Кремний химические свойства. Реферат: Химические соединения на основе кремния и углерода

💖 Нравится? Поделись с друзьями ссылкой
  • Обозначение - Si (Silicon);
  • Период - III;
  • Группа - 14 (IVa);
  • Атомная масса - 28,0855;
  • Атомный номер - 14;
  • Радиус атома = 132 пм;
  • Ковалентный радиус = 111 пм;
  • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 2 ;
  • t плавления = 1412°C;
  • t кипения = 2355°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,90/1,74;
  • Степень окисления: +4, +2, 0, -4;
  • Плотность (н. у.) = 2,33 г/см 3 ;
  • Молярный объем = 12,1 см 3 /моль.

Соединения кремния:

В чистом виде впервые кремний был выделен в 1811 году (французы Ж. Л. Гей-Люссак и Л. Ж. Тенар). Чистый элементарный кремний был получен в 1825 г. (швед Й. Я. Берцелиус). Свое название "кремний" (в переводе с древнегреческого - гора) химический элемент получил в 1834 году (российский химик Г. И. Гесс).

Кремний является самым распространенным (после кислорода) химическим элементом на Земле (содержание в земной коре 28-29% по массе). В природе кремний чаще всего присутствует в виде кремнезема (песок, кварц, кремень, полевые шпаты), а также в силикатах и алюмосиликатах. В чистом виде кремний встречается чрезвычайно редко. Многие природные силикаты в чистом виде являются драгоценными камнями: изумруд, топаз, аквамари - это все кремний. Чистый кристаллический оксид кремния (IV) встречается в виде горного хрусталя и кварца. Оксид кремния, в котором присутствуют различные примеси, образует драгоценные и полудрагоценные камни - аметист, агат, яшма.


Рис. Строение атома кремния.

Электронная конфигурация кремния - 1s 2 2s 2 2p 6 3s 2 3p 2 (см. Электронная структура атомов). На внешнем энергетическом уровне у кремния находятся 4 электрона: 2 спаренных на 3s-подуровне + 2 неспаренных на p-орбиталях. При переходе атома кремния в возбужденное состояние один электрон с s-подуровня "покидает" свою пару и переходит на p-подуровень, где имеется одна свободная орбиталь. Т. о., в возбужденном состоянии электронная конфигурация атома кремния приобретает следующий вид: 1s 2 2s 2 2p 6 3s 1 3p 3 .


Рис. Переход атома кремния в возбужденное состояние.

Т. о., кремний в соединениях может проявлять валентность 4 (чаще всего) или 2 (см. Валентность). Кремний (так же, как и углерод), реагируя с другими элементами, образует химические связи в которых может как отдавать свои электроны, так и принимать их, но при этом способность принимать электроны у атомов кремния выражена слабее, чем у атомов углерода , по причине большего размера атома кремния.

Степени окисления кремния:

  • -4 : SiH 4 (силан), Ca 2 Si, Mg 2 Si (силикаты металлов);
  • +4 - наиболее устойчивая: SiO 2 (оксид кремния), H 2 SiO 3 (кремниевая кислота), силикаты и галогениды кремния;
  • 0 : Si (простое вещество)

Кремний, как простое вещество

Кремний представляет из себя темно-серое кристаллическое вещество с металлическим блеском. Кристаллический кремний является полупроводником.

Кремний образует только одну аллотропную модификацию, подобную алмазу, но при этом не такую прочную, т. к. связи Si-Si не так прочны, как в алмазной молекуле углерода (См. Алмаз).

Аморфный кремний - порошок бурого цвета, с температурой плавления 1420°C.

Кристаллический кремний получают из аморфного путем его перекристаллизации. В отличие от аморфного кремния, который является достаточно активным химическим веществом, кристаллический кремний более инертен в плане взаимодействия с другими веществами.

Строение кристаллической решетки кремния повторяет структуру алмаза, - каждый атом окружен четырьмя другими атомами, расположенными в вершинах тетраэдра. Атомы связываются друг с другом ковалентными связями, которые не так прочны, как углеродные связи в алмазе. По этой причине, даже при н.у. некоторые ковалентные связи в кристаллическом кремнии разрушаются, в результате чего высвобождается некоторая часть электронов, благодаря чему кремний обладает небольшой электропроводностью. По мере нагревания кремния, на свету или при добавлении некоторых примесей, кол-во разрушаемых ковалентных связей увеличивается, вследствие чего и увеличивается кол-во свободных электронов, следовательно, растет и электропроводность кремния.

Химические свойства кремния

Как и углерод, кремний может быть и восстановителем, и окислителем, в зависимости от того, с каким веществом вступает в реакцию.

При н.у. кремний взаимодействует только с фтором, что объясняется достаточно прочной кристаллической решеткой кремния.

В реакцию с хлором и бромом кремний вступает при температурах, превышающих 400°C.

С углеродом и азотом кремний взаимодействует только при очень высоких температурах.

  • В реакциях с неметаллами кремний выступает в роли восстановителя :
    • при нормальных условиях из неметаллов кремний реагирует только с фтором, образуя галогенид кремния:
      Si + 2F 2 = SiF 4
    • при высоких температурах кремний реагирует с хлором (400°C), кислородом (600°C), азотом (1000°C), углеродом (2000°C):
      • Si + 2Cl 2 = SiCl 4 - галогенид кремния;
      • Si + O 2 = SiO 2 - оксид кремния;
      • 3Si + 2N 2 = Si 3 N 4 - нитрид кремния;
      • Si + C = SiC - карборунд (карбид кремния)
  • В реакциях с металлами кремний является окислителем (образуются салициды :
    Si + 2Mg = Mg 2 Si
  • В реакциях с концентрированными р-рами щелочей кремний реагирует с выделением водорода, образуя растворимые соли кремниевой кислоты, называемые силикатами :
    Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2
  • С кислотами (за исключением HF) кремний не реагирует.

Получение и применение кремния

Получение кремния:

  • в лаборатории - из кремнезема (алюмотерапия):
    3SiO 2 + 4Al = 3Si + 2Al 2 O 3
  • в промышленности - восстановлением оксида кремния коксом (технически чистый кремний) при высокой температуре:
    SiO 2 + 2C = Si + 2CO
  • самый чистый кремний получают восстановлением тетрахлорида кремния водородом (цинком) при высокой температуре:
    SiCl 4 +2H 2 = Si+4HCl

Применение кремния:

  • изготовление полупроводниковых радиоэлементов;
  • в качестве металлургических добавок при производстве жаропрочных и кислотоустойчивых соединений;
  • в производстве фотоэлементов для солнечных батарей;
  • в качестве выпрямителей переменного тока.

дорослей, поглощающих растворенный в воде кислород, поэтому гибнут рыбы и др. К тому же, анаэробное (т.е. без доступа O2 ) разложение останков организмов приводит к образованию веществ, которые превращают водоемы в болота.

Особенно опасна передозировка нитратов , т.к. с растениями, поглотившими их, нитраты попадают в живые организмы, где превращаются внитриты. Последние делают гемоглобин неспособным переносить кислород (поэтому возможна даже смерть), а также провоцируют раковые заболевания.

Помимо использования в качестве сельскохозяйственных удобрений фосфаты идут также на приготовление моющих средств и как добавки в корм животным. В последнем случае для синтеза фосфата кальция применяют кислоту Н3 РО4 , полученную сжиганиемчистого фосфора (с последующей гидратацией Р2 О5 ), поскольку природные минералы содержат вредные для скота примеси, например фторидионы.

Глава 6. УГЛЕРОД И КРЕМНИЙ

6.1. Общая характеристика. Нахождение в природе. Получение

К p-элементам IV группы относятся углерод, кремний, германий, олово и свинец. Причем C – довольно распространенный элемент на Земле (0,14 %), а кремний (16,7 %) занимаетвторое место после кислорода. Аналогов кремния несопоставимо меньше (пример-

но по 10-4 %).

Атомы элементов данной группы в невозбужденном состоянии имеют электронную конфигурацию валентного слоя s2 p2 , а при возбуждении s1 p3 . Как следствие, они образуют соединения в степенях окисления +2, +4 и –4. Но только углерод достаточно устойчив в ст.ок. –4, чтобы находиться в ней в природе – в видеуглеводородов (поскольку лишь он имеет сравнительно высокое значение ЭО, равное 2,5, а у остальных – 1,9 и ниже).

Кроме того, С встречается на Земле и в виде простых веществ (в частности, в составе углей25 ). Природные же соединения аналогов углерода –сложные вещества , например: SnO2 (минерал касситерит) и PbS (т.н. свинцовый блеск).

Подчеркнем, что, хотя C и назван (в 1797 г.) углеродом (углерождающим ), но основные его природные запасы – не угли, акарбонаты (известняк, мрамор, мел и т.п.).

Кремний представлен на земле кислородными соединениями, которые составляют 58,3 % земной коры. Этокремнеземы SiO2 (песок, кварц26 , топаз, аметист),силикаты (асбест MgSiO3 , слюда, полевой шпат и др.). А также граниты, сиениты27 , т.е. спрессованные природой смеси песка, слюды и полевого шпата. В качестве микроэлемента кремний находится также в человеческом организме и играет важную биологическую роль, причем чем старше человек, тем меньше в нем Si.

Технический (т.е. сравнительно грязный) кремний в промышленности получают из природного оксида карботермически , как и его аналоги, но PbS предварительно обжигом переводят в PbO.

6.2. Структура и физические свойства простых веществ

Особенности углерода . Все простые вещества С образованы атомами углерода в возбужденном состоянии sp3 , а поскольку при этом еще и атомный радиус С достаточно мал, то -связь С–С

оказывается максимально прочной.

Кроме того, атомы углерода менее склонны, чем N, давать-перекрывания (из-за большего радиуса С). Поэтому частицы С2 хотя и существуют, но, в отличие от N2 , нестабильны. Напротив, гораз-

до более устойчивы гомоядерные полимеры , в которых атомы уг-

лерода имеют по четыре -связи. Это и простое вещество алмаз, и многочисленные органические соединения.

25 Содержание углерода в антраците 96 %, в буром угле – 72 %, а в сухой древе-

сине – 50 %.

26 К кварцам относится и горный хрусталь – размер некоторых его природных кристаллов достигает 2 м.

27 Из сиенита сложены знаменитые «Красноярские Столбы».

Однако атомы С могут формировать между собой и достаточно эффективные -перекрывания, причем в зависимости от кратности связи (к.с.) между атомами углерода, различают несколько аллотропных форм С: алмаз (к.с. = 1), графит (к.с. = 1,3), карбин (к.с. = 2) и др. Рассмотрим их подробнее.

Карбин. Данное простое вещество углерода имеет, как и пластическая сера,волокнистую структуру, но его волокна не зигзагообразные, алинейные .

Они имеют одинаковую форму –промежуточную между ша-

ром и гантелью. (На рис. 7, а и 8 одна из ГО для наглядности нарисована более жирной линией). Такой процесс смешивания s-орбитали и

одной p-орбитали называется sp-гибридизацией .

Рис. 7. Гибридизация орбиталей: а ) spб ) sp2 в ) sp3

Поскольку ГО имеют асимметричную форму, то они вбольшей степени перекрываются с орбиталями других атомов (при формировании -связи с ними, как показано на рис. 8), и поэтому обра-

зуют более прочныеХС.

Подчеркнем, что угол между осями двух -связей при spгибридизации равен 180°, т.к. гибридные орбитали из-за отрицательного заряда электронов, находящихся на них, взаимноотталкивают-

ся , т.е. стремятся кмаксимальной удаленности друг от друга. Как следствие, фрагмент из трех атомов получаетсялинейным (рис. 8). А поскольку в карбиневсе атомы углерода в цепях, образуя по две - связи, имеют sp-гибридизацию своих орбиталей, то эти цепи тожелинейны. Причем 2pz и 2py -орбитали каждого атома С в карбине участвуют в -перекрывании, давая двойные (или тройные) связи в цепи:

C C C (C C C).

Графит . В графитевсе атомы углерода образуют по 3 -связи с тремя соседними С, используя s-, px - и pz -орбитали (рис. 7,б ). А значит, имеем sp2 -гибридизацию, при которой углы между осями связей равны по 120°. Таким образом фрагмент из четырех атомов представляет собойплоский треугольник (см. рис. 9). Треугольные фрагменты, объединяясь между собой, даютплоский слой , составленный из шестиугольников, в которых углы как раз по 120°.

Итак, решетка графита построена из слоев. Они связаны между собой с помощью ММС. А четвертая орбиталь (py -) каждого атома С графита участвует вобщем -перекрывании со всеми атомами своего слоя. Этообщее -перекрывание обеспечивает pу -электронам почти такую же подвижность, как в металлах. Вследствие чего графит имеет серый, как многие М, цвет и проводит ток (но только вдоль слоев, а не перпендикулярно к ним).

В целом решетка графита прочная, благодаря чему он термостоек (т.пл. 3800 °С), поэтому из него делают огнеупорные изделия, например тигли. Но поскольку ММС между слоями значительно слабее , чем ХС в слое, то возможно довольно легкоеотслаивание графита. В частности, при надавливании им на бумагу, на ней остается его серый след. Поэтому графит (его название в переводе с нем. озна-

чает «пишущий») используют для изготовления карандашей, а также в технике в качестве твердой смазки между трущимися деталями.

Отметим, что многие простые соединения С (кокс, сажа, основное вещество угля и т.п.) являются мелкокристаллическими разновидностями графита.

Сравнительно недавно получены новые простые вещества C:

трубчатый углерод (его молекулы имеют вид трубок),фуллерены

(состоящие, например, из «шаров» С60 или С70 ) и др. И все они построены, как и графит, изтреугольников , ноне плоских , ибо в них атомы С имеют лишьприблизительно sp2 -гибридизацию орбиталей.

Алмаз . Самая прекрасная форма углерода – алмаз (прозрачное вещество, сильно преломляющее световые лучи). В нем все четыре орбитали С (s- и три p-) каждого атома углерода участвуют в - перекрываниях счетырьмя соседними атомами С. А значит, имеем sp3 -гибридизацию (рис. 7 в), при которой углы между связями≈109 0 , а пять атомов углерода, связанных указанным образом, образуюттетраэдр , т.е. объемную форму.

Как результат того, что каждый атом С в алмазе (кроме поверхностных) имеет по четыре -связи, тетраэдры оказываются соединенными между собойтолько химическими связями, и, значит, образуютстабильную координационную решетку. А поскольку -связи С–С максимально прочные (прочнее, напомним, лишь в молекуле Н2 ), то, как следствие, алмаз –самое твердое вещество из известных на Земле (само его название на арабском означает «твердейший»).

Благодаря столь высокой твердости применение алмазов в промышленности в 2-3 раза увеличивает мощность оборудования, а также срок его службы. Используют алмазы для резки стекла, шлифования твердых материалов, бурения горных пород и др. Причем почти половина применяемых образцов получены искусственно из графита.

Один из способов синтеза алмаза – действие на сильно нагретый графит сверхвысокого давления, которое сближает слои графита настолько, чтомежду ними формируются -связи (перекрыванием py - орбиталей).

При этом sp2 -гибридизация переходит в sp3 -, а, значит,слоистая решетка сменяетсякоординационной (как следствие, исчезают проводимость и «пачкающие» свойства), т.е. образуетсяалмаз. По твердости он как настоящий, но внешне не привлекателен (из-за примеси графита). Так что для украшений годятся лишь природные алмазы. Самый крупный из них весит 600 г.

Кремний в свободном виде был выделен в 1811 Ж.Гей-Люссаком и Л.Тенаром при пропускании паров фторида кремния над металлическим калием, однако он не был описан ими как элемент. Шведский химик Й.Берцелиус в 1823 дал описание кремния, полученного им при обработке калиевой соли K 2 SiF 6 металлическим калием при высокой температуре. Новому элементу было дано название "силиций" (от лат. silex - кремень). Русское название "кремний" введено в 1834 году российским химиком Германом Ивановичем Гессом. В переводе c др.-греч. krhmnoz - "утес, гора".

Нахождение в природе, получение:

В природе кремний находится в виде диоксида и силикатов различного состава. Природный диоксид кремния встречается преимущественно в форме кварца, хотя существуют и другие минералы - кристобалит, тридимит, китит, коусит. Аморфный кремнезем встречается в диатомовых отложениях на дне морей и океанов - эти отложения образовались из SiO 2 , входившего в состав диатомовых водорослей и некоторых инфузорий.
Свободный кремний может быть получен прокаливанием с магнием мелкого белого песка, который по химическому составу является почти чистым оксидом кремния, SiO 2 +2Mg=2MgO+Si. В промышленности кремний технической чистоты получают, восстанавливая расплав SiO 2 коксом при температуре около 1800°C в дуговых печах. Чистота полученного таким образом кремния может достигать 99,9% (основные примеси - углерод, металлы).

Физические свойства:

Аморфный кремний имеет вид бурого порошка, плотность которого равна 2.0г/см 3 . Кристаллический кремний - темно-серое, блестящее кристаллическое вещество, хрупкое и очень твердое, кристаллизуется в решетке алмаза. Это типичный полупроводник (проводит электричество лучше, чем изолятор типа каучука, и хуже проводника - меди). Кремний хрупок, только при нагревании выше 800 °C он становится пластичным веществом. Интересно, что кремний прозрачен к инфракрасному излучению, начиная с длины волны 1.1 микрометр.

Химические свойства:

Химически кремний малоактивен. При комнатной температуре реагирует только с газообразным фтором, при этом образуется летучий тетрафторид кремния SiF 4 . При нагревании до температуры 400-500 °C кремний реагирует с кислородом с образованием диоксида, с хлором, бромом и иодом - с образованием соответствующих легко летучих тетрагалогенидов SiHal 4 . При температуре около 1000°C кремний реагирует с азотом образуя нитрид Si 3 N 4 , с бором - термически и химически стойкие бориды SiB 3 , SiB 6 и SiB 12 . С водородом кремний непосредственно не реагирует.
Для травления кремния наиболее широко используют смесь плавиковой и азотной кислот.
Отношение к щелочам...
Для кремния характерны соединения со степенью окисления +4 или -4.

Важнейшие соединения:

Диоксид кремния, SiO 2 - (кремниевый ангидрид) ...
...
Кремниевые кислоты - слабые, нерастворимые, образуются при добавлении кислоты в раствор силиката в виде геля (желатинообразное вещество). H 4 SiO 4 (ортокремниевая) и H 2 SiO 3 (метакремниевая, или кремниевая) существуют только в растворе и необратимо превращаются в SiO 2 при нагревании и высушивании. Получающийся твердый пористый продукт - силикагель , имеет развитую поверхность и используется как адсорбент газов, осушитель, катализатор и носитель катализаторов.
Силикаты - соли кремниевых кислот в большинстве своем (кроме силикатов натрия и калия) нерастворимы в воде. Свойства....
Водородные соединения - аналоги углеводородов, силаны , соединения, в которых атомы кремния соединены одинарной связью, силены , если атомы кремния соединены двойной связью. Подобно углеводородам эти соединения образуют цепи и кольца. Все силаны могут самовозгораться, образуют взрывчатые смеси с воздухом и легко реагируют с водой.

Применение:

Наибольшее применение кремний находит в производстве сплавов для придания прочности алюминию, меди и магнию и для получения ферросилицидов, имеющих важное значение в производстве сталей и полупроводниковой техники. Кристаллы кремния применяют в солнечных батареях и полупроводниковых устройствах - транзисторах и диодах. Кремний служит также сырьем для производства кремнийорганических соединений, или силоксанов, получаемых в виде масел, смазок, пластмасс и синтетических каучуков. Неорганические соединения кремния используют в технологии керамики и стекла, как изоляционный материал и пьезокристаллы

Для некоторых организмов кремний является важным биогенным элементом. Он входит в состав опорных образований у растений и скелетных - у животных. В больших количествах кремний концентрируют морские организмы - диатомовые водоросли, радиолярии, губки. Большие количества кремния концентрируют хвощи и злаки, в первую очередь - подсемейства Бамбуков и Рисовидных, в том числе - рис посевной. Мышечная ткань человека содержит (1-2)·10 -2 % кремния, костная ткань - 17·10 -4 %, кровь - 3,9 мг/л. С пищей в организм человека ежедневно поступает до 1 г кремния.

Антонов С.М., Томилин К.Г.
ХФ ТюмГУ, 571 группа.

Наиболее часто в природе встречается каменный уголь. Достаточно часто находят залежи графита. Он является более устойчивой аллотропной модификацией по сравнению с алмазом, поэтому в земной коре его больше, чем алмаза. Графит залегает в земле в виде чешуйчатых и пластинчатых масс. Учёные считают, что он образовался из каменного угля под воздействием высокого давления. Алмазы встречаются редко. Полагают, что они образуются из углеродсодержащих веществ при высоких температуре и давлении на глубине примерно 100 км.

Применение углерода и его соединений

1) Сначала алмазы использовали только для изготовления бриллиантов, которые всегда ценились как самые дорогие украшения.

Высокая твёрдость алмазов позволяет использовать их и для изготовления бурового и режущего инструментов, обработки других камней, металлов, твёрдых материалов. Алмазные свёрла применяют для сверления бетонных плит. С помощью алмазного инструмента можно с высокой точностью обработать камни, применяемые в часовых механизмах. Тонкие алмазные пластинки наносят на хирургические инструменты. Применение алмаза в технике удешевляет и ускоряет производственные процессы.

Широко в технике и промышленности применяется графит. Жаропрочность и химическая инертность делают его незаменимым материалом для изготовления огнеупорных изделий, а также химически устойчивых труб и аппаратов.

В электротехнической промышленности используют электропроводность графита. Из него делают электроды, гальванические элементы, контакты электрических машин. Графит имеет большое сопротивление. Поэтому из него изготовляют нагреватели для электропечей.

Очень чистый графит применяют в ядерных реакторах.

Графит служит в качестве карандашных стержней. Благодаря отслаиванию чешуек, стержень оставляет след на бумаге.

Каменный уголь применяется в качестве топлива. Его перерабатывают в кокс, который содержит меньше примесей, чем уголь.

Кокс является хорошим восстановителем, его используют в металлургической промышленности для получения металлов.

2) Диоксид углерода используют как хладагент, применяют при тушении пожаров, используют в медицине. Его добавляют в кислород, которым дышат тяжелобольные. Углекислый газ потребляется для приготовления газированной воды и других напитков.

3) Наибольшее применение имеет карбонат кальция. Из него получают негашёную известь, используемую в строительстве. Карбонаты натрия (сода) и калия (поташ) используют в мыловарении, для производства стекла, в фармацевтической промышленности, для получения удобрений.

Кремний

Кремний не менее значим в природе и жизни человека, чем углерод. Если углерод образует вещества живой природы, то кремний является основой веществ, составляющих всю планету Земля.

Применение кремния и его соединений

1) Поскольку кремний является хорошим восстановителем, его используют для получения металлов в металлургической промышленности.

Кремний применяют в электронике благодаря его свойству при определённых условиях проводить электрический ток. Из кремния изготавливают фотоэлементы, полупроводниковые приборы для производства радиоприёмников, телевизоров, компьютеров.

Введение

2.1.1 Степень окисления +2

2.1.2 Степень окисления +4

2.3 Карбиды металлов

Глава 3. Соединения кремния

Список литературы

Введение

Химия - одна из отраслей естествознания, предметом изучения которой являются химические элементы (атомы), образуемые ими простые и сложные вещества (молекулы), их превращения и законы, которым подчиняются эти превращения.

По определению Д.И. Менделеева (1871), "химию в современном ее состоянии можно... назвать учением об элементах".

Происхождение слова "химия" выяснено не окончательно. Многие исследователи полагают, что оно происходит от старинного наименования Египта - Хемиа (греческое Chemia, встречается у Плутарха), которое производится от "хем" или "хаmе" - черный и означает "наука черной земли" (Египта), "египетская наука" .

Современная химия тесно связана, как с другими естественными науками, так и со всеми отраслями народного хозяйства.

Качественная особенность химической формы движения материи, и ее переходов в другие формы движения обуславливает разносторонность химической науки и ее связи с областями знания, изучающими и более низшие, и более высшие формы движения. Познание химической формы движения материи обогащает общее учение о развитии природы, эволюции вещества во Вселенной, содействует становлению целостной материалистической картины мира. Соприкосновение химии с другими науками порождает специфические области взаимного их проникновения. Так, области перехода между химией и физикой представлены физической химиейи химической физикой. Между химией и биологией, химией и геологией возникли особые пограничные области - геохимия, биохимия, биогеохимия, молекулярная биология. Важнейшие законы химии формулируются на математическом языке, и теоретическая химия не может развиваться без математики. Химия оказывала и оказывает влияние на развитие философии, и сама испытывала и испытывает её влияние.

Исторически сложились два основных раздела химии: неорганическая химия, изучающая в первую очередь химические элементы и образуемые ими простые и сложные вещества (кроме соединений углерода), и органическая химия, предметом изучения которой являются соединения углерода с др. элементами (органические вещества).

До конца 18 века термины "неорганическая химия" и "органическая химия" указывали лишь на то, из какого "царства" природы (минерального, растительного или животного) получались те или иные соединения. Начиная с 19 в. эти термины стали указывать на присутствие или отсутствие углерода в данном веществе. Затем они приобрели новое, более широкое значение. Неорганическая химия соприкасается прежде всего с геохимией и далее с минералогией и геологией, т.е. с науками о неорганической природе. Органическая химия представляет отрасль химии, которая изучает разнообразные соединения углерода вплоть до сложнейших биополимерных веществ. Через органическую и биоорганическую химию химия граничит с биохимией и далее с биологией, т.е. с совокупностью наук о живой природе. На стыке между неорганической и органической химией находится область элементоорганических соединений.

В химии постепенно сформировались представления о структурных уровнях организации вещества. Усложнение вещества, начиная от низшего, атомарного, проходит ступени молекулярных, макромолекулярных, или высокомолекулярных, соединений (полимер), затем межмолекулярных (комплекс, клатрат, катенан), наконец, многообразных макроструктур (кристалл, мицелла) вплоть до неопределённых нестехиометрических образований. Постепенно сложились и обособились соответствующие дисциплины: химия комплексных соединений, полимеров, кристаллохимия, учения о дисперсных системах и поверхностных явлениях, сплавах и др.

Изучение химических объектов и явлений физическими методами, установление закономерностей химических превращений, исходя из общих принципов физики, лежит в основе физической химии. К этой области химии относится ряд в значительной мере самостоятельных дисциплин: термодинамика химическая, кинетика химическая, электрохимия, коллоидная химия, квантовая химия и учение о строении и свойствах молекул, ионов, радикалов, радиационная химия, фотохимия, учения о катализе, химических равновесиях, растворах и др. Самостоятельный характер приобрела аналитическая химия, методы которой широко применяются во всех областях химии и химической промышленности. В областях практического приложения химии возникли такие науки и научные дисциплины, как химическая технология с множеством её отраслей, металлургия, агрохимия, медицинская химия, судебная химия и др.

Как уже было сказано выше, химия рассматривает химические элементы и образуемые ими вещества, а также законы, которым подчиняются эти превращения. Один из этих аспектов (а именно, химические соединения на основе кремния и углерода) и будет рассмотрен мной в данной работе.

Глава 1. Кремний и углерод - химические элементы

1.1 Общие сведения об углероде и кремнии

Углерод (С) и кремний (Si) входят в группу IVA.

Углерод не принадлежит к числу очень распространенных элементов. Несмотря на это, значение его огромно. Углерод-основа жизни на земле. Он входит в состав весьма распространенных в природе карбонатов (Са, Zn, Mg, Fe и др.), в атмосфере существует в виде СО 2 , встречается в виде природных углей (аморфного графита), нефти и природного газа, а также простых веществ (алмаза, графита).

Кремний по распространенности в земной коре занимает второе место (после кислорода). Если углерод - основа жизни, то кремний-основа земной коры. Он встречается в громадном многообразии силикатов (рис 4) и алюмосиликатов, песка.

Аморфный кремний - порошок бурого цвета. Последний легко получить в кристаллическом состоянии в виде серых твердых, но довольно хрупких крис таллов. Кристаллический кремний - полупроводник.

Таблица 1. Общие химические данные об углероде и кремнии.

Устойчивая при обычной температуре модификация углерода - графит - представляет собой непрозрачную, серую жирную массу. Алмаз - самое твердое вещество на земле - бесцветен и прозрачен. Кристаллические структуры графита и алмаза приведены на рис.1.

Рисунок 1. Структура алмаза (а); структура графита (б)

Углерод и кремний имеют свои определенные производные.

Таблица 2. Наиболее характерные производные углерода и кремния

1.2 Получение, химические свойства и применение простых веществ

Кремний получают восстановлением оксидов углеродом; для получения в особо чистом состояний после восстановления вещество переводят в тетрахлорид и снова восстанавливают (водородом). Затем сплавляют в слитки и подвергают очистке методом зонной плавки. Слиток металла нагревают с одного конца так, чтобы в нем образовалась зона расплавленного металла. При перемещении зоны к другому концу слитка примесь, растворяясь в расплавленном металле лучше, чем в твердом, выводится, и тем самым металл очищается.

Углерод инертен, но при очень высокой, температуре (в аморфном состоянии) взаимодействует с большинством металлов с образованием твердых растворов или карбидов (СаС 2 , Fе 3 С и т.д.), а также со многими металлоидами, например:

2С+ Са = СaC 2, С + 3Fe = Fe 3 C,

Кремний более реакционно способен. С фтором он реагирует уже при обычной температуре: Si+2F 2 =SiF 4

У кремния очень большое сродство также и к кислороду:

Реакция с хлором и серой протекает около 500 К. При очень высокой температуре кремний взаимодействует с азотом и углеродом:

С водородом кремний непосредственно не взаимодействует. Кремний растворяется в щелочах:

Si+2NaOH+H 2 0=Na 2 Si0 3 +2H 2 .

Кислоты, кроме плавиковой, на него не действуют. С HF идет реакция

Si+6HF=H 2 +2H 2 .

Углерод в составе различных углей, нефти, природных (в основном СН4), а также искусственно полученных газов - важнейшая топливная база нашей планеты

Графит широко используется для изготовления тиглей. Стержни из графита применяются как электроды. Много графита идет на производство карандашей. Углерод и кремний применяются для производства различных сортов чугуна. В металлургии углерод используется как восстановитель, а кремний из-за большого сродства к кислороду-как раскислитель. Кристаллический кремний в особо чистом состоянии (не более 10 -9 ат.% примеси) используется как полупроводник в различных устройствах и приборах, в том числе в качестве транзисторов и термисторов (приборов для очень тонких измерений температур), а также в фотоэлементах, работа которых основана на способности полупроводника при освещении проводить ток.

Глава 2. Химические соединения углерода

Для углерода характерны прочные ковалентные связи между собственными атомами (С-С) и с атомом водорода (С-Н), что нашло отражение в обилии органических соединений (несколько сот миллионов). Кроме прочных связей С-Н, С-С в различных классах органических и неорганических соединений, широко представлены связи углерода с азотом, серой, кислородом, галогенами, металлами (см. табл.5). Столь высокие возможности образования связей обусловлены малыми размерами атома углерода, позволяющими его валентным орбиталям 2s 2 , 2p 2 максимально перекрываться. Важнейшие неорганические соединения описаны в таблице 3.

Среди неорганических соединений углерода уникальными по составу и строению являются азотсодержащие производные.

В неорганической химии широко представлены производные уксусной СНзСООН и щавелевой H 2 C 2 О 4 кислот - ацетаты (типа М"СНзСОО) и оксалаты (типа M I 2 C 2 О 4).

Таблица 3. Важнейшие неорганические соединения углерода.

2.1 Кислородные производные углерода

2.1.1 Степень окисления +2

Оксид углерода СО (угарный газ): по строению молекулярных орбиталей (табл.4).

СО аналогичен молекуле N 2 . Подобно азоту СО обладает высокой энергией диссоциации (1069 кДж/ моль), имеет низкую Т пл (69 К) и Т кип (81,5 К), плохо растворим в воде, инертен в химическом отношении. В реакции СО вступает лишь при высоких температурах, в том числе:

СО+Сl 2 =СОСl 2 (фосген),

СО+Вг 2 =СОВг 2, Сг+6СО=Сг (СО) 6 -карбонил хрома,

Ni+4CO=Ni (CO) 4 - карбонил никеля

СО+Н 2 0 пар =НСООН (муравьиная кислота).

Вместе с тем молекула СО имеет большое сродство к кислороду:

СО +1/202 =С0 2 +282 кДж/моль.

Из-за большого сродства к кислороду оксид углерода (II) используется как восстановитель оксидов многих тяжелых металлов (Fe, Co, Pb и др.). В лаборатории оксид СО получают обезвоживанием муравьиной кислоты

В технике оксид углерода (II) получают восстановлением С0 2 углем (С+С0 2 =2СО) или окислением метана (2СН 4 +ЗО 2 = =4Н 2 0+2СО).

Среди производных СО представляют большой теоретический и определенный практический интерес карбонилы металлов (для получения чистых металлов).

Химические связи в карбонилах образуются в основном по донорно-акцепторному механизму за счет свободных орбиталей d- элемента и электронной пары молекулы СО, имеет место также л-перекрывание по дативному механизму (металл СО). Все карбонилы металлов - диамагнитные вещества, характеризующиеся невысокой прочностью. Как и оксид углерода (II), карбонилы металлов токсичны.

Таблица 4. Распределение электронов по орбиталям молекулы СО

2.1.2 Степень окисления +4

Диоксид углерода С0 2 (углекислый газ). Молекула С0 2 линейна. Энергетическая схема образования орбиталей молекулы С0 2 приведена на рис.2. Оксид углерода (IV) может взаимодействовать с аммиаком по реакции.

При нагревании этой соли получают ценное удобрение - карбамид СО (МН 2) 2:

Мочевина разлагается водой

CO (NH 2) 2 +2HaO= (МН 4) 2СОз.

Рисунок 2. Энфгетическая диаграмма образования молекулярных орбиталей С0 2.

В технике оксид СО 2 получают разложением карбоната кальция или гидрокарбоната натрия:

В лабораторных условиях его обычно получают по реакции (в аппарате Киппа)

СаСОз+2НС1=СаС12+С02+Н20.

Важнейшими производными С0 2 являются слабая угольная кислота Н 2 СО з и ее соли: M I 2 СОз и M I НСОз (карбонаты и гидрокарбонаты соответственно).

Большинство карбонатов нерастворимо в воде. Растворимые в воде карбонаты подвергаются значительному гидролизу:

COз 2- +H 2 0 COз-+OH - (I ступень).

Из-за полного гидролиза из водных растворов нельзя выделить карбонаты Cr 3+ , ai 3 +, Ti 4+ , Zr 4+ и др.

Практически важными являются Ка 2 СОз (сода), К 2 СОз (поташ) и СаСОз (мел, мрамор, известняк). Гидрокарбонаты в отличие от карбонатов растворимы в воде. Из гидрокарбонатов практическое применение находит NaHCО 3 (питьевая сода). Важными основными карбонатами являются 2СиСОз-Си (ОН) 2 , РЬСО 3 Х ХРЬ (ОН) 2 .

Свойства галогенидов углерода приведены в табл.6. Из галогенидов углерода самое большое значение имеет-бесцветная, достаточно токсичная жидкость. В обычных условиях ССІ 4 химически инертен. Его применяют как невоспламеняющийся и негорючий растворитель смол, лаков, жиров, а также для получения фреона CF 2 CІ 2 (Т кип = 303 К):

Другой используемый в практике органический растворитель - сероуглерод CSa (бесцветная, летучая жидкость с Ткип=319 К) – реакционно способное вещество:

CS 2 +30 2 =C0 2 +2S0 2 +258 ккал/моль,

CS 2 +3Cl 2 =CCl 4 -S 2 Cl 2, CS 2 +2H 2 0==C0 2 +2H 2 S, CS 2 +K 2 S=K 2 CS 3 (соль тиоугольной кислоты Н 2 СSз).

Пары сероуглерода ядовиты.

Циановодородная (синильная) кислота HCN (H-C = N) - бесцветная легко подвижная жидкость, кипящая при 299,5 К. При 283 К она затвердевает. HCN и ее производные чрезвычайно ядовиты. HCN можно получить по реакции

В воде синильная кислота растворяется; при этом она слабо диссоциирует

HCN=H++CN-, К=6,2.10- 10 .

Соли синильной кислоты (цианиды) в некоторых реакциях напоминают хлориды. Например СН -- -ион с ионами Ag+ дает плохо растворимый в минеральных кислотах белый осадок цианида серебра AgCN. Цианиды щелочных и щелочноземельных металлов растворимы в воде. Из-за гидролиза их растворы пахнут синильной кислотой (запах горького миндаля). Цианиды тяжелых металлов плохо растворимы в воде. CN - -сильный лиганд, важнейшими комплексными соединениями являются K 4 и Кз [Ре (СN) 6 ].

Цианиды - непрочные соединения, при длительном воздействии содержащегося в воздухе СO 2 цианиды разлагаются

2KCN+C0 2 +H 2 0=K 2 C0 3 +2HCN.

(CN) 2 - дициан (N=C-C=N) –

бесцветный ядовитый газ; с водой взаимодействует с образованием циановой (HOCN) и синильной (HCN) кислот:

(HCN) кислот:

(CN) 2 +H 2 0==HOCN+HCN.

В этой, как и в реакции, приведенной ниже, (CN) 2 похож на галоген:

СО+ (CN) 2 =CO (CN) 2 (аналог фосгена).

Циановая кислота известна в двух таутомерных формах:

H-N=C=O==H-0-C=N.

Изомером является кислота H-0=N=C (гремучая кислота). Соли HONC взрывают (используются как детонаторы). Родановодородная кислота HSCN - бесцветная, маслянистая, летучая, легко затвердевающая (Тпл=278 К) жидкость. В чистом состоянии очень неустойчива, при ее разложении выделяется HCN. В отличие от синильной кислоты HSCN достаточно сильная кислота (К=0,14). Для HSCN характерно таутомерное равновесие:

H-N = С = S=H-S-C =N.

SCN - ион кроваво-красного цвета (реактив на ион Fe 3+). Производные от HSCN соли-роданиды - легко получить из цианидов путем присоединения серы:

Большинство роданидов растворимо в воде. Нерастворимы в воде соли Hg, Au, Ag, Си. Ион SCN-, как и CN-, склонен давать комплексы типа Мз 1 M" (SCN) 6 , где M""Cu, Mg и некоторые другие. Диродан (SCN) 2 -светло-желтые кристаллы, плавящиеся - 271 К. Получают (SCN) 2 по реакции

2AgSCN+Br 2 ==2AgBr+ (SCN) 2 .

Из других азотсодержащих соединений следует указать цианамид

и его производное - цианамид кальция CaCN 2 (Ca=N-C=N), который используется в качестве удобрения .

2.3 Карбиды металлов

Карбидами называют продукты взаимодействия углерода с металлами, кремнием и бором. Карбиды по растворимости разделяются на два класса: карбиды, растворимые в воде (или в разбавленных кислотах), и карбиды, нерастворимые в воде (или в разбавленных кислотах).

2.3.1 Карбиды, растворимые в воде и разбавленных кислотах

А. Карбиды, при растворении образующие C 2 H 2 К этой группе относятся карбиды металлов первых двух главных групп; близки к ним и карбиды Zn, Cd, La, Се, Th состава MC 2 (LaC 2 , CeC 2 , ТhC 2 .)

CaC 2 +2H 2 0=Ca (OH) 2 +C 2 H 2, ThC 2 +4H 2 0=Th (OH) 4 +H 2 C 2 +H 2 .

АНСз+ 12Н 2 0=4Аl (ОН) з+ЗСН 4, Ве 2 С+4Н 2 0=2Ве (ОН) 2 +СН 4 . По свойствам к ним близок Мn з С:

Мn з С+6Н 2 0=ЗМn (ОН) 2 +СН 4 +Н 2 .

В. Карбиды, при растворении образующие смесь углеводородов и водород. К ним относятся большинство карбидов редкоземельных металлов.

2.3.2 Карбиды, нерастворимые в воде и в разбавленных кислотах

К этой группе относится большинство карбидов переходных металлов (W, Мо, Та и др.), а также SiC, B 4 C.

Они растворяются вокислительных средах, например:

VC + 3HN0 3 + 6HF = HVF 6 + СO 2 + 3NO + 4Н 2 0, SiC+4KOH+2C0 2 =K 2 Si0 3 +K 2 C0 3 +2H 2 0.

Рисунок 3. Икосаэдр B 12

Практически важными являются карбиды переходных металлов, а также карбиды кремния SiC и бора B 4 C. SiC - карборунд - бесцветные кристаллы с решеткой алмаза, по твердости приближающийся к алмазу (технический SiC за счет примесей имеет темную окраску). SiC очень огнеупорен, теплопроводен и при высокой температуре электропроводен, химически чрезвычайно инертен; его можно разрушить только при сплавлении на воздухе со щелочами.

B 4 C - полимер. Решетка карбида бора построена из линейно расположенных трех атомов углерода и групп, содержащих 12 атомов В, расположенных в форме икосаэдра (рис.3); твердость B4C превышает твердость SiC.

Глава 3. Соединения кремния

Отличие химии кремния от углерода в основном обусловлено большими размерами его атома и возможностью использования свободных Зй-орбиталей. Из-за дополнительного связывания (по донорно-акцепторному механизму) связи кремния с кислородом Si-О-Si и фтором Si-F (табл.17.23) более прочны, чем у углерода, а из-за большего размера атома Si по сравнению с атомом С связи Si-Н и Si-Si менее прочны, чем у углерода. Атомы кремния практически не способны давать цепи. Аналогичный углеводородам гомологический ряд кремневодородов SinH2n+2 (си-ланы) получен лишь до состава Si4Hio. Из-за большего размера у атома Si слабо выражена и способность к л-перекрыванию, поэтому не только тройные, но и двойные связи для него малохарактерны.

При взаимодействии кремния с металлами образуются силициды (Ca 2 Si, Mg 2 Si, BaSi 2 , Cr 3 Si, CrSi 2 и др.), похожие во многом на карбиды. Силициды не характерны для элементов I группы (кроме Li). Галогениды кремния (табл.5) более прочные соединения, чем галогениды углерода; вместе с тем водой они разлагаются.

Таблица 5. Прочность некоторых связей углерода и кремния

Наиболее прочным галогенидом кремния является SiF 4 (разлагается только под действием электрического разряда), но так же, как и другие галогениды, подвергается гидролизу. При взаимодействии SiF 4 с HF образуется гексафторокремниевая кислота:

SiF 4 +2HF=H 2 .

H 2 SiF 6 по силе близка к H 2 S0 4 . Производные этой кислоты - фторосиликаты, как правило, растворимы в воде. Плохо растворимы фторосиликаты щелочных металлов (кроме Li и NH 4). Фторосиликаты используются как ядохимикаты (инсектициды).

Практически важным галогенидом является SiCO 4 . Он используется для получения кремнийорганических соединений. Так, SiCL 4 легко взаимодействует со спиртами с образованием эфиров кремниевой кислоты HaSiO 3:

SiCl 4 +4C 2 H 5 OH=Si (OC 2 H 5) 4 +4HCl 4

Таблица 6. Галогениды углерода и кремния

Эфиры кремниевой кислоты, гидролизуясь, образуют силиконы - полимерные вещества цепочечного строения:

(R-органический радикал), которые нашли применение для получения каучуков, масел и смазок.

Сульфид кремния (SiS 2) n-полимерное вещество; при обычной температуре устойчив; разлагается водой:

SiS 2 + ЗН 2 О = 2H 2 S + H 2 SiO 3 .

3.1 Кислородные соединения кремния

Важнейшим кислородным соединением кремния является диоксид кремния SiO 2 (кремнезем), имеющий несколько кристаллических модификаций.

Низкотемпературная модификация (до 1143 К) называется кварцем. Кварц обладает пьезоэлектрическими свойствами. Природные разновидности кварца: горный хрусталь, топаз, аметист. Разновидностями кремнезема являются халцедон, опал, агат,. яшма, песок.

Кремнезем химически стоек; на него действуют лишь фтор, плавиковая кислота и растворы щелочей. Он легко переходит в стеклообразное состояние (кварцевое стекло). Кварцевое стекло хрупко, химически и термически весьма стойко. Отвечающая SiO 2 кремниевая кислота не имеет определенного состава. Обычно кремниевую кислоту записывают в виде xH 2 O-ySiO 2 . Выделены кремниевые кислоты: H 2 SiO 3 (H 2 O-SiO 2) - метакремниевая (три-оксокремниевая), H 4 Si0 4 (2H 2 0-Si0 2) - ортокремниевая (тетра-оксокремниевая), H 2 Si2O 5 (H 2 O * SiO 2) - диметакремниевая.

Кремниевые кислоты - плохо растворимые вещества. В соответствии с менее металлоидным характером кремния по сравнению с углеродом H 2 SiO 3 как электролит слабее Н 2 СОз.

Отвечающие кремниевым кислотам соли-силикаты-в воде нерастворимы (кроме силикатов щелочных металлов). Растворимые силикаты гидролизуются по уравнению

2SiOз 2 -+H 2 0=Si 2 O 5 2 -+20H-.

Концентрированные растворы растворимых силикатов называют жидким стеклом. Обычное оконное стекло-силикат натрия и кальция-имеет состав Na 2 0-CaO-6Si0 2 . Его получают по реакции

Известно большое разнообразие силикатов (точнее, оксосиликатов). В строении оксосиликатов наблюдается определенная закономерность: все состоят из тетраэдров Si0 4 , которые через атом кислорода соединены друг с другом. Наиболее распространенными сочетаниями тетраэдров являются (Si 2 O 7 6 -), (Si 3 O 9) 6 - , (Si 4 0 l2) 8- , (Si 6 O 18 12 -), которые как структурные единицы могут объединяться в цепочки, ленты, сетки и каркасы (рис 4).

Важнейшими природными силикатами являются, например, тальк (3MgO * H 2 0-4Si0 2) и асбест (SmgO*H 2 O*SiO 2). Как и для SiO 2 , для силикатов характерно стеклообразное (аморфное) состояние. При управляемой кристаллизации стекла можно получить мелкокристаллическое состояние (ситаллы). Ситаллы характеризуются повышенной прочностью.

Кроме силикатов в природе широко распространены алюмосиликаты. Алюмосиликаты - каркасные оксосиликаты, в которых часть атомов кремния заменена на трехвалентный Аl; например Na 12 [ (Si, Al) 0 4 ] 12 .

Для кремниевой кислоты характерно коллоидное состояниепри воздействии на ее соли кислот H 2 SiO 3 выпадает не сразу. Коллоидные растворы кремниевой кислоты (золи) при определенных условиях (например, при нагревании) можно перевести в прозрачную, однородную студнеобразную массу-гель кремниевой кислоты. Гели - высокомолекулярные соединения с пространственной, весьма рыхлой структурой, образованной молекулами Si0 2 , пустоты которой заполнены молекулами H 2 O. При обезвоживании гелей кремниевой кислоты получают силикагель - пористый продукт, обладающий высокой адсорбционной способностью.

Рисунок 4. Строение силикатов.

Выводы

Рассмотрев в своей работе химические соединения на основе кремния и углерода, я пришла к выводу, что углерод, являясь не очень распространённым количественно элементом есть важнейшим составляющим земной жизни, существуют его соединения в воздухе, нефти а также в таких простых веществах как алмаз и графит. Одной из важнейших характеристик углерода есть прочные ковалентные связи между атомами, а также атомом водорода. Важнейшими неорганическими соединениями углерода являются: оксиды, кислоты, соли, галогениды, азотосодержащие производные, сульфиды, карбиды.

Говоря о кремнии необходимо отметить большие количества его запасов на земле, он является основой земной коры и встречается в огромном многообразии силикатов, песка и т.д. В настоящее время использование кремния из-за его качеств полупроводника возврастает. Он используется в электронике при производстве компьютерных процессоров, микросхем и чипов. Соединения кремния с металлами образуют силициды, важнейшим кислородным соединением кремния есть оксид кремния SiO 2 (кремнезем) В природе есть большое разнообразие силикатов - это тальк, асбест, также распространены алюмосиликаты.

Список литературы

1. Большая советская энциклопедия. Третье издание. Т.28. - М.: Советская энциклопедия, 1970.

2. Жиряков В.Г. Органическая химия.4-е изд. - М., "Химия", 1971.

3. Краткая химическая энциклопедия. - М. "Советская энциклопедия", 1967.

4. Общая химия / Под ред. Е.М. Соколовской, Л.С. Гузея.3-е изд. - М.: Изд-во Моск. ун-та, 1989.

5. Мир неживой природы. - М., "Наука", 1983.

6. Потапов В.М., Татаринчик С.Н. Органическая химия. Учебник.4-е изд. - М.: "Химия", 1989.



Рассказать друзьям