты», вполне способные к размножению, но остановившиеся на «детских» стадиях развития.

Все эти свойства клетки сохраняют из поколения к поколению, то есть свойства злокачественности являются наследственной особенностью таких клеток. Поэтому раковые клетки часто сравнивают с мутантами – клетками, обладающими измененной генетической структурой. Возникновение раковой мутации объясняют по-разному.

Одни исследователи считают, что в результате мутации клетка утрачивает какие-то факторы (например, гены-регуляторы), необходимые для дифференцировки.

По другим представлениям, эти факторы не потеряны, а блокированы либо какими-то веществами, либо вирусами, материал которых остается в клетках в скрытом виде в течение многих клеточных поколений.

В любом случае для клетки результат будет один и тот же, независимо от того, утратит ли она те или иные гены-регуляторы, будут ли эти гены блокированы или клетка приобретает дополнительную генетическую информацию вирусной природы, в ней происходит изменение генома, соматическая мутация, выражающаяся в нарушении дифференцировки клетки и приобретении ею свойств злокачественности.

Другие похожие работы, которые могут вас заинтересовать.вшм>

6227. ДЕЛЕНИЕ КЛЕТОК 19.38 KB
Интерфаза Один из постулатов клеточной теории гласит что увеличение числа клеток их размножение происходит путем деления исходной клетки. Многоклеточный организм также начинает свое развитие всего с одной единственной клетки; путем многократных делений образуется огромное количество клеток которые и составляют организм. В многоклеточном организме не все клетки имеют способность к делению по причине их высокой специализации. Время существования клетки как таковой – от деления до деления – обычно называют клеточным циклом.
10474. ЯДРО. ВИДЫ ДЕЛЕНИЯ КЛЕТОК. ЭНДОРЕПРОДУКЦИЯ 24.06 KB
Форма ядра иногда зависит от формы клетки. Затем эти совершенно одинаковые копии ДНК равномерно распределяются между дочерними клетками при делении материнской клетки. Образовавшиеся субъединицы рибосом через ядерные поры транспортируются в цитоплазму клетки где объединяются в рибосомы которые оседают на поверхности гранулярной ЭПС или же образуют скопления в цитоплазме. Когда ядрышки исчезают в норме В норме ядрышки исчезают в том случае когда приходит период деления клетки и начинается спирализация фибрилл ДНК в том числе и в области...
12928. Фотоповреждение клеток и клеточных структур ультрафиолетовым излучением 328.59 KB
Защита клеток от фотоповреждения ДНК. Нуклеотидэксцизионная репарация повреждений ДНК. Максимумы поглощения ультрафиолетового излучения всех азотистых оснований входящих в состав ДНК кроме гуанина находятся в области 260265 нм. При однофотонном возбуждении ДНК могут происходить следующие фотодеструктивные реакции: Димеризация пиримидиновых оснований главным образом тимина; Гидратация азотистых оснований; Образование межмолекулярных сшивок ДНКДНК ДНКбелок белокбелок; Одно или двухнитевые разрывы цепей.
2429. Дифференциация языков 9.64 KB
языковые коллективы ранее пользовавшиеся разными языками диалектами начинают пользоваться одним и тем же языком т.: 1 полная потеря одного языка и переход на другой 2 слияние языков в новый язык обладающий чертами отличающими его от любого из исходных языков. Так современный английский язык есть результат интеграции древнегерманских англосаксонских диалектов и французского языка норманских завоевателей. происходит между близкородственными языками и диалектами.
20925. Дифференциация продукта и его реклама на рынке 14.89 KB
Одним из важнейших, хотя и не единственным, сигналом о качестве товара служит репутация (доброе имя) фирмы. Создание и поддержание репутации требует определенных затрат. Репутация может рассматриваться в качестве барьера для входа в отрасль, поскольку она дает действующим в отрасли фирмам возможность осуществлять монопольную власть.
12010. Технология получения возобновляемого растительного сырья – биомассы культивируемых клеток высших растений 17.6 KB
При отсутствии природного растительного сырья получают культуру клеток данного вида растения которую можно выращивать в биореакторах значительных объемов вплоть до десятков куб.м и таким образом получать биомассу культур клеток ценных лекарственных растений представляющую собой возобновляемое растительное сырье. Культура клеток оказывается незаменимой в случае редких исчезающих или тропических видов лекарственных растений.
12051. Способ разделения пулов 26S- и 20S-протеасом из цитоплазматической фракции клеток для тестирования новых противоопухолевых препаратов 17.11 KB
Краткое описание разработки. Преимущества разработки и сравнение с аналогами. Преимущества разработки по сравнению с зарубежными аналогами заключаются в том что 26Sпротеасомы выделяются в неповрежденном виде. Области коммерческого использования разработки.
3135. Единство и дифференциация (различие) правового регулирования труд 5.49 KB
Дифференциация в правовом регулировании труда дифференциация трудового права проводится по следующим учитываемым законодателем при нормотворчестве устойчивым шести факторам основаниям: а вредность и тяжесть условий труда. При этом установлены сокращенное рабочее время дополнительные отпуска повышенная оплата труда; б климатические условия Крайнего Севера и приравненных к нему местностей; в физиологические особенности женского организма его материнская функция.
6029. Стилистическая дифференциация словарного состава современного английского языка 20.02 KB
Стилистика относится к циклу филологических наук. В любом высказывании выделяются три стороны: синтактика, семантика и прагматика. Синтактика объясняет, как устроено высказывание внешних форма языка, семантика показывает, что означает данное высказывание, прагматика раскрывает, в каких условиях и с какой целью говорит человек
19315. Виды земельных участков общего пользования и дифференциация их правового режима 57.31 KB
Теоретико-методологические основы правового режима земельных участков общего пользования. Развитие законодательства регулирующего правовой режим земельных участков общего пользования. Общая характеристика правового режима земельных участков общего пользования...


Рассказать друзьям