Красный лазер в стоматологии методики. Лазер в стоматологии

💖 Нравится? Поделись с друзьями ссылкой

Принцип действия лазерного луча

К его действию очень чувствительны внутриклеточные мембранные системы, особенно митохондрии - энергетические станции клетки. Оно влияет на течение биохимических реакций , структуру молекул, т.е. влияет на течение фундаментальных процессов в организме, его энергетический потенциал. Его малые мощности стимулируют процессы регенерации , активизируют гемодинамику, обладают противовоспалительными и аналгезирующим действием, увеличивают биологический потенциал жидких сред. Гелий-неоновый лазер индуцирует красный, гелий-кадмиевый лазер - синий свет. У синего света хорошо выражено противовоспалительное действие.

Наиболее исследована биологическая эффективность низкоинтенсивного лазерного излучения в красной части спектра с длиной волны 0,628 мкм. Активизируются обменные процессы, пролиферация, ферментативная активность, микроциркуляция, улучшаются реологические свойства крови, изменяется активность свертывающей и противосвертывающей систем крови, стимулируется эритропоез. Это обуславливает противовоспалительный, аналгезирующий, трофический эффект лазерного излучения. При облучении крови венозная кровь приобретает черты артериальной, т.е. становится алой по цвету, уменьшается ее вязкость, увеличивается насыщение кислородом. Это называют симптомом “алой крови” или гипокоагуляции. Эритроциты взрослых становятся похожи на эритроциты детей, т.е. слипаются между собой, вытягиваются в струну и проникают в ранее недоступные участки органов вследствие некроза, ишемии, закупорки. Стимулируется иммунитет.

Используются аппараты “ЛГ - 75”, “АПЛ -01”, “Мустанг” и др. Методика: воздействие излучением местное и внутриполостное, на точки акупунктуры, экстра- и эндоваскулярно. Плотность мощности от 0,1 до 250 мВт/см 2 . Экспозиции от нескольких секунд до 20 минут.

Взаимодействие лазера с тканью

Воздействие лазерного излучения на биологические структуры зависит от длины волны излучаемой лазером энергии, плотности энергии луча и временных характеристик энергии луча. Процессы, которые могут при этом происходить – поглощение, передача, отражение и рассеивание.

Поглощение - атомы и молекулы, которые составляют ткань, преобразовывают лазерную световую энергию в высокую температуру, химическую, акустическую или не лазерную световую энергию. На поглощение влияют длина волны, содержание воды, пигментация и тип ткани.

Передача – лазерная энергия проходит через ткань неизмененной.

Отражение – отраженный лазерный свет не влияет на ткань.

Рассеивание – индивидуальные молекулы и атомы принимают лазерный луч и отклоняют силу луча в направлении, отличном от исходного. В конечном счете, лазерный свет поглощается в большом объеме с менее интенсивным тепловым эффектом. На рассеивание влияет длина волны.



Виды лазеров в стоматологии

Аргоновый лазер (длина волны 488 нм и 514 нм): излучение хорошо абсорбируется пигментом в тканях, таких как меланин и гемоглобин. Длина волны 488 нм является такой же, как и в полимеразиционных лампах. При этом скорость и степень полимеризации светоотверждаемых материалов лазером намного превосходит аналогичные показатели при использовании обычных ламп. При использовании же аргонового лазера в хирургии достигается превосходный гемостаз.

Диодный лазер (полупроводниковый, длина волны 792–1030 нм): излучение хорошо поглощается в пигментированной ткани, имеет хороший гемостатический эффект, обладает противовоспалительным и стимулирующим репарацию эффектами. Доставка излучения происходит по гибкому кварц-полимерному световоду, что упрощает работу хирурга в труднодоступных участках. Лазерный аппарат имеет компактные габариты и прост в обращении и обслуживании. На данный момент это наиболее доступный лазерный аппарат по соотношению цена / функциональность.

Неодимовый лазер (длина волны 1064 нм): излучение хорошо поглощается в пигментированной ткани и хуже в воде. В прошлом был наиболее распространен в стоматологии. Может работать в импульсном и непрерывном режимах. Доставка излучения осуществляется по гибкому световоду.

Гелий-неоновый лазер (длина волны 610–630 нм): его излучение хорошо проникает в ткани и имеет фотостимулирующий эффект, вследствие чего находит свое применение в физиотерапии. Эти лазеры – единственные, которые имеются в свободной продаже и могут быть использованы пациентами самостоятельно.

Углекислотный лазер (длина волны 10600 нм) имеет хорошее поглощение в воде и среднее в гидроксиапатите. Его использование на твердых тканях потенциально опасно вследствие возможного перегрева эмали и кости. Такой лазер имеет хорошие хирургические свойства, но существует проблема доставки излучения к тканям. В настоящее время CO2-системы постепенно уступают свое место в хирургии другим лазерам.

Эрбиевый лазер (длина волны 2940 и 2780 нм): его излучение хорошо поглощается водой и гидроксиапатитом. Наиболее перспективный лазер в стоматологии, может использоваться для работы на твердых тканях зуба. Доставка излучения осуществляется по гибкому световоду. Показания для применения лазера:

· Препарирование полостей всех классов, лечение кариеса;

· Обработка (протравливание) эмали;

· Стерилизация корневого канала, воздействие на апикальный очаг инфекции;

· Пульпотомия;

· Обработка пародонтальных карманов;

· Экспозиция имплантов;

· Гингивотомия и гингивопластика;

· Френэктомия;

· Лечение заболеваний слизистой;

· Реконструктивные и гранулематозные поражения;

· Оперативная стоматология.

Использование лазерного излучения в практической деятельности стоматолога совершенно оправдано, экономически выгодно и является достойной альтернативой уже существующим методам терапии, а также профилактики стоматологических патологий. К тому же, применение лазерных технологий открывает новые возможности, что позволяет доктору предложить в качестве лечения безболезненные процедуры с минимальной инвазивностью, которые проводятся в стерильных условиях и отвечают высоким клиническим стандартам. Какие показания и преимущества применения лазерных технологий?

В чем преимущества использования лазерных технологий в стоматологии?

Ранее лазерные технологии не пользовались популярностью из-за трудностей эксплуатации аппаратов, больших габаритов инструментария, высокой стоимости. Использование лазерных технологий требовало мощной трех фазовой электрической сети, жидкостного охлаждения и высокой квалификации персонала.

Благодаря совершенствованию лазерных систем на сегодняшний день ситуация изменилась. Современные лазерные технологии имеют большой КПД, что позволяет им вытеснить традиционные методы лечения и профилактики из всех сфер стоматологии.

Медицинские аппараты нового поколения имеют ряд своих характеристик и преимуществ.

Преимущества лазерных технологий в стоматологии:

  • минимальное потребление энергии от обычной однофазной сети;
  • небольшие габариты и масса;
  • высокая стабильность параметров;
  • большая надежность и высокий ресурс работы;
  • аппаратура не требует жидкого охлаждения.

Особенности применения лазерных технологий в качестве скальпеля

Местная пародонтальная терапия состоит из полноценного удаления поддесневой микробиологической пленки, имеющихся грануляций и поддесневых осложнений. Для этого стоматологи должны обеспечить:

  • контроль причинного фактора - уменьшение объема зубной бляшки, эндотоксинов и камня;
  • получение доступа в пародонтальные карманы;
  • получение ответной репаративной реакции пародонта;
  • выполнение вышеперечисленных процедур с минимальным удалением цемента зубов и повреждением реставрационных поверхностей.

Пародонтальный карман, являясь инфицированной раной, требует хирургической обработки, дезинфекции и создания всех условий для заживления ран. Для эффективного удаления поддесневой микрофлоры, биопленки и зубной бляшки, а также для улучшения адгезии фибробластов в стоматологии используют лазерные технологии.

С помощью лазерных технологий меняется контур десны, проводится гингивэктомия и гингивопластика. Лазерное излучение эффективно при лечении заболеваний слизистой оболочки полости рта. С использованием лазерных технологий проводится удаление патологически измененных тканей. Одновременно стимулируются соседние участки тканей к регенерации. С этой целью используются разные режимы воздействия. Во время процедур с применением лазерного излучения анестезия не требуется, кровотечения во время манипуляции отсутствуют.

В каких клинических случаях целесообразно использование лазерных технологий?

Лазерные технологии используют в стоматологической практике в таких клинических ситуациях:

  • удаление гиперпластических тканей;
  • операции по удалению гемангиом, эпулида, вскрытие абсцесса;
  • френэктомия;
  • формирование гингивальной канавки;
  • гингивэктомия, изменение формы десны и сосочка, атравматическая гингивопластика;
  • обеспечение нормального гомеостаза и получение сухой поверхности для оттисков.

Преимущества лазерного излучения в стоматологии позволяют доктору проводить бескровное оперативное вмешательство, что значительно сокращает время операции. Раны при этом остаются открытыми меньший промежуток времени, что снижает риск инфицирования.

К тому же, использование лазерных технологий сопровождается одновременной дезинфекцией тканей. После оперативного вмешательство не требуется наложение швов, что повышает комфорт пациента. После вмешательств с применением лазерного излучения раны заживают быстро и не сопровождаются дискомфортом или отечностью.

П ервый рубиновый лазер был разработан в 1960 году, а много других было создано впоследствии. С момента появления лазеров стоматологи начали изучать их потенциал. В 1965 году Стерн (Stern) и Согнес (Sognnaes) сообщили о том, что рубиновый лазер может испарять эмаль. Тепловой эффект непрерывных волновых лазеров в то время повреждал пульпу. Лазеры с разной длиной волны изучались в течение последующих десятилетий для определения возможности применения на твёрдых и мягких тканях полости рта.

Практики и исследователи долго пытались создать необходимый режим использования СО 2 и Nd:YAG лазера на мягких тканях в медицине. И только в 1990 году был создан первый импульсный Nd:YAG лазер, разработанный специально для стоматологии. В 1997 год появился первый истинно стоматологический лазер для твердых тканей Er:YAG лазер, год спустя Er и Cr:YSGG лазеры.

Диодные лазеры на основе полупроводников появились в конце 1990-х годов. А также недавно СО 2 -лазер был одобрен для использования на твёрдых тканях зуба.

Углекислотный лазер - лазер на углекислом газе (CO 2 -лазер) - один из первых типов газовых лазеров (изобретен в 1964 году). Один из самых мощных лазеров с непрерывным излучением на начало XXI века. Их КПД может достигать 20%. Длина волны 10600 нм, имеет хорошее поглощение в воде и среднее в гидроксиапатите. Его использование на твердых тканях потенциально опасно вследствие возможного перегрева эмали и кости. Такой лазер имеет хорошие хирургические свойства, но существует проблема доставки излучения к тканям. В настоящее время CO 2 -системы постепенно уступают свое место в хирургии другим лазерам.

Гелий-неоновый лазер - лазер, активной средой которого является смесь гелия и неона. Гелий-неоновые лазеры часто используются в лабораторных опытах и оптике. Имеет рабочую длину волны 632,8 нм, расположенную в красной части видимого спектра. Его излучение хорошо проникает в ткани и имеет фотостимулирующий эффект, вследствие чего находит свое применение в физиотерапии. Эти лазеры – единственные, которые имеются в свободной продаже и могут быть использованы пациентами самостоятельно.

Эксимерный лазер - разновидность ультрафиолетового газового лазера, широко применяемая в глазной хирургии и полупроводниковом производстве. Длина волны Excimer XeF (ксенон-фторидные) — 351 нм, XeCl (ксенон-хлоровый) — 308 нм, KrF (криптоно-фторидный) — 248 нм и ArF (аргон-фторидный) — 193 нм. Аргон-фторидный и криптоно-фторидный хорошо поглощаются водой и гидроксиапатитом.

Аргоновый лазер - непрерывный газовый лазер, который способен излучать свет с различными длинами волн синего (488 нм) и зелёного (514 нм) диапазонов. Хорошо поглощается меланином и гемоглобином. Длина волны 488 нм является такой же, как и в полимер и з а ционных лампах. При этом скорость и степень полимеризации светоотверждаемых материалов лазером намного превосходит аналогичные показатели при использовании обычных ламп. Но необходимо помнить, что ускорение полимеризации приводит в увеличению степени напряжения в композите. При использовании аргонового лазера в хирургии достигается превосходный гемостаз.

Титанил фосфата калия лазер (KTP) - твердотельный лазер с диодной накачкой, излучающий свет с длинной волны 532 нм (зелёный диапазон). Применение аналогично аргоновому лазеру.

Диодный лазер - полупроводниковый лазер, построенный на базе диода. Его работа основана на возникновении инверсии населённостей в области p-n перехода при инжекции носителей заряда. Излучает инфракрасное излучение с длиной волны 812 и 980 нм. Хорошо поглощается пигментированной тканью, имеет хороший гемостатический эффект, обладает противовоспалительным и стимулирующим репарацию эффектами. Доставка излучения происходит по гибкому кварц-полимерному световоду, что упрощает работу хирурга в труднодоступных участках. Лазерный аппарат имеет компактные габариты и прост в обращении и обслуживании. На данный момент это наиболее доступный лазерный аппарат по соотношению цена/функциональность.

Неодимовый лазер - лазер, генерирующий оптическое излучение за счёт квантовых переходов между энергетическими состояниями трёхвалентных ионов Nd 3+ , помещённых в конденсированную среду (матрицу), например, диэлектрические кристаллы и стёкла, полупроводники, металле органической или неорганической жидкости. Длина волны 1064 нм. Х орошо поглощается пигментированной ткан ью и хуже в воде. В прошлом был наиболее распространен в стоматологии. Может работать в импульсном и непрерывном режимах. Доставка излучения осуществляется по гибкому световоду.

Эрбиевый лазер - лазер, активная среда и, возможно, резонатор которого являются элементами оптического волокна. Д лина волны 2940 нм. У эрбий-хромового лазера — 2780 нм. Его излучение хорошо поглощается водой и гидроксиапатитом. Наиболее перспективный лазер в стоматологии, может использоваться для работы на твердых тканях зуба. Доставка излучения осуществляется по гибкому световоду. Показания для применения лазера практически полностью повторяют список заболеваний, с которыми приходиться сталкиваться в своей работе врачу-стоматологу. К наиболее распространенным показаниям относятся:

  • (препарирование твёрдых тканей);
  • Стерилизация корневого канала, воздействие на апикальный очаг инфекции;
  • Пульпэктомия;
  • Обработка пародонтальных карманов;
  • Обработка (стерилизация) имплантов;
  • Гингивотомия и гингивопластика;
  • Френулэктомия;
  • Лечение заболеваний слизистой полости рта;
  • Удаление новообразований;
  • Препарирование мягких тканей в стоматологии;
  • Удаление зубов.

Подробное описание лазеров представлено на рисунке.

Шемонаев В.И. , Климова Т.Н. ,
Михальченко Д.В. , Порошин А.В. , Степанов В.А.
Волгоградский государственный медицинский университет

Введение. В последние годы в стоматологической практике наряду с традиционными хирургическими и терапевтическими методами лечения разрабатывается и внедряется принципиально новая тактика ведения пациентов с использованием лазерных систем .

Слово лазер (laser) является акронимом слов «Light Amplification by Stimulated Emission of Radiation» (усиление света путем вынужденного излучения). Основы теории лазеров были заложены Эйнштейном в 1917 г. . Удивительно, но только через 50 лет эти принципы были достаточно поняты, и технология смогла быть реализована практически. Первый лазер, использующий видимый свет, был разработан в 1960 году – в качестве лазерной среды использовался рубин, генерирующий красный луч интенсивного света. Стоматологи, занимавшиеся исследованием влияния рубинового лазера на эмаль зубов, обнаружили, что он вызывал образование трещин в эмали. В результате был сделан вывод – лазеры не имеют перспектив применения в стоматологии. Лишь в середине 1980-х годов отмечено возрождение интереса к использованию лазеров в стоматологии для обработки твердых тканей зубов, и в частности эмали .

Основным физическим процессом, который определяет действие лазерных аппаратов, является вынужденное испускание излучения, образуемое при тесном взаимодействии фотона с возбужденным атомом в момент точного совпадения энергии фотона с энергией возбужденного атома (молекулы). В конечном итоге атом (молекула) переходит из возбужденного состояния в невозбужденное, а излишек энергии излучается в виде нового фотона с абсолютно такой же энергией, поляризацией и направлением распространения, как и у первичного фотона. Простейший принцип работы стоматологического лазера заключается в колебании луча света между оптическими зеркалами и линзами, набирающем силу с каждым циклом. Когда достигается достаточная мощность, луч испускается. Этот выброс энергии вызывает тщательно контролируемую реакцию.

В стоматологии используются лазерные аппараты с различными характеристиками.

Аргоновый лазер (длина волны 488 и 514 нм): излучение хорошо абсорбируется пигментом в тканях, таких как меланин и гемоглобин. Длина волны 488 нм является такой же, как и в полимеразиционных лампах. При этом скорость и степень полимеризации светоотверждаемых материалов лазером намного превосходит аналогичные показатели при использовании обычных ламп. При использовании же аргонового лазера в хирургии достигается превосходный гемостаз.

Диодный лазер (полупроводниковый, длина волны 792–1030 нм): излучение хорошо поглощается в пигментированной ткани, имеет хороший гемостатический эффект, обладает противовоспалительным и стимулирующим репарацию эффектами. Доставка излучения происходит по гибкому кварц-полимерному световоду, что упрощает работу хирурга в труднодоступных участках. Лазерный аппарат имеет компактные габариты и прост в обращении и обслуживании. На данный момент это наиболее доступный лазерный аппарат по соотношению цена / функциональность.

Nd: YAG лазер (неодимовый, длина волны 1064 нм): излучение хорошо поглощается в пигментированной ткани и хуже в воде. В прошлом был наиболее распространен в стоматологии. Может работать в импульсном и непрерывном режимах. Доставка излучения осуществляется по гибкому световоду.

He-Ne лазер (гелий-неоновый, длина волны 610–630 нм): его излучение хорошо проникает в ткани и имеет фотостимулирующий эффект, вследствие чего находит свое применение в физиотерапии. Эти лазеры – единственные, которые имеются в свободной продаже и могут быть использованы пациентами самостоятельно.

CO2 лазер (углекислотный, длина волны 10600 нм) имеет хорошее поглощение в воде и среднее в гидроксиапатите. Его использование на твердых тканях потенциально опасно вследствие возможного перегрева эмали и кости. Такой лазер имеет хорошие хирургические свойства, но существует проблема доставки излучения к тканям. В настоящее время CO2-системы постепенно уступают свое место в хирургии другим лазерам.

Эрбиевый лазер (длина волны 2940 и 2780 нм): его излучение хорошо поглощается водой и гидроксиапатитом. Наиболее перспективен лазер в стоматологии, может использоваться для работы на твердых тканях зуба. Доставка излучения осуществляется по гибкому световоду.

На сегодняшний день лазерные технологии получили широкое распространение в различных направлениях стоматологии, что обусловлено интра- и послеоперационными преимуществами: отсутствием кровотечения (сухое операционное поле) и послеоперационных болей, грубых рубцов, сокращением сроков продолжи­тельности операции и послеоперационного периода .

Кроме того, использование лазерных технологий нового поколения соответствует современным требованиям страховой медицины .

Цель работы – оценить возможности работы с диодным лазером на этапах стоматологического лечения.

Материал и методы: для достижения цели были проанализированы доступные литературные источники по данной тематике, а также проведена оценка клинической работы диодным лазером при различных стоматологических манипуляциях.

Результаты и обсуждения: в ходе работы изучено воздействие диодного лазера на ткани пародонта и слизистой оболочки полости рта, определены оптимальные параметры и режим воздействия излучений для каждого вида стоматологических вмешательств с учетом индивидуальных особенностей пациента.

Ориентируясь на данные, полученные отечественными и иностранными авторами , установлено, что лазеротерапия снижает индукцию про- и противовоспалительных цитокинов, угнетает активацию протеолитической системы и образование активных форм кислорода, усиливает синтез белков неспецифической иммунной защиты и обеспечивает восстановление мембран повреждённых клеток (рис. 1).

Рис. 1. Показания к применению диодного лазера

Кроме того, было проведено фотодокументирование собственных клинических стоматологических манипуляций, выполненных с применением диодного лазера.

Клиническая ситуация 1. Пациент Ч. обратился с жалобами на самопроизвольные боли в области прорезывающегося зуба 3.8, затрудненное открывание рта. Объективно в полости рта: зуб 3.8 в полуретенированном состоянии, дистальная часть окклюзионной поверхности покрыта отечным и гиперемированным слизисто-надкостничным лоскутом (рис. 2). Пациенту была проведена операция перикоронарэктомия в области полуретенированного зуба 3.8 с использованием лазера в сухом операционном поле с мгновенной коагуляцией (рис. 3).


Рис. 2. Исходная клиническая картина в области зуба 3.8.

Рис. 3. Состояние ретромолярной области после лазерной операции

Клиническая ситуация 2. На этапе протетического лечения для снятия двойного уточненного оттиска пациентке К. была проведена лазерная ретракция десны в области зубов 2.2. и 2.4. (рис. 4), после чего был зафиксирован адаптационный акриловый мостовидный протез на временный цемент RelyX Temp NE (фирмы 3М ESPE, Германия).


Рис. 4. Состояние маргинальной десны в области зубов 2.2., 2.4. после лазерной ретракции

Клиническая ситуация 3. Пациентка П. обратилась в клинику с жалобами на дефект коронки зуба 4.2. При объективном обследовании установлено наличие дефекта коронки и окклюзионное смещение десневого края в области зуба 4.2. (рис. 5). Для коррекции десневого контура в области зуба 4.2. был использован диодный лазер с последующей реставрацией коронковой части композитным материалом светового отверждения (рис. 6).


Рис. 5. Исходный уровень прикрепления маргинальной части десны в области зуба 4.2.

Рис. 6. Новый уровень прикрепления маргинальной части десны в области зуба 4.2.

Выводы. Лазеры комфортны для пациента и имеют ряд преимуществ по сравнению с традиционными методами лечения. Преимущества применения лазеров в стоматологии доказаны практикой и неоспоримы: безопасность, точность и быстрота, отсутствие нежелательных эффектов, ограниченное применение анестетиков – все это позволяет осуществлять щадящее и безболезненное лечение, ускорение сроков лечения, а, следовательно, создает более комфортные условия и для врача, и для пациента.

Показания для применения лазера практически полностью повторяют список заболеваний, с которыми приходиться сталкиваться в своей работе врачу-стоматологу.

При помощи лазерных установок успешно лечится кариес начальной стадии, при этом лазер удаляет только пораженные участки, не затрагивая здоровые ткани зуба (дентин и эмаль).

Целесообразно применять лазер при запечатывании фиссур (естественных бороздок и канавок на жевательной поверхности зуба) и клиновидных дефектов.

Проведение пародонтологических операций в лазерной стоматологии позволяет добиться хороших эстетических результатов и обеспечить полную безболезненность операции. При этом происходит более быстрое оздоровление пародонтальной ткани и укрепление зубов.

Стоматологические лазерные аппараты применяются при удалении фибром без наложения швов, проводится чистая и стерильная процедура биопсии, проводятся бескровные хирургические операции на мягких тканях. Успешно лечатся заболевания слизистой оболочки полости рта: лейкоплакия, гиперкератозы, красный плоский лишай, лечение афтозных язв в полости рта пациента.

При эндодонтическом лечении лазер применяется для дезинфекции корневого канала с эффективностью бактерицидного действия, приближенной к 100%.

В эстетической стоматологии при помощи лазера удается изменить контур десен, форму ткани десен для формирования красивой улыбки, при необходимости легко и быстро удаляются уздечки языка. Наибольшую популярность в последнее время получило эффективное и безболезненное лазерное отбеливание зубов с сохранением стойкого результата на долгое время.

При установке зубного протеза лазер поможет создать очень точный микрозамок для коронки, что позволяет не обтачивать соседние зубы. При установке имплантатов лазерные приборы позволяют идеально определить место установки, произвести минимальный разрез тканей и обеспечить наискорейшее заживление области имплантации.

Новейшие стоматологические установки позволяют проводить не только лечение зубов лазером, но и разнообразные хирургические манипуляции без применения анестезии. Благодаря лазеру заживление разрезов слизистой проходит гораздо быстрее, исключается развитие отеков, воспалений и прочих осложнений, нередко возникающих после проведения стоматологических манипуляций.

Лечение зубов лазером особенно показано пациентам, страдающим повышенной чувствительностью зубов, беременным женщинам, пациентам, страдающим аллергическими реакциями на обезболивающие препараты. Противопоказаний к применению лазера до настоящего времени выявить не удалось. Недостатком лазерного лечения зубов можно считать лишь более высокую, по сравнению с традиционными методами, стоимость.

Таким образом, использование лазера в стоматологии позволяет врачу-стоматологу рекомендовать пациенту более широкий спектр стоматологических манипуляций, отвечающих предъявляемым стандартам, что в конечном итоге направлено на повышение эффективности планируемого лечения.

Рецензенты:

Вейсгейм Л.Д., д.м.н., профессор, заведующая кафедрой стоматологии факультета усовершенствования врачей Волгоградского государственного медицинского университета, г. Волгоград.
Темкин Э.С., д.м.н., профессор, главный врач стоматологической клиники ООО «Премьер», г. Волгоград.

Список литературы
1. Абакарова С.С. Применение хирургических лазеров при лечении больных с доброкачественными новообразованиями мягких тканей рта и хроническими заболеваниями пародонта: автореф. дис. … канд. мед. наук. – М., 2010. – 18 с.
2. Амирханян А.Н., Москвин С.В. Лазерная терапия в стоматологии. – Триада, 2008. – 72 с.
3. Дмитриева Ю.В. Оптимизация подготовки зубов под современные несъемные ортопедические конструкции: автореф. дис. … канд. мед. наук. – Екатеринбург, 2012. – 15 с.
4. Куртакова И.В. Клинико-биохимическое обоснование применения диодного лазера в комплексном лечении заболеваний пародонта: автореф. дис. … канд. мед. наук. – М., 2009. – 18 с.
5. Mummolo S. Aggressive periodontitis: laser Nd:YAG treatment versus conventional surgical therapy / Mummolo S., Marchetti E., Di Martino S. et al. // Eur J Paediatr Dent. - 2008. - Vol. 9, № 2. - P. 88-92.


Статья предоставлена журналом "Современные проблемы науки и образования"

ВНИМАНИЕ! Любое копирование и размещение в сторонних источниках материалов, опубликованных на сайте WWW.сайт, возможно только при указании АКТИВНОЙ ссылки на источник. При копировании этой статьи указывайте:

    Введение

    Лазеры и лазерные установки в стоматологии: описание, классификация и характеристики

    Действие лазеров на ткани

    Взаимодействие лазера с твердой тканью зуба

    Механизм и особенности лазерного препарирования твердых тканей зуба

    Список литературы

Введение.

В 60-е годы XX века были представлены первые лазеры для медицинских целей. С тех пор наука и техника совершили огромный скачок в развитии, позволяя использовать лазеры для огромного количества процедур и методик. В 90-е годы произошел прорыв лазеров в стоматологию, их стали использовать для работы с мягкими и твердыми тканями. В настоящее время в стоматологии лазеры используются для профилактики стоматологических заболеваний, в пародонтологии, терапевтической стоматологии, эндодонтии, хирургии и имплантологии. Применение лазеров - целесообразный метод для ежедневной помощи стоматологам во многих видах работ. Для некоторых процедур, например френулотомии, лазеры оказались настолько клинически эффективны, что стали «золотым» стандартом среди врачей. Они позволяют работать в сухом поле, что обеспечивает превосходную видимость и сокращает время операции. При использовании лазеров вероятность рубцевания очень мала, и практически не требуется применение швов. Они также обеспечивают абсолютную стерильность рабочего поля, что в большинстве случаев является абсолютной необходимостью, например при стерилизации корневого канала.

Лазеры и лазерные установки в стоматологии: описание, классификация и характеристики

Лазерные устройства производят различной длины волны, которые взаимодействуют с определенными молекулярными компонентами в животных тканях. Каждая из этих волн воздействуют на определенные компоненты ткани - меланин, гемосидерин, гемоглобин, воду и другие молекулы. В медицине лазеры применяют для облучения тканей с простым лечебным эффектом, для стерилизации, для коагуляции и резекции (операционные лазеры), а также для высокоскоростного препарирования зубов. Лазерный свет поглощается определенным структурным элементом, входящим в состав биоткани. Поглощающее вещество носит название хромофор. Им могут являться различные пигменты (меланин), кровь, вода и др. Каждый тип лазера рассчитан на определенный хромофор, его энергия калибруется исходя из поглощающих свойств хромофора, а также с учетом области применения.

Лазерные взаимодействия с кальцийсодержащими тканями были изучены, используя различные по длине волны. В зависимости от таких лазерных параметров как продолжительность импульса, разряд длина волны, глубина проникновения, выделяют следующие типы лазеров: импульсный на красителе, He-Ne, рубиновый, александритовый, диодный, неодимовый (Nd: YAG), гольдмиевый (Nо: YAG), эрбиевый (Er: YAG), углекислотный (СО2).

В медицине лазеры применяют для облучения тканей с профилактическим или лечебным эффектом, стерилизации, для коагуляции и резки мягких тканей (операционные лазеры), а также для высокоскоростного препарирования твердых тканей зубов. Лазеры производят такие поверхностные изменения в эмали как кратерообразование, таяние и перекристализация.

В стоматологии наиболее часто применяют CO2 лазер для воздействия на мягкие ткани и эрбиевый лазер для препарирования твердых тканей. Существуют аппараты, совмещающие в себе несколько типов лазеров (например, для воздействия на мягкие и твердые ткани), а также изолированные приборы для выполнения конкретных узкоспециализированных задач (лазеры для отбеливания зубов).

Различают несколько режимов работы лазера: импульсный, непрерывный и комбинированный. В соответствии с режимом работы выбирается их мощность (энергетика).

Таблица 1. Типы лазеров, глубина проникновения и хромофоры

Лазер

Длина волны, нм

Глубина проникновения, мкм (мм)*

Поглощающий хромофор

Типы ткани

Лазеры, используемые в стоматологии

Nd: YAG с удвоением частоты

Меланин, Кровь

Импульсный на красителе

Меланин, Кровь

He-Ne (гелий-неоновый)

Меланин, Кровь

Мягкие, терапия

Рубиновый

Меланин, Кровь

Александритовый

Меланин, Кровь

Меланин, Кровь

Мягкие, отбеливание

Неодимовый (Nd:YAG)

Меланин, Кровь

Гольдмиевый (Ho:YAG)

Эрбиевый (Er:YAG)

Твердые (мягкие) Твердые (мягкие)

Углекислотный (СО2)

Твердые (мягкие) Мягкие

* глубина проникновения света h в микрометрах (миллиметрах), на которой поглощается 90% мощности падающего на биоткань лазерного света.

В стоматологии наиболее часто применяют СО2- лазер для воздействия на мягкие ткани, и эрбиевый лазер для препарирования твердых тканей.

Режим работы лазеров и их энергетика.

Эрбиевый:

Импульсный, энергия/имп. ~300…1000 мДж/имп.

СО2-лазер:

Импульсный (до 50 мДж/мм2)

Непрерывный (1-10 Вт)

Комбинированный

Типичный лазерный аппарат состоит из базового блока, световода и лазерного наконечника, которым врач непосредственно работает в полости рта пациента. Для удобства работы выпускаются различные типы наконечников: прямые, угловые, для калибровки мощности и т. д. Все они оборудованы системой охлаждения вода-воздух для постоянного контроля температуры и удаления отпрепарированных твердых тканей.

При работе с лазерной техникой должны использоваться специальные средства защиты зрения. Врач и пациент во время препарирования должны находиться в специальных очках. Следует отметить, что опасность потери зрения от лазерного излучения на несколько порядков меньше, чем от стандартного стоматологического фотополимеризатора. Лазерный луч не рассеивается и имеет очень небольшую площадь освещения (0,5мм² против 0,8см² у стандартного световода).

Лазер работает в режиме, посылая каждую секунду в среднем около десяти лучей. Лазерный луч, попадая на твердые ткани, испаряет тончайший слой около 0,003 мм. Препарирование происходит достаточно быстро, однако врач может контролировать процесс, немедленно прервав его одним движением. После препарирования лазером получается идеальная полость: края стенок закругленные, тогда как при препарировании турбиной стенки перпендикулярны поверхности зуба, и приходиться после этого проводить дополнительное финирование.

Кроме того, полость после препарирования лазером остается стерильной, как после длительной антисептической обработки, так как лазерный свет убивает патогенную флору.

Препарирование лазером процедура бесконтактная, компоненты лазерной установки непосредственно не контактируют с тканями - препарирование происходит дистанционно. Кроме несомненных практических преимуществ, применения лазера помогает существенно снизить себестоимость лечения. Работая лазером, можно полностью исключить из повседневных расходов боры, антисептические растворы, кислоту для протравливания эмали. Время, затрачиваемое врачом на лечение, сокращается более чем на 40%.



Рассказать друзьям