Оптическая система глаза физиология. Анатомия и физиология органа зрения

💖 Нравится? Поделись с друзьями ссылкой

20-11-2018, 20:25

Описание

Из всех органов чувств человека глаз всегда признавался наилучшим даром и чудеснейшим произведением творческой силы природы. Поэты воспевали его, ораторы восхваляли, философы прославляли его как мерило, указывающее на то, к чему способны органические силы, а физики пытались подражать ему как непостижимому образу оптических приборов.

Г. Гельмгольц. "Не глазом, а посредством глаза смотреть на мир умеет разум Авиценна".

Первый шаг в понимании глаукомы - это ознакомление со строением глаза и его функциями. (рис. 1).

Глаз (глазное яблоко, Bulbus oculi) имеет почти правильную округлую форму, размер его передне-задней оси примерно 24 мм, весит около 7 г и анатомически состоит из трех оболочек (наружной - фиброзной, средней - сосудистой, внутренней - сетчатки) и трех прозрачных сред (внутриглазной жидкости, хрусталика и стекловидного тела).

Наружная плотная фиброзная оболочка состоит из задней, большей части - склеры, выполняющей скелетную, определяющую и обеспечивающую форму глаза функцию. Передняя, меньшая ее часть - роговица - прозрачна, менее плотная, не имеет сосудов, в ней разветвляется огромное количество нервов. Диаметр ее - 10-11 мм. Являясь сильной оптической линзой, она пропускает и преломляет лучи, а также выполняет важные защитные функции. За роговицей располагается передняя камера, заполненная прозрачной внутриглазной жидкостью.

К склере изнутри глаза прилегает средняя оболочка - сосудистый, или увеальный тракт, состоящий из трех отделов.

Первый, самый передний, видимый через роговицу , - радужка - имеет отверстие - зрачок . Радужка является как бы дном передней камеры. С помощью двух мышц радужки зрачок суживается и расширяется, автоматически регулируя величину светового потока, входящего в глаз, в зависимости от освещения. Цвет радужки зависит от различного содержания в ней пигмента: при малом его количестве глаза светлые (серые, голубые, зеленоватые), если его много - темные (карие). Большое количество радиально и циркулярно расположенных сосудов радужки, окутанных нежной соединительной тканью, образует своеобразный ее рисунок, рельеф поверхности.

Второй, средний отдел - цилиарное тело - имеет вид кольца шириной до 6-7 мм, примыкающего к радужке и обычно недоступного визуальному наблюдению. В цилиарном теле различают две части: передняя отростчатая, в толще которой лежит цилиарная мышца, при сокращении ее расслабляются тонкие нити цинновой связки, удерживающей в глазу хрусталик, что обеспечивает акт аккомодации. Около 70 отростков цилиарного тела, содержащих капиллярные петли и покрытых двумя слоями эпителиальных клеток, продуцируют внутриглазную жидкость. Задняя, плоская часть цилиарного тела является как бы переходной зоной между цилиарным телом и собственно сосудистой оболочкой.

Третий отдел - собственно сосудистая оболочка, или хориоидея - занимает заднюю половину глазного яблока, состоит из большого количества сосудов, располагается между склерой и сетчаткой, соответствуя ее оптической (обеспечивающей зрительную функцию) части.

Внутренняя оболочка глаза - сетчатка - представляет собой тонкую (0,1-0,3 мм), прозрачную пленку: оптическая (зрительная) ее часть покрывает хориоидею от плоской части цилиарного тела до места выхода зрительного нерва из глаза, неоптическая (слепая) - цилиарное тело и радужку, слегка выступая по краю зрачка. Зрительная часть сетчатки - это сложно организованная сеть из трех слоев нейронов.

Функция сетчатки как специфического зрительного рецептора тесно связана с сосудистой оболочкой (хориоидеей). Для зрительного акта необходим распад зрительного вещества (пурпура) под влиянием света. В здоровых глазах зрительный пурпур восстанавливается немедленно. Этот сложный фотохимический процесс восстановления зрительных веществ обусловлен взаимодействием сетчатки с хориоидеей. Сетчатка состоит из нервных клеток, образующих три нейрона.

В первом нейроне, обращенным к хориоидее, находятся светочувствительные клетки, фоторецепторы - палочки и колбочки, в которых под влиянием света происходят фотохимические процессы, трансформирующиеся в нервный импульс. Он проходит второй, третий нейрон, зрительный нерв и по зрительным путям попадает в подкорковые центры и далее в кору затылочной доли больших полушарий мозга, вызывая зрительные ощущения.

Палочки в сетчатке расположены преимущественно по периферии и отвечают за светоощущение, сумеречное и периферическое зрение. Колбочки локализуются в центральных отделах сетчатки, в условиях достаточного освещения формируя цветоощущение и центральное зрение. Наивысшую остроту зрения обеспечивает область желтого пятна и центральная ямка сетчатки.

Зрительный нерв формируется нервными волокнами - длинными отростками ганглиозных клеток сетчатки (3-й нейрон), которые, собираясь в отдельные пучки, выходят через мелкие отверстия в задней части склеры (решетчатую пластинку). Место выхода нерва из глаза называется диском зрительного нерва (ДЗН).

В центре диска зрительного нерва образуется небольшое углубление - экскавация , которая не превышает 0,2-0,3 диаметра диска (Э/Д). В центре экскавации проходят центральная артерия и вена сетчатки. В норме диск зрительного нерва имеет четкие границы, бледно-розовую окраску, округлую или слегка овальную форму.

Хрусталик - вторая (после роговицы) преломляющая среда оптической системы глаза, располагается за радужной оболочкой и лежит в ямке стекловидного тела.

Стекловидное тело занимает большую заднюю часть полости глаза и состоит из прозрачных волокон и гелеподобного вещества. Обеспечивает сохранение формы и объема глаза.

Оптическая система глаза состоит из роговицы, влаги передней камеры, хрусталика и стекловидного тела. Лучи света проходят прозрачные среды глаза, преломляются на поверхностях основных линз - роговицы и хрусталика и, фокусируясь на сетчатке, "рисуют" на ней изображение предметов внешнего мира (рис.2).

Зрительный акт начинается с преобразования изображения фоторецепторами в нервные импульсы, которые после обработки нейронами сетчатки передаются по зрительным нервам в высшие отделы зрительного анализатора. Таким образом, зрение можно определить как субъективное восприятие объективного мира посредством света с помощью зрительной системы.

Выделяют следующие основные зрительные функции:

  • центральное зрение (характеризуется остротой зрения) - способность глаза четко различать детали предметов, оценивается по таблицам со специальными знаками;
  • периферическое зрение (характеризуется полем зрения) - способность глаза воспринимать объем пространства при неподвижном положении глаза.

Исследуется с помощью периметра, кампиметра, анализатора поля зрения и др;

  • цветовое зрение - это способность глаза воспринимать цвета и различать цветовые оттенки. Исследуется с помощью цветовых таблиц, тестов и аномалоскопов;
  • светоощущение (темновая адаптация) - способность глаза воспринимать минимальное (пороговое) количество света. Исследуется адаптометром.

Полноценное функционирование органа зрения обеспечивается также вспомогательным аппаратом. Он включает в себя ткани орбиты (глазницы), веки и слезные органы, выполняющие защитную функцию. Движения каждого глаза осуществляются шестью наружными глазодвигательными мышцами.

Зрительный анализатор состоит из глазного яблока, строение которого схематично представлено на рис. 1, проводящих путей и зрительной коры головного мозга.

Вокруг глаза расположены три пары глазодвигательных мышц. Одна пара поворачивает глаз влево и вправо, другая - вверх и вниз, а третья вращает его относительно оптической оси. Сами глазодвигательные мышцы управляются сигналами, поступающими из мозга. Эти три пары мышц служат исполнительными органами, обеспечивающими автоматическое слежение, благодаря чему глаз может легко сопровождать взором всякий движущийся вблизи и вдали объект (рис. 2).

Глаз, глазное яблоко имеет почти шаровидную форму примерно 2,5 см в диаметре. Он состоит из нескольких оболочек, из них три - основные:

  • склера - внешняя оболочка,
  • сосудистая оболочка - средняя,
  • сетчатка - внутренняя.

Склера имеет белый цвет с молочным отливом, кроме передней ее части, которая прозрачна и называется роговицей. Через роговицу свет поступает в глаз. Сосудистая оболочка, средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза . Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок.

Функция этой оболочки - ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением - при низкой. За радужной оболочкой расположен хрусталик, похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке.

Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов. Достигается это следующим образом (рис.3).

Хрусталик в глазу "подвешен" на тонких радиальных нитях, которые охватывают его круговым поясом. Наружные концы этих нитей прикрепляются к ресничной мышце. Когда эта мышца расслаблена (в случае фокусировки взора Рис.5. Ход лучей при различных видах клинической рефракции глаза на удаленном предмете), то кольцо, образуемое ее телом, имеет большой диаметр, нити, держащие хрусталик, натянуты, и его кривизна, а следовательно и преломляющая сила, минимальна. Когда же ресничная мышца напрягается (при рассматривании близко расположенного объекта), ее кольцо сужается, нити расслабляются, и хрусталик становится более выпуклым и, следовательно, более сильно преломляющим. Это свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза, называется аккомодацией .

  • a-эметропия (норма);
  • b-миопия (близорукость);
  • c-гиперметропия (дальнозоркость);
  • d-астигматизм.

Лучи света фокусируются оптической системой глаза на особом рецепторном (воспринимающем) аппарате - сетчатой оболочке . Сетчатка глаза - передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование. В сетчатке позвоночных обычно различают 10 слоев нервных элементов, связанных между собой не только структурно-морфологически, но и функционально. Главным слоем сетчатки является тонкий слой светочувствительных клеток - фоторецепторов.

Они бывают двух видов: отвечающие на слабый засвет (палочки) и отвечающие на сильный засвет (колбочки). Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им обнаруживаются предметы на периферии поля зрения, в том числе при низкой освещенности. Колбочек насчитывается около 7 миллионов.

Они расположены главным образом в центральной зоне сетчатки, в так называемом "желтом пятне". Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. "Желтым пятном" человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное, цветное зрение, при помощи которого воспринимаются цвета окружающего нас мира.

От каждой светочувствительной клетки отходит нервное волокно, соединяющее рецепторы с центральной нервной системой. При этом каждую колбочку соединяет свое отдельное волокно, тогда как точно такое же волокно "обслуживает" целую группу палочек.

Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки - на клетки-биполяры, а затем на ганглиозные клетки.

При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных "помех" в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы. Нервные волокна со всей сетчатки собираются в зрительный нерв в особой области сетчатки - "слепом пятне". Оно расположено в том месте, где зрительный нерв выходит из глаза, и все, что попадает на эту область, исчезает из поля зрения человека.

Зрительные нервы правой и левой стороны перекрещиваются, причем у человека и высших обезьян перекрещиваются лишь половина волокон каждого зрительного нерва. В конечном счете вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию - кору, где и происходит формирование зрительного образа (рис. 4).

Окружающий нас мир мы видим ясно, когда все отделы зрительного анализатора "работают" гармонично и без помех. Для того, чтобы изображение было резким, сетчатка, очевидно, должна находиться в заднем фокусе оптической системы глаза. Различные нарушения преломления световых лучей в оптической системе глаза, приводящие к расфокусировке изображения на сетчатке, называются аномалиями рефракции (аметропиями). К ним относятся близорукость (миопия), дальнозоркость (гиперметропия), возрастная дальнозоркость (пресбиопия) и астигматизм (рис. 5).

Близорукость (миопия) - большей частью наследственно обусловленное заболевание, когда в период интенсивной зрительной нагрузки (учебы в школе, институте) вследствие слабости цилиарной мышцы, нарушения кровообращения в глазу происходит растяжение плотной оболочки глазного яблока (склеры) в передне-заднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида.

Вследствие такого удлинения продольной оси глаза изображения предметов фокусируется не на самой сетчатке, а перед ней, и человек стремится все приблизить к глазам, пользуется очками с рассеивающими ("минусовыми") линзами для уменьшения преломляющей силы хрусталика. Близорукость неприятна не тем, что требует ношения очков, а тем, что при прогрессировании заболевания возникают дистрофические очаги в оболочках глаза, приводящие к необратимой, некорригируемой очками потере зрения. Чтобы этого не допустить, нужно соединить опыт и знания врача-окулиста с настойчивостью и волей пациента в вопросах рационального распределения зрительной нагрузки, периодического самоконтроля за состоянием своих зрительных функций.

Дальнозоркость. В отличие от близорукости, это не приобретенное, а врожденное состояние - особенность строения глазного яблока: это либо короткий глаз, либо глаз со слабой оптикой. Лучи при этом состоянии собираются за сетчаткой. Для того, чтобы такой глаз хорошо видел, перед ним нужно поместить собирающие - "плюсовые" очки. Это состояние может долго "скрываться" и проявиться в 20-30 лет и более позднем возрасте; все зависит от резервов глаза и степени дальнозоркости.

Правильный режим зрительного труда и систематические тренировки зрения позволят значительно отодвинуть срок проявления дальнозоркости и пользования очками. Пресбиопия (возрастная дальнозоркость). С возрастом сила аккомодации постепенно падает, за счет уменьшения эластичности хрусталика и цилиарной мышцы. Наступает состояние, когда мышца уже неспособна к максимальному сокращению, а хрусталик, потеряв эластичность, не может принять максимально шаровидную форму - в результате человек теряет возможность различать мелкие, близко расположенные предметы, стремится отодвинуть книгу или газету от глаз (чтобы облегчить работу цилиарных мышц).

Для коррекции этого состояния назначаются очки для близи с "плюсовыми" стеклами. При систематическом соблюдении режима зрительного труда, активном занятии тренировкой глаз можно значительно отодвинуть время пользования очками для близи на многие годы.

Астигматизм - особый вид оптического строения глаза. Явление это врожденного или, большей частью приобретенного характера. Обусловлен астигматизм чаще всего неправильностью кривизны роговицы; передняя поверхность ее при астигматизме представляет собой не поверхность шара, где все радиусы равны, а отрезок вращающегося эллипсоида, где каждый радиус имеет свою длину. Поэтому каждый меридиан имеет особое преломление, отличающееся от рядом лежащего меридиана. Признаки болезни могут быть связаны с понижением зрения как вдаль, так и вблизь, снижением зрительной работоспособности, быстрой утомляемостью и болезненными ощущениями при работе на близком расстоянии.

Итак, мы видим, что наш зрительный анализатор, наши глаза - это исключительно сложный и удивительный дар природы. Весьма упрощенно можно сказать, что глаз человека - это, в конечном счете, прибор для приема и переработке световой информации и его ближайшим техническим аналогом является цифровая видеокамера.

Относитесь к своим глазам бережно и внимательно, так же бережно, как Вы относитесь к своим дорогим фото- и видеоустройствам.

Глаза человека, может быть, и небольшой орган, но они дают нам то, что многие считают самым важным из наших чувственных ощущений мира вокруг – зрение.

Хотя конечное изображение и формируется головным мозгом, но его качество, несомненно, зависит от состояния и функциональности воспринимающего органа – глаза.

Анатомия и физиология этого органа у человека сформировалась в ходе эволюции под влиянием условий, необходимых для выживания нашего вида. Поэтому имеет ряд особенностей – центральное, периферическое, бинокулярное зрение, возможность приспосабливаться к интенсивности освещения, фокусироваться на объектах, находящихся на разном удалении.

Анатомия глаза

Глазное яблоко неспроста носит такое название, так как орган имеет не совсем правильную форму сферы. Его кривизна больше в направлении спереди назад.

Находятся эти органы на одной плоскости лицевой части черепа достаточно близко друг от друга, чтобы обеспечивать перекрывание полей зрения. В черепе человека имеется специальное «посадочное место» для глаз – глазницы, которые защищают орган и служат местом прикрепления глазодвигательных мышц. Размеры орбиты взрослого человека обычного телосложения находятся в пределах 4-5 см по глубине, 4 см по ширине и 3,5 см по высоте. Глубина залегания глаза обусловлена этими размерами, а также объемом жировой клетчатки в глазнице.

Спереди глаз защищен с помощью верхнего и нижнего века – особых кожных складок с хрящеватым каркасом. Они мгновенно готовы сомкнуться, проявив мигательный рефлекс при раздражении, прикосновении к роговице, ярком свете, порывах ветра. На переднем наружном крае век в два ряда растут ресницы, здесь же открываются протоки железок.

Пластическая анатомия щелей век может быть относительно внутреннего угла глаза приподнятой, идти вровень, или внешний угол будет опущен. Чаще всего встречается приподнятый наружный угол глаза.

По краю век начинается тонкая защитная оболочка. Слой конъюнктивы покрывает оба века и глазное яблоко, переходя в его задней части в роговичный эпителий. Функция этой оболочки – продуцирование слизистой и водянистой частей слезной жидкости, которыми смазывается глаз. Конъюнктива имеет богатое кровоснабжение, и по ее состоянию нередко можно судить не только о заболеваниях глаз, но и об общем состоянии организма (например, при болезнях печени она может иметь желтоватый оттенок).

Вместе с веками и конъюнктивой вспомогательный аппарат глаза составляют мышцы, осуществляющие движения глазами (прямые и косые) и слезный аппарат (слезная железа и дополнительные мелкие железы). Основная железа включается, когда есть необходимость устранения раздражающего элемента с глаза, осуществляет выработку слез при эмоциональной реакции. Для перманентного смачивания глаза слезу производят в небольшом количестве добавочные железы.

Смачивание глаза происходит мигающими движениями век и мягким скольжением конъюнктивы. Слезная жидкость стекает через пространство за нижним веком, собирается в слезном озере, потом в слезном мешке вне орбиты. Из последнего по носослезному протоку жидкость отводится в нижний носовой ход.

Наружный покров

Склера

Анатомические особенности покрывающей глаз оболочки заключаются в ее неоднородности. Задняя часть представлена более плотным слоем – склерой. Он непрозрачен, так как образован беспорядочным скоплением фибриновых волокон. Хотя у младенцев склера еще настолько нежная, что имеет не белесоватый, а голубой оттенок. С возрастом в оболочке происходит отложение липидов, и она характерно желтеет.

Это опорный слой, обеспечивающий форму глазу и дающий возможность прикрепления глазодвигательных мышц. Также в задней части глазного яблока склера на некотором продолжении покрывает зрительный глазной нерв, выходящий от глаза.

Роговица

Глазное яблоко не полностью покрывается склерой. В передней 1/6 части оболочка глаза становится прозрачной и называется роговицей. Это куполообразная часть глазного яблока. Именно от ее прозрачности, гладкости и симметричности кривизны зависит характер преломления лучей и качество зрения. Вместе с хрусталиком роговица ответственна за фокусировку света на сетчатке.

Средний слой

Эта оболочка, находящаяся между слоем склеры и сетчатки, сложного строения. По анатомическим особенностям и функциям в ней выделяют радужку, цилиарное тело, хориоидею.

Второе распространенное название – ирис. Она достаточно тонкая – не достигает и полмиллиметра, а в месте перетекания в цилиарное тело вдвое тоньше.


Именно радужка определяет самую привлекательную характеристику глаза – его цвет

Непрозрачность структуры обеспечивается двойным слоем эпителия на задней поверхности радужки, а цвет дает наличие клеток-хроматофоров в строме. Радужка, как правило, мало чувствительна к болевым раздражениям, поскольку содержит немного нервных окончаний. Основная ее функция – адаптация – регулирование количества света, которое достигнет сетчатки. Диафрагма содержит круговые мышцы вокруг зрачка и радиальных мышц, расходящиеся наподобие лучей.

Зрачок – это отверстие в центре радужной оболочки, расположенное напротив хрусталика. Сокращение мышц, идущих по кругу, уменьшает зрачок, сжатие радиальных мышц увеличивает его. Поскольку эти процессы происходят рефлекторно в ответ на степень освещенности, то на изучении реакции зрачков на свет основывается тест cостояния III пары черепных нервов, которые могут поражаться при инсульте, ЧМТ, инфекционных заболеваниях, опухоли, гематоме, диабетической нейропатии.

Реснитчатое тело

Это анатомическое образование представляет собой «бублик», находящийся между радужной и, собственно, сосудистой оболочками. От внутреннего диаметра этого кольца к линзе тянутся цилиарные отростки. В свою очередь, от них отходит огромное количество тончайших зонулярных волокон. Они прикрепляются к линзе по линии экватора. Все вместе эти волокна образуют цинную связку. В толще реснитчатого тела находятся цилиарные мышцы, с помощью которых хрусталик меняет свою кривизну и, соответственно, фокус. Напряжение мышц позволяет линзе округлиться и рассматривать предметы на близком расстоянии. Расслабление, наоборот, ведет к уплощению хрусталика и отдалению фокуса.

Реснитчатое тело в офтальмологии – одна из главных мишеней при лечении глаукомы, так как именно его клетками вырабатывается внутриглазная жидкость, создающая внутриглазное давление.

Пролегает под склерой и представляет большую часть всего сосудистого сплетения. Благодаря ей, реализуется питание сетчатки, ультрафильтрация, а также механическая амортизация.

Состоит из переплетения задних коротких цилиарных артериол. В переднем отделе эти сосуды создают анастамозы с артериолами большого кровеносного круга радужной оболочки. Сзади в районе выхода зрительного нерва эта сеть сообщается с капиллярами зрительного нерва, идущими от центральной артерии сетчатки.

Часто на фото и видео при расширенном зрачке и яркой вспышке могут получиться «красные глаза» – это видимая часть глазного дна, сетчатки и сосудистой оболочки.

Внутренний слой

Большое внимание атлас по анатомии человеческого глаза уделяет обычно его внутренней оболочке, называемой сетчаткой. Именно благодаря ей мы можем воспринимать световые раздражители, из которых потом формируются зрительные образы.

Отдельная лекция может быть посвящена только анатомии и физиологии внутреннего слоя как части мозга. Ведь на самом деле сетчатка, хоть и отделилась от него на ранней стадии развития, но до сих пор посредством зрительного нерва имеет прочную связь и обеспечивает трансформацию световых раздражителей в нервные импульсы.

Сетчатка может воспринимать световые раздражители только той площадью, что впереди очерчена зубчатой линией, а в задней части диском зрительного нерва. Точку выхода нерва называют «слепым пятном», здесь совершенно отсутствуют фоторецепторы. По этим же границам происходит сращение фоторецепторного слоя с сосудистым. Такое строение дает возможность питать сетчатку посредством сосудов хориоидеи и центральной артерии. Примечательно то, что оба этих слоя нечувствительны к боли, так как в нем нет ноцицептивных рецепторов.

Сетчатка – необычная ткань. Ее клетки бывают нескольких видов и располагаются по всей площади неравномерно. Слой, обращенный к внутреннему пространству глаза, составляют особые клетки – фоторецепторы, которые содержат светочувствительные пигменты.


Рецепторы различаются по форме и способности к восприятию света и цвета

Одни из таких клеток – палочки , в большей мере занимают периферию и обеспечивают сумеречное зрение. Несколько палочек, как веер, соединяются с одной биполярной клеткой, а группа биполярных клеток – с одной ганглиозной. Таким образом, нервная клетка получает достаточно мощный сигнал при малом освещении, и человеку предоставляется возможность видеть в сумерках.

Другой вид фоторецепторных клеток – колбочки – специализируются на восприятии цвета и обеспечении четкого и ясного видения. Они концентрируются по центру сетчатки. Самая большая густота колбочек наблюдается в так называемом желтом пятне. И здесь есть место самого острого восприятия, входящее в состав желтого пятна – центральное углубление. Эта зона полностью избавлена от кровеносных сосудов, застилающих поле зрения. А высокая четкость зрительного сигнала обусловлена прямой связью каждого из фоторецепторов через единственную биполярную клетку с ганглиозной. Благодаря такой физиологии, сигнал напрямую транслируется к зрительному нерву, который берет свое начало из сплетения длинных отростков ганглиозных клеток – аксонов.

Наполнение глазного яблока

Внутреннее пространство глаза поделено на несколько «отсеков». Ближайший к роговичной поверхности глаза называют передней камерой. Ее местоположение – от роговицы до радужки. Она имеет несколько важных ролей в глазах. Во-первых, обладает иммунной привилегией – здесь не развивается иммунный ответ на появление антигенов. Так появляется возможность избегать чрезмерных воспалительных реакций органов зрения.

Во-вторых, своим анатомическим строением, а именно наличием угла передней камеры, она обеспечивает циркуляцию внутриглазной водянистой влаги.

Следующий «отсек» – задняя камера – небольшое пространство, ограниченное радужкой спереди и линзой с цинной связкой позади.

Эти две камеры заполнены водянистой влагой, вырабатываемой цилиарным телом. Основное назначение данной жидкости – питание участков глаза, где нет кровеносных сосудов. Ее физиологичная циркуляция обеспечивает поддержание внутриглазного давления.

Стекловидное тело

Эта структура отделена от других тонкой фиброзной мембраной, а внутреннее наполнение имеет особую консистенцию, благодаря растворенным в воде белкам, гиалуроновой кислоте и электролитам. Это формообразующая составляющая глаза связана с цилиарным телом, капсулой линзы и сетчаткой по зубчатой линии и в районе диска зрительного нерва. Поддерживает внутренние структуры и обеспечивает тургор и постоянство формы глаза.


Основной объем глаза заполнен гелеобразной субстанцией, получившей название стекловидное тело

Хрусталик

Оптическим центром зрительной системы глаза является его линза – хрусталик. Он двояковыпуклый, прозрачный и эластичный. Капсула тонкая. Внутреннее содержимое хрусталика полутвердое, на 2/3 состоит из воды и на 1/3 из белка. Его главная задача – преломление света и участие в аккомодации. Это возможно, благодаря способности хрусталика варьировать свою кривизну при натяжении и расслаблении цинной связки.

Строение глаза выверено очень точно, в нем нет лишних и незадействованных структур, начиная от оптической системы и заканчивая удивительной физиологией, позволяющей ни замерзать, ни ощущать боли, обеспечивать слаженную работу парных органов.

text_fields

text_fields

arrow_upward

Снаружи глаз виден как сферическое образование, прикрытое верхним и нижним веком и состоящее из склеры, коньюктивы, роговицы, радужной оболочки.

  • Склера представляет собой соединительную ткань белого цвета, окру­жающую глазное яблоко.
  • Коньюктива - прозрачная ткань, снабжен­ная кровеносными сосудами, которая на переднем полюсе глаза со­единяется с роговицей.
  • Роговица является прозрачным защитным на­ружным образованием, кривизна поверхности которого определяет особенности преломления света. Так, при неправильной кривизне роговицы возникает искажение зрительных изображений, называемое астигматизмом.
  • Радужная оболочка. Позади роговицы находится радужная оболочка, цвет которой зависит от пигментации составляющих ее клеток и их рас­пределения.
  • «Водянистая влага». Между роговицей и радужной оболочкой находится пе­редняя камера глаза, наполненная жидкостью - «водянистой влагой».
  • Зрачок. В центре радужной оболочки находится зрачок круглой формы, про­пускающий внутрь глаза свет после его прохождения через роговицу.
  • Хрусталик . Позади радужной оболочки расположены задняя камера глаза и хрусталик. Хрусталик - двояковыпуклая линза, расположенная в сумке, волокна которой соединены с ресничными мышцами и на­ружным сосудистым слоем сетчатки. Хрусталик может становится более плоским или более выпуклым в зависимости от расстояния между глазом и объектом. Изменение кривизны хрусталика называ­ется аккомодацией.
  • Стекловидное тело. Внутри глаза, позади хрусталика, находится стекловидное тело. Оно представляет собой коллоидный раствор гиалуроновой кислоты во внеклеточной жидкости.
  • Сетчатка - с нейроанатомической точки зрения - высокоорганизованная слоистая структура, объединяющая рецепторы и нейроны (См. подробнее >>> )

Размер зрачка зависит от освещенности. Контроль за изменениями размера зрачка осуществляется автоматически нервными волокнами, заканчивающимися в мускулатуре радужной оболочки. Круговая мыш­ца, суживающая зрачок - сфинктер - иннервируется парасимпати­ческим волокнами, мышца, расширяющая зрачок - дилататор - иннервируется симпатическими волокнами. Изменения диаметра зрач­ка меняют интенсивность светового раздражения незначительно - всего в 16- 17 раз (если учитывать, что диапазон интенсивности света изменяется в 16 млрд. раз). Реакция расширения зрачка до макси­мального диаметра - 7,5 мм - очень медленная: она длится около 5 минут. Максимальное сокращение диаметра зрачка до 1,8 мм до­стигается быстрее - всего за 5 секунд. Это значит, что основная функция зрачка состоит не в регуляции интенсивности света вообще, а в том, чтобы пропускать лишь тот свет, который попадает на центральную часть хрусталика, где фокусировка наиболее точная. Су­жение зрачка направлено на сохранение наиболее возможной при данных условиях освещенности глубины резкости.

Роговица и коньюктива покрыты тонкой пленкой слезной жид­ кости, секретируемой в слезных железах, расположенных в височ­ной части глазницы, над глазным яблоком. Слезы защищают рого­вицу и коньюктиву от высыхания.

  • Астигматизм (результат неравномерной кривизны рогови­цы) плохо корректируется даже сложными линзами. Для его ис­правления более пригодны контактные линзы, которые, плавая в слезной жидкости над роговицей, компенсируют ее отклонения от правильной формы.

Аккомодация хрусталика иногда оказывается недостаточной, чтобы спроецировать изображение точно на сетчатку.

  • Близорукость . Если расстояние между хрусталиком и сетчаткой больше, чем фокусное расстояние хрусталика, то возникает близорукость (миопия).
  • Дальнозоркость . Если сетчатка рас­положена слишком близко к хрусталику и фокусировка хороша толь­ко при рассматривании далеко расположенных предметов, возникает дальнозоркость (гиперметропия).

Близорукость и дальнозоркость кор­ректируются очками с вогнутыми и выпуклыми линзами соответ­ственно.

Итак, оптическая система глаз обеспечивает фокусировку изображения на рецепторной поверхности сетчатки. Ди­ оптрический аппарат, состоящий из системы линз, передает на сетчатку резко уменьшенное изображение предметов (рис. 16.11).

Рис. 16.11. Горизонтальный срез правого глаза

Центральный отдел зрительной системы

text_fields

text_fields

arrow_upward

Зрительный нерв содержит около 800 тысяч волокон ганглиозных клеток сетчатки. Зрительные нервы обоих глаз перекрещиваются в области основания черепа, где около полумиллиона волокон зри­тельного нерва переходят на противоположную сторону. Остальные 300 тысяч волокон вместе с перекрещенными аксонами второго зрительного нерва образуют зрительный тракт.

Нервные волокна зрительного тракта подходят к четырем структу­рам мозга:

  1. ядрам верхних бугров четверохолмия - средний мозг,
  2. ядрам латерального коленчатого тела - таламус,
  3. супрахиазмальным ядрам гипоталамуса,
  4. к глазодвигательным нервам.

Ядра верхних бугров четверохолмия и латерального коленчатого тела являются конечными пунктами двух параллельных путей от ганглиозных клеток сетчатки: одна ветвь аксона ганглиозной клетки идет в латеральное коленчатое тело, другая - в верхнее двухолмие. Обе ветви сохраняют упорядоченную проекцию сетчатки. От перед­него двухолмия после переключения сигналы идут к крупному ядру таламуса - подушке.

Аксоны клеток латерального коленчатого тела, проходящие в со­ставе зрительной радиации, проецируются к клеткам первичной зрительной коры (поле 17 или стриарная кора). Проекция зритель­ной ямки сетчатки - зоны максимальной остроты зрения - в 35 раз больше проекции участка такого же размера на периферии сет­чатки. Клетки поля 17 (стриарной коры) связаны с полями 18 и 19 (престриарная кора), так называемыми вторичными зрительными зонами. От этих зон идут проекции к подушке таламуса, куда по­ступает информация от верхних бугров четверохолмия. Кроме того, зрительные пути прослеживаются к лобной коре, они примыкают к ассоциативной коре.


Рис. 16.14. Концентрические рецептивные поля в сетчатке и подкорковых зрительных центрах (А), прямоугольные и сложные рецептивные поля в зрительной коре (Б).

Клетки латерального коленчатого тела, получающие основную афферентацию от сетчатки, имеют простые концентрические рецеп­тивные поля, как и ганглиозные клетки. Здесь проявляется бино­кулярное взаимодействие: волокна от обоих глаз распределены то­пографически правильно, послойно.

В то же время небольшая часть клеток латерального коленчатого тела активируется от обоих зри­тельных нервов.
Нейроны зрительной коры уже имеют не концентрические, а почти прямоугольные зрительные поля, некоторые из нейронов ре­агируют на определенную ориентацию (наклон) полосы - светлой или темной (рис. 16.14).

В зрительной коре существуют два функционально различных типа клеток: простые и сложные.

  • Простые клетки имеют рецептивное поле, состоящее из возбудительной и тормозной зоны, которые можно предсказать на основе исследования реакции клетки на ма­ленькое световое пятно.
  • Сложные клетки . Структуру рецептивного поля сложной клетки невозможно установить сканированием светового пятнышка. Они служат «детекторами» угла, наклона или движения линий в поле зрения.

В коре уже совершенно отчетлива бинокулярная кон­вергенция: в одной точке представлены симметричные поля зре­ния - справа и слева.
Близко расположенные клетки зрительной коры «видят» только небольшую часть поля зрения. Лежащие друг под другом нейроны одной колонки коры реагируют на один и тот же стимул, опти­мальный по ориентации, наклону и направлению движения. В од­ной колонке могут располагаться как простые, так и сложные клет­ки.

Простые клетки найдены в III и IV слоях, где заканчиваются таламические волокна. Сложные клетки расположены в более по­верхностных слоях коры 17 поля. В полях 18 и 19 зрительной коры простые клетки являются исключением, здесь расположены сложные и сверхсложные клетки. Последние реагируют, например, только на стимулы определенной ширины, длины и ориентации.

Итак, от уровня к уровню зрительной системы происходит ус­ложнение рецептивных полей нейронов. Все рецептивные поля ор­ганизованы в виде возбудительных и тормозных зон. Концентричес­кие рецептивные поля, характерные для сетчатки и латерального коленчатого тела, уже не встречаются в коре. В зрительной системе, как и в других сенсорных системах, чем выше синаптический уро­вень, тем строже ограничены функции отдельных нейронов - де­текторов свойств.

Роль движения глаз

text_fields

text_fields

arrow_upward

Для успешной работы системы распознавания зрительных образов очень важны движения глаз. Известно, что глаз человека приводится в движение шестью наружными мышцами. Относительно координат головы глаза двигаются горизонтально, вертикально и вокруг своей оси. Если оба глаза двигаются в одном направлении, такие движе­ния называются содружественными. При переводе взгляда с ближ­ней точки на дальнюю осуществляются дивергентные движения. При наклоне головы в сторону наблюдаются небольшие вращательные движения глаз.

При взгляде на любой предмет глаза двигаются от одной точки фиксации к другой быстрыми скачками - саккадами. Длительность саккад от 10 до 80 мс, длительность периодов фиксации 150-300 мс. Медленные движения глаз реализуются при слежении за движущи­мися объектами - следящие движения.

Движения глаз управляются центрами, которые находятся в об­ласти ретикулярной формации мозга и среднего мозга, в верхних буграх четверохолмия и в претектальной области. Все эти подкор­ковые центры координируются сигналами из зрительной, теменной и лобной коры, ответственными за программирование движений тела и оценки его положения в пространстве. Для наиболее тонкой регуляции глазодвигательных функций весьма существенны влияния мозжечка, сравнивающего тонический и фазный компоненты движе­ния при ориентации в пространстве.

В процессе зрительного восприятия, особенно при слежении за движущимся объектом, возникает оптический нистагм, вызываемый движущимися оптическими стимулами и состоящий из чередования саккад и медленных следящих движений.

Движения глаз имеют огромное значение для восприятия: при неподвижном глазном яб­локе восприятие изображения пропадает в связи с разложением пигмента и адаптацией фоторецепторов.

Координированные движения глаз обеспечивают объединение ин­формации, идущей от обоих глаз в центры мозга. Особое значение для восприятия и координации движений играют нейроны переднего двухолмия. Они организованы в колонки, которые воспринимают сигналы, поступающие от одних и тех же участков полей зрения: активность нейронов этого отдела мозга, на которых конвергирует импульсация от правого и левого глаза, является пусковым меха­низмом для глазодвигательных нейронов. В коре обнаружены также колонки, связанные не только со зрительным восприятием, но и с сенсомоторной интеграцией. На высших уровнях зрительной систе­мы параллельно функционируют две системы анализа: одна опреде­ляет место предмета в пространстве, другая описывает его признаки. Конечные результаты параллельных процессов интегрируются и воз­никает законченный зрительный образ внешнего предметного мира.

Вспомогательный аппарат зрительной системы и его функции

Зрительная сенсорная система снабжена сложным вспомогательным аппаратом, который включает глазное яблоко и три пары мышц, обеспечивающих его движения. Элементы глазного яблока осуществляют первичное преобразование светового сигнала, попадающего на сетчатку:
• оптическая система глаза фокусирует изображения на сетчатке;
• зрачок регулирует количество падающего на сетчатку света;
• мышцы глазного яблока обеспечивают его непрерывные перемещения.

Формирование изображения на сетчатке

Естественный свет, отраженный от поверхности предметов, является рассеянным, т.е. световые лучи от каждой точки объекта исходят в разных направлениях. Поэтому в отсутствие оптической системы глаза лучи от одной точки объекта (а ) попадали бы в разные участки сетчатки (а1, а2, а3 ). Такой глаз смог бы различать общий уровень освещенности, но не контуры предметов (рис.1 А).

Для того, чтобы увидеть объекты окружающего мира, необходимо, чтобы световые лучи от каждой точки объекта попадали только в одну точку сетчатки, т.е. необходимо сфокусировать изображение. Этого можно добиться, поместив перед сетчаткой сферическую преломляющую поверхность. Световые лучи, исходящие из одной точки (а ), после преломления на такой поверхности будут собираться в одной точке а1 (фокусе). Таким образом, на сетчатке возникнет четкое перевернутое изображение (рис. 1 Б).

Преломление света осуществляется на границе раздела двух сред, имеющих разные коэффициенты преломления. В глазном яблоке находится 2 сферические линзы: роговица и хрусталик. Соответственно, имеется 4 преломляющие поверхности: воздух/роговица, роговица/водянистая влага передней камеры глаза, водянистая влага/хрусталик, хрусталик/стекловидное тело.

Аккомодация

Аккомодация – настройка преломляющей силы оптического аппарата глаза на определенное расстояние до рассматриваемого объекта. Согласно законам рефракции, если луч света падает на преломляющую поверхность, то он отклоняется на угол, зависящий от угла его падения. При приближении объекта, угол падения исходящих от него лучей будет изменяться, поэтому преломленные лучи соберутся в другой точке, которая будет находиться позади сетчатки, что приведет к «размытию» изображения (рис 2 Б). Для того, чтобы его вновь сфокусировать, необходимо увеличить преломляющую силу оптического аппарата глаза (рис 2 В). Это достигается увеличением кривизны хрусталик, которое происходит при повышении тонуса цилиарной мышцы.

Регуляция освещенности сетчатки

Количество света, падающего на сетчатку, пропорционально площади зрачка. Диаметр зрачка у взрослого человека изменяется от 1.5 до 8 мм, что обеспечивает изменение интенсивности падающего на сетчатку света примерно в 30 раз. Зрачковые реакции обеспечиваются двумя системами гладких мышц радужной оболочки: при сокращении кольцевых мышц зрачок сужается, при сокращении радиальных мышц – расширяется.

При уменьшении просвета зрачка резкость изображения увеличивается. Это происходит потому, что сужение зрачка препятствует попаданию света на периферические области хрусталика и тем самым устраняет искажение изображения, возникающие за счет сферической аберрации.

Движения глаз

Глаз человека приводится в движение шестью глазными мышцами, которые иннервируются тремя черепномозговыми нервами – глазодвигательным, блоковым и отводящим. Эти мышцы обеспечивают два типа перемещений глазного яблока - быстрые скачкообразные (саккады) и плавные следящие движения.

Скачкообразные движения глаз (саккады ) возникают при рассматривании неподвижных предметов (рис. 3). Быстрые повороты глазного яблока (10 - 80 мс) чередуются с периодами неподвижной фиксации взгляда в одной точке (200 - 600мс). Угол поворота глазного яблока в течение одной саккады колеблется от нескольких угловых минут до 10° , а при переводе взгляда с одного объекта на другой может достигать 90° . При больших углах смещения саккады сопровождаются поворотом головы; смещение глазного яблока обычно опережает движение головы.

Плавные движения глаз сопровождают перемещающиеся в поле зрения объекты. Угловая скорость таких движений соответствует угловой скорости объекта. Если последняя превышает 80° /с, то слежение становится комбинированным: плавные движения дополняются саккадами и поворотами головы.

Нистагм - периодическое чередование плавных и скачкообразных движений. Когда едущий в поезде человек смотрит в окно, его глаза плавно сопровождают перемещающийся за окном пейзаж, а затем взгляд скачкообразно перемещается на новую точку фиксации.

Преобразование светового сигнала в фоторецепторах

Типы фоторецепторов сетчатки и их свойства

В сетчатке имеется два типа фоторецепторов (палочки и колбочки), которые различаются строением и физиологическими свойствами.

Таблица 1. Физиологические свойства палочек и колбочек

Палочки

Колбочки

Светочувствительный пигмент

Родопсин

Йодопсин

Максимум поглощения пигмента

Имеет два максимума – один в видимой части спектра (500 нм), другой – в ультрафиолетовой (350 нм)

Существуют 3 вида йодопсинов, которые имеют различные максимумы поглощения: 440 нм (синий), 520 нм (зеленый) и 580 нм (красный)
Классы клеток Каждая колбочка содержит только один пигмент. Соответственно, существуют 3 класса колбочек, чувствительных свету с разной длиной волны
Распределение по сетчатке

В центральной части сетчатки плотность палочк составляет около 150 000 на мм2 , по направлению к периферии она снижается до 50 000 на мм2. В центральной ямке и слепом пятне палочки отсутствуют.

Плотность колбочек в центральной ямке достигает 150 000 на мм 2 , в слепом пятне они отсутствуют, а на всей остальной поверхности сетчатки плотность колбочек не превышает 10 000 на мм 2 .

Чувствительность к свету

У палочек примерно в 500 раз выше, чем у колбочек

Функция

Обеспечивают черно-белое (скототопическое зрение)

Обеспечивают цветное (фототопическое зрение)

Теория двойственности зрения

Наличие двух фоторецепторных систем (колбочки и палочки), различающихся по световой чувствительности, обеспечивает подстройку к изменчивому уровню внешнего освещения. В условиях недостаточной освещенности восприятие света обеспечивается палочками, цвета при этом неразличимы (скототопическое зрени е ). При ярком освещении зрение обеспечивается главным образом колбочками, что позволяет хорошо различать цвета (фототопическое зрение ).

Механизм преобразования светового сигнала в фоторецепторе

В фоторецепторах сетчатки осуществляется преобразование энергии электромагнитного излучения (света) в энергию колебаний мембранного потенциала клетки. Процесс преобразования протекает в несколько этапов (рис. 4).

• На 1-м этапе фотон видимого света, попадая в молекулу светочувствительного пигмента, поглощается p -электронами сопряженных двойных связей 11-цис -ретиналя, при этом ретиналь переходит в транс -форму. Стереомеризация 11-цис -ретиналя вызывает конформационные изменения белковой части молекулы родопсина.

• На 2-м этапе происходит активация белка трансдуцина, который в неактивном состоянии содержит прочно связанный GDP . После взаимодействия с фотоактивированным родопсином трансдуцин обменивает молекулу GDP на GTP .

• На 3-м этапе GTP-содержащий трансдуцин образует комплекс с неактивной cGMP-фосфодиэстеразой, что приводит к активации последней.

• На 4-м этапе активированная cGMP-фосфодиэстераза осуществляет гидролиз внутриклеточного с GMP до GMP .

• На 5-м этапе падение концентрации cGMP приводит к закрытию катионных каналов и гиперполяризации мембраны фоторецептора.

В ходе трансдукции сигнала по фосфодиэстеразному механизму происходит его усиление. За время фоторецепторного ответа одна единственная молекул возбужденного родопсина успевает активировать несколько сот молекул трансдуцина. Т.о. на первом этапе трансдукции сигнала происходит усиление в 100 -1000 раз. Каждая активированная молекула трансдуцина активирует лишь одну молекулу фосфодиэстеразы, зато последняя катализирует гидролиз нескольких тысяч молекул с GMP . Т.о. на этом этапе сигнала усиливается еще в 1 000 -10 000раз. Следовательно, при передаче сигнала от фотона до cGMP может происходить более чем 100 000-кратное его усиление.

Обработка информации в сетчатке

Элементы нейронной сети сетчатки и их функции

Нейронная сеть сетчатки включает 4 типа нервных клеток (рис.5):

• ганглиозные клетки,
• биполярные клетки,
• амакриновые клетки,
• горизонтальные клетки.

Ганглиозные клетки – нейроны, аксоны которых в составе зрительного нерва выходят из глаза и следуют в ЦНС. Функция ганглиозных клеток – проведение возбуждения из сетчатки в ЦНС.

Биполярные клетки соединяют рецепторные и ганглиозные клетки. От тела биполярной клетки отходят два разветвленных отростка: один отросток образует синаптические контакты с несколькими фоторецепторными клетками, другой – с несколькими ганглиозными клетками. Функция биполярных клеток – проведение возбуждения от фоторецепторов к ганглиозным клеткам.

Горизонтальные клетки соединяют расположенные рядом фоторецепторы. От тела горизонтальной клетки отходит несколько отростков, которые образуют синаптические контакты с фоторецепторами. Основная функция горизонтальных клеток – осуществление латеральных взаимодействий фоторецепторов.

Амакриновые клетки расположены подобно горизонтальным, но их образуют контакты не с фоторецепторными, а с ганглиозными клетками.

Распространение возбуждения в сетчатке

При освещении фоторецептора в нем развивается рецепторный потенциал, который представляет собой гиперполяризацию. Рецепторный потенциал, возникший в фоторецепторной клетке, передается биполярным и горизонтальным клеткам через синаптические контакты с помощью медиатора.

В биполярной клетке может развиваться как деполяризация, так и гиперполяризация (подробнее см. ниже), которая через синаптический контакт распространяется на ганглиозные клетки. Последние являются спонтанно активными, т.е. непрерывно генерируют потенциалы действия с определенной частотой. Гиперполяризация ганглиозных клеток приводит к снижению частоты нервных импульсов, деполяризация – к ее увеличению.

Электрические реакции нейронов сетчатки

Рецептивное поле биполярной клетки представляет собой совокупность фоторецепторных клеток, с которым она образует синаптические контакты. Под рецептивным полем ганглиозной клетки понимают совокупность фоторецепторных клеток, с которыми данная ганглиозная клетка соединена через биполярные клетки.

Рецептивные поля биполярных и ганглиозных клеток имеют круглую форму. В рецептивном поле можно выделить центральную и периферическую часть (рис. 6). Граница между центральной и периферической часть рецептивного поля является динамичной и может смещаться при изменении уровня освещенности.

Реакции нервных клеток сетчатки при освещении фоторецепторов центральной и периферической части их рецептивного поля, как правило, противоположны. При этом существует несколько классов ганглиозных и биполярных клеток (ON -, OFF -клетки), демонстрирующих разные электрические ответы на действие света (рис. 6).

Таблица 2. Классы ганглиозных и биполярных клеток и их электрические реакции

Классы клеток

Реакция нервных клеток при освещении фоторецепторов, находящихся

в центральной части РП

в периферической части РП

Биполярные клетки ON типа

Деполяризация

Гиперполяризация

Биполярные клетки OFF типа

Гиперполяризация

Деполяризация

Ганглиозные клетки ON типа

Ганглиозные клетки OFF типа

Гиперполяризация и снижение частоты ПД

Деполяризация и увеличение частоты ПД

Ганглиозные клетки ON - OFF типа

Дают короткий ON -ответ на стационарный световой стимул и короткую OFF -реакцию на ослабление света.

Обработка зрительной информации в ЦНС

Сенсорные пути зрительной системы

Миелиновые аксоны ганглиозных клеток сетчатки направляются в головной мозг в составе двух зрительных нервов (рис.7). Правый и левый зрительные нервы сливаются у основания черепа, образуя зрительный перекрест (хиазму). Здесь нервные волокна, идущие от медиальной половины сетчатки каждого глаза переходят на контрлатеральную сторону, а волокна от латеральных половин сетчаток продолжаются ипсилатерально.

После перекреста аксоны ганглиозных клеток в составе зрительного тракта следуют в латеральные коленчатые тела (ЛКТ), где образуют синаптические контакты с нейронами ЦНС. Аксоны нервных клеток ЛКТ в составе т.н. зрительной лучистости достигают нейронов первичной зрительной коры (поле 17 по Бродману). Далее по внутрикорковым связям возбуждение распространяется во вторичную зрительную кору (поля 18б 19) и ассоциативные зоны коры.

Сенсорные пути зрительной системы организованы по ретинотопическому принципу – возбуждение от соседних ганглиозных клеток достигает соседних точек ЛКТ и коры. Поверхность сетчатки как бы проецируется на поверхность ЛКТ и коры.

Большая часть аксонов ганглиозных клеток заканчиваются в ЛКТ, часть же волокон следует в верхние бугры двухолмия, гипоталамус, претектальную область ствола мозга, ядро зрительного тракта.

• Связь между сетчаткой и верхними буграми четверохолмия служит для регуляции движений глаз.

• Проекция сетчатки в гипоталамус служит для сопряжения эндогенных циркадных ритмов с суточными колебаниями уровня освещенности.

• Связь между сетчаткой и претектальной областью ствола исключительно важна для регуляции просвета зрачка и аккомодации.

• Нейроны ядер зрительного тракта, которые также получают синаптические входы от ганглиозных клеток, связаны с вестибулярными ядрами ствола мозга. Эта проекция позволяет оценивать положение тела в пространстве на основании зрительных сигналов, а также служит для осуществления сложных глазодвигательных реакций (нистагм).

Обработка зрительной информации в ЛКТ

• Нейроны ЛКТ имеют рецептивные поля округлой формы. Электрические реакции этих клеток аналогичны таковым ганглиозных клеток.

• В ЛКТ существуют нейроны, которые возбуждаются при наличии в их рецептивном поле границы свет/темнота (контрастные нейроны) или при передвижении этой границы в пределах рецептивного поля (детекторы движения).

Обработка зрительной информации в первичной зрительной коре

В зависимости от реакции на световые стимулы нейроны коры подразделяют на несколько классов.

Нейроны с простым рецептивным полем. Наиболее сильное возбуждение такого нейрона происходит при освещении его рецептивного поля световой полоской определенной ориентации. Частота нервных импульсов, генерируемых таким нейроном уменьшается при изменении ориентации световой полоски (рис. 8 А).

Нейроны со сложным рецептивным полем. Максимальная степень возбуждения нейрона достигается при передвижении светового стимула в пределах ON зоны рецептивного поля в определенном направлении. Передвижение светового стимула в другом направлении или выход светового стимула за пределы ON зоны вызывает более слабое возбуждение (рис. 8 Б).

Нейроны со сверхсложным рецептивным полем. Максимальное возбуждение такого нейрона достигается при действии светового стимула сложной конфигурации. Например, известны нейроны, наиболее сильное возбуждение которых развивается при пересечении двух границ между светлым и темным в пределах ON зоны рецептивного поля (рис. 23.8 В).

Несмотря на огромно количество экспериментальных данных о закономерностях реагирования клеток на разные зрительные стимулы, к настоящему времени нет полной теории, объясняющей механизмы обработки зрительной информации в головном мозге. Мы не можем объяснить, каким образом разнообразные электрические реакции нейронов сетчатки, ЛКТ и коры обеспечивают распознавание образов и другие феномены зрительного восприятия.

Регуляция функций вспомогательного аппарата

Регуляция аккомодации. Изменение кривизны хрусталика осуществляется при помощи цилиарной мышцы. При сокращении цилиарной мышцы кривизна передней поверхности хрусталика увеличивается и преломляющая сила возрастает. Гладкомышечные волокна цилиарной мышцы иннервируются постганглионарными нейронами, тела которых располагаются в цилиарном ганглии.

Адекватным стимулом для изменения степени кривизны хрусталика является нечеткость изображения на сетчатке, которая регистрируется нейронам первичной коры. За счет нисходящих связей коры происходит изменение степени возбуждения нейронов претектальной области, что в свою очередь вызывает активацию или торможение преганглионарных нейронов глазодвигательного ядра (ядро Эдингера–Вестфаля) и постганглионарных нейронов цилиарного ганглия.

Регуляция просвета зрачка. Сужение зрачка происходит при сокращении кольцевых гладкомышечных волокон роговицы, которые иннервируются парасимпатическими постганглионарными нейронами цилиарного ганглия. Возбуждение последних происходит при высокой интенсивности падающего на сетчатку света, которая воспринимается нейронами первичной зрительной коры.

Расширения зрачка осуществляется при сокращении радиальных мышц роговицы, которые иннервируются симпатическими нейронами ВШГ. Активность последних находится под контролем цилиоспинального центра и претектальной области. Стимулом для расширения зрачка является уменьшение уровня освещенности сетчатки.

Регуляция движений глаз. Часть волокон ганглиозных клеток следуют к нейронам верхних бугров четверохолмия (средний мозг), которые связаны с ядрами глазодвигательного, блокового и отводящего нервов, нейроны которых иннервируют поперечнополосатые мышечные волокна мышц глаза. Нервные клетки верхних бугров получат синаптические входы от вестибюлярных рецепторов, проприорецепторов мышц шеи, что позволяет организму координировать движения глаз с перемещениями тела в пространстве.

Феномены зрительного восприятия

Распознавание образов

Зрительная система обладает замечательной способность распознавать объект при самых разных вариантах его изображения. Мы можем узнавать образ (знакомое лицо, букву и т. п.), когда некоторых его частей недостает, когда он содержит лишние элементы, когда он по-разному ориентирован в пространстве, имеет разные угловые размеры, повернут к нам разными сторонами и т.п. (рис. 9). Нейрофизиологичекие механизмы этого феномена в настоящее время интенсивно изучаются.

Постоянство формы и размеров

Как правило, мы воспринимаем окружающие предметы неизменными по форме и размерам. Хотя на самом деле их форма и размеры на сетчатке не являются постоянными. Например, велосипедист в поле зрения всегда кажется одинаковым по величине независимо от расстояния до него. Колеса велосипеда воспринимаются как круглые, хотя на самом деле их изображения на сетчатке могут быть узкими эллипсами. Это явление демонстрирует роль опыта в видении окружающего мира. Нейрофизиологические механизмы этого феномена в настоящее время неизвестны.

Восприятие глубины пространства

Изображение окружающего мира на сетчатке является плоским. Однако, мы видим мир объемным. Существует несколько механизмов, которые обеспечивают построение 3-мерного пространства на основании плоских изображений, сформированных на сетчатке.

• Поскольку глаза расположены на некотором расстоянии друг от друга, то изображения, формирующиеся на сетчатке левого и правого глаза, несколько различаются друг от друга. Чем ближе расположен объект по отношению к наблюдателю, тем больше будут различаться эти изображения.

• Перекрывание изображений также помогает оценить их взаимное расположение в пространстве. Изображение близкого предмета может перекрывать изображение удаленного, но не наоборот.

• При смещении головы наблюдателя изображения наблюдаемых объектов на сетчатке также будут смещаться (явление параллакса). При одном и том же смещении головы изображения близких объектов будут смещаться сильнее, чем изображения удаленных

Восприятие неподвижности пространства

Если, закрыв один глаз, нажать пальцем на второе глазное яблоко, то мы увидим, что мир вокруг нас смещается в сторону. В обычных условиях окружающий мир неподвижен, хотя изображение на сетчатке постоянно «прыгает» за счет перемещения глазных яблок, поворотов головы, изменения положения тела в пространстве. Восприятие неподвижности окружающего пространства обеспечивается тем, что при обработке зрительных образов учитывается информация о движении глаз, движениях головы и положении тела в пространстве. Зрительная сенсорная система умеет «вычитать» собственные движения глаз и тела из перемещения изображения на сетчатке.

Теории цветового зрения

Трехкомпонентная теория

Основывается на принципе трихроматического аддитивного смешения. Согласно этой теории, три типа колбочек (чувствительны к красному, зеленому и синему цвету) работают как независимые рецепторные системы. Сравнивая интенсивность сигналов от трех типов колбочек, зрительная сенсорная система производит «виртуальное аддитивное смещение» и вычисляет истинный цвет. Авторы теории - Юнг, Максвелл, Гельмгольц.

Теория оппонентных цветов

Предполагает, что любой цвет можно однозначно описать, указав его положение на двух шкалах - «синий-желтый», «красный-зеленый». Цвета, лежащие на полюсах этих шкал, называют оппонентными. Эта теория подтверждается тем, что в сетчатке, ЛКТ и коре существуют нейроны, которые активируются, если их рецептивное поле освещают красным светом и тормозятся, если свет зеленый. Другие нейроны возбуждаются при действии желтого цвета и тормозятся при действии синего. Предполагается, что сравнивая степень возбуждения нейронов «красно-зеленой» и «желто-синей» системы, зрительная сенсорная система может вычислить цветовые характеристики света. Авторы теории - Мах, Геринг.

Таким образом, существуют экспериментальные доказательства обеих теорий цветового зрения. В настоящее время считается. Что трехкомпонентная теория адекватно описывает механизмы цветовосприятия на уроне фоторецепторов сетчатки, а теория оппеонентных цветов – механизмы цветовосприятия на уровне нейронных сетей.

Орган зрения является самым важным из всех органов чувств человека, ведь около 90% информации о внешнем мире человек получает через зрительный анализатор или зрительную систему

Орган зрения является самым важным из всех органов чувств человека, ведь около 90% информации о внешнем мире человек получает через зрительный анализатор или зрительную систему. Основными функциями органа зрения являются центральное, периферическое, цветовое и бинокулярное зрение, а также светоощущение.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим.

Строение зрительной системы

Зрительная система состоит из:

* Глазного яблока;

* Защитного и вспомогательного аппарата глазного яблока (веки, конъюнктива, слезный аппарат, глазодвигательные мышцы и фасции глазницы);

* Системы жизнеобеспечения органа зрения (кровоснабжение, выработка внутриглазной жидкости, регуляция гидро и гемодинамики);

* Проводящих путей – зрительного нерва, зрительного перекреста и зрительного тракта;

* Затылочных долей коры больших полушарий головного мозга.

Глазное яблоко

Глаз имеет форму сферы, поэтому к нему стала применяться аллегория яблока. Глазное яблоко – очень нежная структура, поэтому располагается в костном углублении черепа – глазнице, где частично укрыто от возможного повреждения.

Глаз человека имеет не совсем правильную шаровидную форму. У новорожденных его размеры равны (в среднем) по сагиттальной оси 1, 7 см, у взрослых людей 2, 5 см. Масса глазного яблока новорожденного находится в пределах до 3 г, взрослого человека - до 7-8 г.

Особенности строения глаз у детей

У новорожденных глазное яблоко относительно большое, но короткое. К 7-8 годам устанавливается окончательный размер глаз. Новорожденный имеет относительно большую и более плоскую, чем у взрослых, роговицу. При рождении форма хрусталика сферичная; в течение всей жизни он растет и становится более плоским. У новорожденных в строме радужки пигмента мало или совсем нет. Голубоватый цвет глазам придает просвечивающий задний пигментный эпителий. Когда пигмент начинает появляться в радужке, она приобретает свой собственный цвет.

Строение глазного яблока

Глаз располагается в глазнице и окружен мягкими тканями (жировая клетчатка, мышцы, нервы и пр.). Спереди он покрыт конъюнктивой и прикрыт веками.

Глазное яблоко состоит из трех оболочек (наружной, средней и внутренней) и содержимого (стекловидного тела, хрусталика, а также водянистой влаги передней и задней камер глаза).

Наружная, или фиброзная, оболочка глаза представлена плотной соединительной тканью. Она состоит из прозрачной роговицы в переднем отделе глаза и белого цвета непрозрачной склеры. Обладая эластическими свойствами, эти две оболочки образуют характерную форму глаза.

Функция фиброзной оболочки – проведение и преломление лучей света, а также защита содержимого глазного яблока от неблагоприятных внешних воздействий.

Роговица – прозрачная часть (1/5) фиброзной оболочки. Прозрачность роговицы объясняется уникальностью ее строения, в ней все клетки расположены в строгом оптическом порядке и в ней отсутствуют кровеносные сосуды.

Роговица богата нервными окончаниями, поэтому она очень чувствительна. Воздействие неблагоприятных внешних факторов на роговицу вызывает рефлекторное сжимание век, обеспечивая защиту глазного яблока. Роговица не только пропускает, но и преломляет световые лучи, она имеет большую преломляющую силу.

Склера – непрозрачная часть фиброзной оболочки, которая имеет белый цвет. Ее толщина достигает 1 мм, а самая тонкая часть склеры расположена в месте выхода зрительного нерва. Склера состоит в основном из плотных волокон, которые придают ей прочность. К склере крепятся 6ть глазодвигательных мышц.

Функции склеры – защитная и формообразующая. Сквозь склеру проходят многочисленные нервы и сосуды.

Сосудистая оболочка , средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок . Функция этой оболочки – ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением – при низкой.

За радужной оболочкой расположен хрусталик , похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена цилиарная (ресничнвя) мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов.

Когда эта мышца расслаблена, прикрепленный к цилиарному телу ресничный поясок натягивается и хрусталик уплощается. Его кривизна, а следовательно и преломляющая сила, минимальна. В таком состоянии глаз хорошо видит удаленные объекты.

Чтобы рассмотреть предметы, расположенные вблизи, цилиарная мышца сокращается, а напряжение ресничного пояска ослабевает, так что хрусталик становится более выпуклым, следовательно, более сильно преломляющим.

Это свойство хрусталика менять свою преломляющую силу луча, называется аккомодацией .

Внутренняя оболочка глаза представлена сетчаткой – высо- кодифференцированной нервной тканью. Сетчатка глаза – передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование.

Что интересно, в процессе эмбрионального развития сетчатка глаза формируется из той же группы клеток, что головной и спинной мозг, поэтому справедливо утверждение, что поверхность сетчатки является продолжением мозга.

В сетчатке свет преобразуется в нервные импульсы, которые по нервным волокнам передаются в мозг. Там они анализируются, и человек воспринимает изображение.

Главным слоем сетчатки является тонкий слой светочувствительных клеток – фоторецепторов . Они бывают двух видов: отвечающие на слабый свет (палочки) и сильный (колбочки).

Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им человек видит предметы на периферии поля зрения, в том числе при низкой освещенности.

Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом желтом пятне . Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. Желтым пятном человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное и цветное зрение.

Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки – на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных “помех” в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы.

В конечном счете, вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию – заднюю кору, где и происходит формирование зрительного образа.

Что интересно, лучи света, проходя сквозь хрусталик, преломляются и переворачиваются, из-за чего на сетчатке возникает перевернутое уменьшенное изображение предмета. Также картинка с сетчатки каждого глаза поступает в головной мозг не целиком, а словно разрезанная пополам. Однако мы видим мир нормально.

Следовательно, дело не столько в глазах, сколько в мозге. В сущности, глаз – это просто воспринимающий и передающий инструмент. Клетки мозга, получив перевернутое изображение, переворачивают его снова, создавая истинную картину окружающего мира.

Содержимое глазного яблока

Содержимое глазного яблока – стекловидное тело, хрусталик, а также водянистая влага передней и задней камер глаза.

Стекловидное тело по весу и объему составляет примерно 2/3 глазного яблока и более чем на 99% состоит из воды, в которой растворено небольшое количество белка, гиалуроновой кислоты и электролитов. Это прозрачное бессосудистое студенистое образование, заполняющее пространство внутри глаза.

Стекловидное тело достаточно прочно связано с цилиарным телом, капсулой хрусталика, а также с сетчаткой вблизи зубчатой линии и в области диска зрительного нерва. С возрастом связь с капсулой хрусталика ослабевает.

Вспомогательный аппарат глаза

К вспомогательному аппарату глаза относят глазодвигательные мышцы, слезные органы, а также веки и конъюнктиву.

Глазодвигательные мышцы

Глазодвигательные мышцы обеспечивают подвижность глазного яблока. Их шесть: четыре прямых и две косых.

Прямые мышцы (верхняя, нижняя, наружная и внутренняя) начинаются от сухожильного кольца, расположенного у вершины орбиты вокруг зрительного нерва, и прикрепляются к склере.

Верхняя косая мышца начинается от надкостницы глазницы сверху и кнутри от зрительного отверстия, и, направляясь несколько кзади и книзу, прикрепляется к склере.

Нижняя косая мышца начинается от медиальной стенки орбиты позади нижней глазничной щели и прикрепляется к склере.

Кровоснабжение глазодвигательных мышц осуществляется мышечными ветвями глазной артерии.

Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение).

Точная и слаженная работа мышц глаза позволяет нам видеть окружающий мир двумя глазами, т.е. бинокулярно. В случае нарушения функций мышц (например, при парезе или параличе одной из них) возникает двоение или же зрительная функция одного из глаз подавляется.

Также считается, что глазодвигательные мышцы участвуют в процессе подстройки глаза к процессу видения (аккомодации). Они сжимают или растягивают глазное яблоко так, чтобы лучи, поступающие от обозреваемых объектов, будь то вдали или вблизи, могли попасть точно на сетчатку. При этом хрусталик обеспечивает более тонкую настройку.

Кровоснабжение глаза

Мозговая ткань, осуществляющая проведение нервных импульсов от сетчатки до зрительной коры, а также зрительная кора, в норме почти повсеместно имеют хорошее обеспечение артериальной кровью. В кровоснабжении этих мозговых структур участвуют несколько крупных артерий, входящих в состав каротидных и вертебрально-базилярной сосудистых систем.

Артериальное кровоснабжение головного мозга и зрительного анализатора осуществляется из трех основных источников - правой и левой внутренней и наружной сонных артерий и непарной базилярной артерии. Последняя образуется в результате слияния правой и левой позвоночных артерий, расположенных в поперечных отростках шейных позвонков.

Почти вся зрительная кора и отчасти кора прилежащих к ней теменной и височной долей, а также затылочные, среднемозговые и мостовые глазодвигательные центры снабжаемых кровью за счет вертебро-базилярного бассейна (вертебра – в переводе с латинского – позвонок).

В связи с этим нарушения кровообращения в вертебрально-базилярной системе может стать причиной нарушения функций как зрительной, так и глазодвигательной систем.

Вертебробазилярная недостаточность, или синдром позвоночной артерии, – это состояние, при котором снижается кровоток в позвоночных и базилярной артериях. Причиной этих нарушений могут быть сдавливание, повышение тонуса позвоночной артерии, в т.ч. в следствие сдавливания костной тканью (остеофиты, грыжа межпозвоночного диска, подвывих шейных позвонков и др.).

Как видите, наши глаза – это исключительно сложный и удивительный дар природы. Когда все отделы зрительного анализатора работают гармонично и без помех, окружающий нас мир мы видим ясно.

Относитесь к своим глазам бережно и внимательно!



Рассказать друзьям