Органы слуха человека воспринимают звуки с частотами. Аномальный слух и слух животных

💖 Нравится? Поделись с друзьями ссылкой

Чувство слуха - одно из главных в жизни человека. Слух и речь вместе составляют важное средство общения между людьми, служат основой взаимоотношений людей в обществе. Потеря слуха может привести к нарушениям в поведении человека. Глухие дети не могут научиться полноценной речи.

С помощью слуха человек улавливает различные звуки, сигнализирующие о том, что происходит во внешнем мире, звуки окружающей нас природы - шорохи леса, пение птиц, звуки моря, а также различные музыкальные произведения. С помощью слуха восприятие мира становится ярче и богаче.

Ухо и его функция. Звук, или звуковая волна, - это чередующее еся разрежение и сгущение воздуха, распространяющееся во все стороны от источника звука. А источником звука может быть любое колеблющееся тело. Звуковые колебания воспринимаются нашим органом слуха.

Орган слуха построен очень сложно и состоит из наружного, среднего и внутреннего уха. Наружное ухо состоит из ушной раковины и слухового прохода. Ушные раковины многих животных могут двигаться. Это помогает животному улавливать, откуда раздается даже самый тихий звук. Ушные раковины человека также служат для определения направления звука, хотя они и лишены подвижности. Слуховой проход соединяет наружное ухо со следующим отделом - средним ухом.

Слуховой проход перегорожен на внутреннем конце туго натянутой барабанной перепонкой. Звуковая волна, ударяя в барабанную перепонку, заставляет ее колебаться, вибрировать. Частота вибрации барабанной перепонки тем больше, чем выше звук. Чем сильнее звук, тем сильнее колеблется перепонка. Но если звук совсем слабый, еле слышимый, то эти колебания очень малы. Минимальная слышимость натренированного уха находится почти на границе тех колебаний, которые создаются беспорядочным движением молекул воздуха. Значит, человеческое ухо - уникальный по чувствительности слуховой прибор.

За барабанной перепонкой лежит заполненная воздухом полость среднего уха. Эта полость соединена с носоглоткой узким проходом - слуховой трубой. При глотании происходит обмен воздухом между глоткой и средним ухом. Изменение давления наружного воздуха, например в самолете, вызывает неприятное ощущение - "закладывает уши". Оно объясняется прогибом барабанной перепонки из-за разницы между атмосферным давлением и давлением в полости среднего уха. При глотании слуховая труба открывается и давление по обе стороны барабанной перепонки выравнивается.

В среднем ухе расположены три маленькие, последовательно связанные между собой косточки: молоточек, наковальня и стремя. Молоточек, соединенный с барабанной перепонкой, передает ее колебания сначала на наковальню, а затем усиленные колебания передаются на стремя. В пластинке, отделяющей полость среднего уха от полости внутреннего уха, два окна, затянутые тонкими перепонками. Одно окно овальное, в него "стучится" стремя, другое - круглое.

За средним ухом начинается внутреннее ухо. Оно расположено в глубине височной кости черепа. Внутреннее ухо представляет собой систему лабиринта и извитых каналов, заполненных жидкостью.

В лабиринте находится сразу два органа: орган слуха - улитка и орган равновесия - вестибулярный аппарат. Улитка - эта спирально закрученный костный канал, имеющий у человека два с половиной оборота. Колебания перепонки овального окна передаются жидкости, заполняющей внутреннее ухо. И она, в свою очередь, начинает колебаться с той же частотой. Вибрируя, жидкость раздражает слуховые рецепторы, расположенные в улитке.

Канал улитки по всей длине разделен пополам перепончатой перегородкой. Часть этой перегородки состоит из тонкой перепонки - мембраны. На мембране находятся воспринимающие клетки - слуховые рецепторы. Колебания жидкости, заполняющей улитку, раздражают отдельные слуховые рецепторы. В них возникают импульсы, которые передаются по слуховому нерву в головной мозг. На схеме показаны все последовательные процессы превращения звуковой волны в нервную сигнализацию.

Слуховое восприятие. В головном мозге происходит различение силы, высоты и характера звука, его местоположения в пространстве.

Мы слышим двумя ушами, и это имеет большое значение для определения направления звука. Если звуковые волны приходят одновременно в оба уха, то мы воспринимаем звук посередине (спереди и сзади). Если звуковые волны чуть раньше придут в одно ухо, чем в другое, то мы воспринимаем звук либо справа, либо слева.



Человек - это действительно самое умное из животных, населяющих планету. Однако наш ум нередко лишает нас превосходства в таких способностях, как восприятие окружающего посредством обоняния, слуха и других сенсорных ощущений. Так, большинство животных намного опережают нас, если речь идет о слуховом диапазоне. Диапазон слуха человека - это ряд частот, которые может воспринимать человеческое ухо. Попробуем понять, как работает ухо человека в отношении восприятия звука.

Диапазон слуха человека в нормальных условиях

В среднем человеческое ухо может улавливать и различать звуковые волны в диапазоне от 20 Гц до 20 кГц (20000 Гц). Однако по мере старения слуховой диапазон человека уменьшается, в частности понижается его верхняя граница. У пожилых людей она обычно намного ниже, чем у молодых, при этом максимально высокими слуховыми способностями обладают младенцы и дети. Слуховое восприятие высоких частот начинает ухудшаться с восьмилетнего возраста.

Человеческий слух в идеальных условиях

В лаборатории диапазон слуха человека определяется при помощи аудиометра, который испускает звуковые волны различной частоты, и настроенных соответствующим образом наушников. В таких идеальных условиях человеческое ухо может распознавать частоты в диапазоне от 12 Гц до 20 кГц.


Диапазон слуха у мужчин и женщин

Между слуховым диапазоном мужчин и женщин существует значительная разница. Обнаружено, что женщины по сравнению с мужчинами более чувствительны к высоким частотам. Восприятие низких частот находится у мужчин и женщин на более или менее одинаковом уровне.

Различные шкалы для указания диапазона слуха

Хотя частотная шкала является наиболее распространенной шкалой для измерения диапазона слуха человека, его также нередко измеряют в паскалях (Па) и децибелах (дБ). Однако измерение в паскалях считается неудобным, так как эта единица предполагает работу с очень крупными цифрами. Один мкПа - это расстояние, преодолеваемое звуковой волной во время колебания, которое равно одной десятой диаметра атома водорода. Звуковые волны в человеческом ухе преодолевают намного большее расстояние, что делает указание диапазона слуха человека в паскалях затруднительным.

Самый мягкий звук, который может быть распознан ухом человека, равняется примерно 20 мкПа. Шкала децибел более проста в использовании, так как она представляет собой логарифмическую шкалу, которая напрямую ссылается на шкалу Па. Она принимает 0 дБ (20 мкПа) как точку отсчета и далее продолжает сжимать эту шкалу давления. Таким образом, 20 миллионов мкПа равняются всего 120 дБ. Так получается, что диапазон человеческого уха составляет 0-120 дБ.

Слуховой диапазон значительно разнится от человека к человеку. Поэтому для выявления потери слуха лучше всего измерять диапазон слышимых звуков по отношению к опорной шкале, а не по отношению к обычной стандартизированной шкале. Тесты могут проводиться при помощи сложных инструментов для диагностики слуха, которые позволяют точно определять степень и диагностировать причины потери слуха.

Слух человека ​

Слух - способность биологических организмов воспринимать звуки органами слуха; специальная функция слухового аппарата, возбуждаемая звуковыми колебаниями окружающей среды, например, воздуха или воды. Одно из биологических дистантных ощущений, называемое также акустичеcким восприятием. Обеспечивается слуховой сенсорной системой.

Человеческий слух способен слышать звук в пределах от 16 Гц до 22 кГц при передаче колебаний по воздуху, и до 220 кГц при передаче звука по костям черепа. Эти волны имеют важное биологическое значение, например, звуковые волны в диапазоне 300-4000 Гц соответствуют человеческому голосу. Звуки выше 20 000 Гц имеют малое практическое значение, так как быстро тормозятся; колебания ниже 60 Гц воспринимаются благодаря вибрационному чувству. Диапазон частот, которые способен слышать человек, называется слуховым или звуковым диапазоном; более высокие частоты называются ультразвуком, а более низкие - инфразвуком.

Способность различать звуковые частоты сильно зависит от конкретного человека: его возраста, пола, наследственности, подверженности заболеваниям органа слуха, тренированности и усталости слуха. Некоторые люди способны воспринимать звуки относительно высокой частоты - до 22 кГц, а возможно и выше.
У человека, как и у большинства млекопитающих, органом слуха является ухо. У ряда животных слуховая перцепция осуществляется благодаря комбинации различных органов, которые могут значительно отличаться по своему строению от уха млекопитающих. Некоторые животные способны воспринимать акустические колебания, не слышимые человеком (ультра- или инфразвук). Летучие мыши во время полёта используют ультразвук для эхолокации. Собаки способны слышать ультразвук, на чём и основана работа беззвучных свистков. Существуют свидетельства того, что киты и слоны могут использовать инфразвук для общения.
Человек может различать несколько звуков одновременно благодаря тому, что в ушной улитке одновременно может быть несколько стоячих волн.

Механизм работы слуховой системы:

Звуковой сигнал любой природы может быть описан определенным набором физических характеристик:
частота, интенсивность, длительность, временная структура, спектр и др.

Им соответствуют определенные субъективные ощущения, возникающие при восприятии звуков слуховой системой: громкость, высота, тембр, биения, консонансы-диссонансы, маскировка, локализация-стереоэффект и т.п.
Слуховые ощущения связаны с физическими характеристиками неоднозначно и нелинейно, например, громкость зависит от интенсивности звука, от его частоты, от спектра и т.п. Еще в прошлом веке был установлен закон Фехнера, подтвердивший, что эта связь нелинейна: "Ощущения
пропорциональны отношению логарифмов стимула". Например, ощущения изменения громкости в первую очередь связаны с изменением логарифма интенсивности, высоты - с изменением логарифма частоты и т.д.

Всю звуковую информацию, которую человек получает из внешнего мира (она составляет примерно 25% от общей), он распознает с помощью слуховой системы и работы высших отделов мозга, переводит в мир своих ощущений, и принимает решения, как надо на нее реагировать.
Прежде чем приступить к изучению проблемы, как слуховая система воспринимает высоту тона, коротко остановимся на механизме работы слуховой системы.
В этом направлении сейчас получено много новых и очень интересных результатов.
Слуховая система является своеобразным приемником информации и состоит из периферической части и высших отделов слуховой системы. Наиболее изучены процессы преобразования звуковых сигналов в периферической части слухового анализатора.

Периферическая часть

Это акустическая антенна, принимающая, локализующая, фокусирующая и усиливающая звуковой сигнал;
- микрофон;
- частотный и временной анализатор;
- аналого-цифровой преобразователь, преобразующий аналоговый сигнал в двоичные нервные импульсы - электрические разряды.

Общий вид периферической слуховой системы показан на первом рисунке. Обычно периферическую слуховую систему делят на три части: внешнее, среднее, и внутреннее ухо.

Внешнее ухо состоит из ушной раковины и слухового канала, заканчивающегося тонкой мембраной, называемой барабанной перепонкой.
Внешние уши и голова - это компоненты внешней акустической антенны, которая соединяет (согласовывает) барабанную перепонку с внешним звуковым полем.
Основные функции внешних ушей - бинауральное (пространственное) восприятие, локализация звукового источника и усиление звуковой энергии, особенно в области средних и высоких частот.

Слуховой канал представляет собой изогнутую цилиндрическую трубку длиной 22,5 мм, которая имеет первую резонансную частоту порядка 2,6 кГц, поэтому в этой области частот он существенно усиливает звуковой сигнал, и именно здесь находится область максимальной чувствительности слуха.

Барабанная перепонка - тонкая пленка толщиной 74 мкм, имеет вид конуса, обращенного острием в сторону среднего уха.
На низких частотах она движется как поршень, на более высоких - на ней образуется сложная система узловых линий, что также имеет значение для усиления звука.

Среднее ухо - заполненная воздухом полость, соединенная с носоглоткой евстахиевой трубой для выравнивания атмосферного давления.
При изменении атмосферного давления воздух может входить или выходить из среднего уха, поэтому барабанная перепонка не реагирует на медленные изменения статического давления - спуск-подъем и т.п. В среднем ухе находятся три маленькие слуховые косточки:
молоточек, наковальня и стремечко.
Молоточек прикреплен к барабанной перепонке одним концом, вторым он соприкасается с наковальней, которая при помощи маленькой связки соединена со стремечком. Основание стремечка соединено с овальным окном во внутреннее ухо.

Среднее ухо выполняет следующие функции:
согласование импеданса воздушной среды с жидкой средой улитки внутреннего уха; защита от громких звуков (акустический рефлекс); усиление (рычаговый механизм), за счет которого звуковое давление передаваемое во внутреннее ухо, усиливается почти на 38 дБ по сравнению с тем, которое попадает на барабанную перепонку.

Внутреннее ухо находится в лабиринте каналов в височной кости, и включает в себя орган равновесия (вестибулярный аппарат) и улитку.

Улитка (cochlea) играет основную роль в слуховом восприятии. Она представляет собой трубку переменного сечения, свернутую три раза подобно хвосту змеи. В развернутом состоянии она имеет длину 3,5 см. Внутри улитка имеет чрезвычайно сложную структуру. По всей длине она разделена двумя мембранами на три полости: лестница преддверия, срединная полость и барабанная лестница.

Преобразование механических колебаний мембраны в дискретные электрические импульсы нервных волокон происходят в органе Корти. Когда базилярная мембрана вибрирует, реснички на волосковых клетках изгибаются, и это генерирует электрический потенциал, что вызывает поток электрических нервных импульсов, несущих всю необходимую информацию о поступившем звуковом сигнале в мозг для дальнейшей переработки и реагирования.

Высшие отделы слуховой системы (включая слуховые зоны коры), можно рассматривать как логический процессор, который выделяет (декодирует) полезные звуковые сигналы на фоне шумов, группирует их по определенным признакам, сравнивает с имеющимися в памяти образами, определяет их информационную ценность и принимает решение об ответных действиях.

Психоакустика - область науки, граничащая между физикой и психологией, изучает данные о слуховом ощущении человека при действии на ухо физического раздражения - звука. Накоплен большой объем данных о реакциях человека на слуховые раздражения. Без этих данных трудно получить правильное представление о работе систем передачи сигналов звуковой частоты. Рассмотрим наиболее важные особенности восприятия звука человеком.
Человек ощущает изменения звукового давления, происходящие с частотой 20-20 000 Гц. Звуки с частотой ниже 40 Гц сравнительно редко встречаются в музыке и не существуют в разговорной речи. На очень высоких частотах музыкальное восприятие исчезает и возникает некое неопределенное звуковое ощущение, зависящее от индивидуальности слушателя, его возраста. С возрастом чувствительность слуха у человека уменьшается и прежде всего в области верхних частот звукового диапазона.
Но было бы неправильно делать на этом основании вывод, что для пожилых людей неважна передача звуковоспроизводящей установкой широкой полосы частот. Эксперименты показали, что люди, даже едва воспринимающие сигналы выше 12 кГц, очень легко распознают в музыкальной передаче недостаточность верхних частот.

Частотные характеристики слуховых ощущений

Область слышимых человеком звуков в диапазоне 20-20000 Гц ограничивается по интенсивности порогами: снизу - слышимости и сверху - болевых ощущений.
Порог слышимости оценивается минимальным давлением, точнее, минимальным приращением давления относительно границы чувствителен к частотам 1000-5000 Гц - здесь порог слышимости самой низкий (звуковое давление около 2- 10 Па). В сторону низших и высших звуковых частот чувствительность слуха резко падает.
Порог болевых ощущений определяет верхнюю границу восприятия звуковой энергии и соответствует примерно интенсивности звука 10 Вт/м или 130 дБ (для опорного сигнала с частотой 1000 Гц).
При увеличении звукового давления увеличивается и интенсивность звука, причем слуховое ощущение нарастает скачками, называемыми порогом различения интенсивности. Число этих скачков на средних частотах примерно 250, на низких и высоких частотах оно уменьшается и в среднем по частотному диапазону составляет около 150.

Поскольку диапазон изменения интенсивностей 130 дБ, то элементарный скачок ощущений в среднем по диапазону амплитуд равен 0,8 дБ, что соответствует изменению интенсивности звука в 1,2 раза. При низких уровнях слуха эти скачки достигают 2-3 дБ, при высоких уровнях они уменьшаются до 0,5 дБ (в 1,1 раза). Увеличение мощности усилительного тракта меньше чем в 1,44 раза практически не фиксируется ухом человека. При более низком звуковом давлении, развиваемом громкоговорителем, даже двукратное увеличение мощности выходного каскада может не дать ощутимого результата.

Субъективные характеристики звука

Качество звукопередачи оценивается на основе слухового восприятия. Поэтому правильно определить технические требования к тракту звукопередачи или отдельным его звеньям можно, только изучив закономерности, связывающие субъективно воспринимаемое ощущение звука и объективными характеристиками звука являются высота, громкость и тембр.
Понятие высоты звука подразумевает субъективную оценку восприятия звука по частотному диапазону. Звук принято характеризовать не частотой, а высотой тона.
Тон - это сигнал определенной высоты, имеющий дискретный спектр (музыкальные звуки, гласные звуки речи). Сигнал, обладающий широким непрерывным спектром, все частотные составляющие которого имеют одинаковую среднюю мощность, называется белым шумом.

Постепенное увеличение частоты звуковых колебаний от 20 до 20 000 Гц воспринимается как постепенное изменение тона от самого низкого (басового) до наиболее высокого.
Степень точности, с которой человек определяет высоту звука на слух, зависит от остроты, музыкальности и тренировки его слуха. Следует отметить, что высота звука в какой-то степени зависит от интенсивности звука (при больших уровнях звуки большей интенсивности кажутся ниже, чем слабые..
Ухо человека хорошо различает два близких по высоте тона. Например, в области частот примерно 2000 Гц человек может различать два тона, которые отличаются друг от друга по частоте на 3-6 Гц.
Субъективный масштаб восприятия звука по частоте близок к логарифмическому закону. Поэтому увеличение частоты колебаний вдвое (независимо or начальной частоты) всегда воспринимается как одинаковое изменение высоты тона. Интервал высоты, соответствующий изменению частоты в 2 раза, называется октавой. Диапазон частот, воспринимаемых человеком, 20-20 000 Гц, он охватывает приблизительно десять октав.
Октава - достаточно большой интервал изменения высоты тона; человек различает значительно меньшие интервалы. Так, в десяти октавах, воспринимаемых ухом, можно различить более тысячи градаций высоты тона. В музыке используются меньшие интервалы, называемые полутонами и соответствующие изменению частоты приблизительно в 1,054 раза.
Октаву делят на полуоктавы и треть октавы. Для последних стандартизован следующий ряд частот: 1; 1,25; 1,6; 2; 2,5; 3; 3,15; 4; 5; 6,3: 8; 10, являющихся границами третьоктав. Если эти частоты расположить на равных расстояниях по оси частот, то получится логарифмический масштаб. Исходя из этого все частотные характеристики устройств передачи звука строят в логарифмическом масштабе.
Громкость передачи зависит не только от интенсивности звука, но и от спектрального состава, условий восприятия и длительности воздействия. Так, два звучащих тона средней и низкой частоты, имеющие одинаковую интенсивность (или одинаковое звуковое давление), воспринимаются человеком не как одинаково громкие. Поэтому введено понятие уровня громкости в фонах для обозначения звуков одинаковой громкости. За уровень громкости звука в фонах принимают уровень звукового давления в децибелах такой же громкости чистого тона частотой 1000 Гц, т.е для частоты 1000 Гц уровни громкости в фонах и децибелах совпадают. На других частотах при одном и том же звуковом давлении звуки могут казаться более громкими или более тихими.
Опыт работы звукорежиссеров по записи и монтажу музыкальных произведений показывает, что для лучшего обнаружения дефектов звучания, которые могут возникнуть в процессе работы, уровень громкости, при контрольном прослушивании следует поддерживать высоким, примерно соответствующим уровню громкости в зале.
При длительном воздействии интенсивного звука чувствительность слуха постепенно снижается, и тем больше, чем выше громкость звука. Обнаруживаемое снижение чувствительности связано с реакцией слуха на перегрузку, т.е. с естественной его адаптацией, После некоторого перерыва в прослушивании чувствительность слуха восстанавливается. К этому следует добавить, что слуховой аппарат при восприятии сигналов высокого уровня привносит свои, так называемые субъективные, искажения (что свидетельствует о нелинейности слуха). Так, при уровне сигнала 100 дБ первая и вторая субъективные гармоники достигают уровня 85 и 70 дБ.
Значительный уровень громкости и длительность его воздействия вызывают необратимые явления в слуховом органе. Отмечено, что у молодежи за последние годы резко возросли пороги слышимости. Причиной этого явилось увлечение поп-музыкой, отличающейся высокими уровнями громкости звучания.
Уровень громкости измеряют с помощью электроакустического прибора - шумомера. Измеряемый звук сначала преобразуется микрофоном в электрические колебания. После усиления специальным усилителем напряжения этих колебаний измеряют стрелочным прибором, отрегулированным в децибелах. Чтобы показания прибора как можно более точно соответствовали субъективному восприятию громкости, прибор снабжен специальными фильтрами, изменяющими его чувствительность к восприятию звука разных частот в соответствии с характеристикой чувствительности слуха.
Важной характеристикой звука является тембр. Способность слуха различать его позволяет воспринимать сигналы с большим разнообразием оттенков. Звучание каждого из инструментов и голосов благодаря характерным для них оттенкам становится многокрасочным и хорошо узнаваемым.
Тембр, являясь субъективным отображением сложности воспринимаемого звучания, не имеет количественной оценки и характеризуется терминами качественного порядка (красивый, мягкий, сочный и др.). При передаче сигнала по электроакустическому тракту возникающие искажения в первую очередь влияют на тембр воспроизводимого звука. Условием правильной передачи тембра музыкальных звуков является неискаженная передача спектра сигнала. Спектром сигнала называют совокупность синусоидальных составляющих сложного звука.
Простейшим спектром обладает так называемый чистый тон, в нем присутствует только одна частота. Более интересным оказывается звук музыкального инструмента: его спектр состоит из частоты основного тона и нескольких ""примесных" частот, называемых обертонами (высшими тонами). Обертоны кратны частоте основного тона и обычно меньше его по амплитуде.
От распределения интенсивности по обертонам зависит тембр звука. Звуки разных музыкальных инструментов различаются по тембру.
Более сложным оказывается спектр сочетания музыкальных звуков, называемый аккордом. В таком спектре присутствуют несколько основных частот вместе ссоответствуюшими обертонами
Различия в тембре onpeделяются в основном низко-средне частотными составляющими сигнала, следовательно, и большое разнообразие тембров связано с сигналами, лежащими в нижней части частотного диапазона. Сигналы же, относяшиеся к верхней его части, по мере повышения все больше теряют свою окраску тембра, что обусловлено постепенным уходом их гармонических составляющих за пределы слышимых частот. Это можно объяснить тем, что в образовании тембра низких звуков активно участвуют до 20 и более гармоник, средних 8 - 10, высоких 2 - 3, так как остальные либо слабы, либо выпадают из области слышимых частот. Поэтому высокие звуки, как правило, по тембру беднее.
Практически у всех естественных источников звука, в том числе и у источников музыкальных звуков, наблюдается специфическая зависимость тембра от уровня громкости. К такой зависимости приспособлен и слух - для него является естественным определение интенсивности источника по окраске звука. Громкие звуки обычно являются и более резкими.

Музыкальные источники звука

Большое влияние на качество звучания электроакустических систем оказывает ряд факторов, характеризующих первичные источники звуков.
Акустические параметры музыкальных источников зависят от состава исполнителей (оркестр, ансамбль, группа, солиста и типа музыки: симфоническая, народная, эстрадная и пр.).

Зарождение и формирование звука на каждом музыкальном инструменте имеет свою специфику, связанную с акустическими особенностями звукообразования в том или ином музыкальном инструменте.
Важным элементом музыкального звука является атака. Это - специфический переходный процесс, в течение которого устанавливаются стабильные характеристики звука: громкость, тембр, высота. Любой музыкальный звук проходит три стадии -начало, середину и конец, причем и начальная, и конечная стадии имеют некоторую продолжительность. Начальная стадия называется атакой. Длится она по-разному: у щипковых, ударных и некоторых духовых инструментов 0-20 мс, у фагота 20-60 мс. Атака - это не просто нарастание громкости звука от нуля до некоторого установившегося значения, она может сопровождаться таким же изменением высоты звука и его тембра. Причем характеристики атаки инструмента неодинаковы в разных участках его диапазона при разной манере игры: скрипка по богатству возможных выразительных способов атаки - наиболее совершенный инструмент.
Одна из характеристик любого музыквльного инструмента - это частотный диапазон звучания. Кроме основных частот каждый инструмент характеризуется дополнительными высококачественными составляющими - обертонами (или, как принято в электроакустике, - высшими гармониками), определяющими его специфический тембр.
Известно, что звуковая энергия неравномерно распределяется по всему спектру звуковых частот, излучаемых источником.
Большинство инструментов характеризуется усилением основных частот, а также отдельных обертонов в определенных (одной или нескольких) относительно узких полосах частот (формантах), различных для каждого инструмента. Резонансные частоты (в герцах) формантной области составляют: для трубы 100-200, валторны 200-400, тромбона 300-900, трубы 800-1750, саксофона 350-900, гобоя 800-1500, фагота 300-900, кларнета 250-600.
Другое характерное свойство музыкальных инструментов - сила их звука, обусловливается большей или меньшей амплитудой (размахом) их звучащего тела или воздушного столба (большей амплитуде соответствует более сильное звучание и наоборот). Значение пиковых акустических мощностей (в ваттах) составляет: для большого оркестра 70, большого барабана 25, литавр 20, малого барабана 12, тромбона 6, фортепиано 0,4, трубы и саксофона 0,3, трубы 0,2, контрабаса 0.(6, малой флейты 0,08, кларнета, валторны и треугольника 0,05.
Отношение мощности звука, извлекаемого из инструмента при исполнении "фортиссимо", к мощности звука при исполнении "пианиссимо" принято называть динамическим диапазоном звучания музыкальных инструментов.
Динамический диапазон музыкального источника звука зависит от вида исполнительского коллектива и характера исполнения.
Рассмотрим динамический диапазон отдельных источников звука. Под динамическим диапазоном отдельных музыкальных инструментов и ансамблей (различные по составу оркестры и хоры), а также голосов понимают отношение максимальных звуковых давлений, создаваемых данным источником, к минимальным, выраженное в децибелах.
На практике при определении динамического диапазона источника звука обычно оперируют только уровнями звукового давления, вычисляя или измеряя соответствующую их разность. Например, если максимальный уровень звучания оркестра составляет 90, а минимальный 50 дБ, то говорят, что динамический диапазон равен 90 - 50= = 40 дБ. При этом 90 и 50 дБ - это уровни звукового давления относительно нулевого акустического уровня.
Динамический диапазон для данного источника звука - величина непостоянная. Она зависит от характера исполняемого произведения и от акустических условий помещения, в котором происходит исполнение. Реверберация расширяет динамический диапазон, который обычно достигает максимального значения в помещениях, имеющих большой объем и минимальное звукопоглощение. Почти у всех инструментов и человеческих голосов динамический диапазон неравномерен по регистрам звучания. Например, уровень громкости самого низкого звука на "форте" у вокалиста равен уровню самого высокого звука на "пиано".

Динамический диапазон той или иной музыкальной программы выражается таким же образом, как и для отдельных источников звука, но максимальное звуковое давление отмечается при динамическом ff (фортиссимо) оттенке, а минимальное при рр (пианиссимо).

Наибольшей громкости, обозначаемой в нотах fff (форте-, фортиссимо), соответствует акустический уровень звукового давления примерно 110 дБ, а наименьшей громкости, обозначаемой в нотах ррр (пиано-пианиссимо), примерно 40 дБ.
Следует отметить, что динамические оттенки исполнения в музыке относительны и их связь с соответствующими уровнями звукового давления до некоторой степени условна. Динамический диапазон той или иной музыкальной программы зависит от характера сочинения. Так, динамический диапазон классических произведений Гайдна, Моцарта, Вивальди редко превышает 30-35 дБ. Динамический диапазон эстрадной музыки обычно не превышает 40 дБ, а танцевальной и джазовой - всего около 20 дБ. Большинство произведений для оркестра русских народных инструментов также имеют небольшой динамический диапазон (25-30 дБ). Это справедливо и для духового оркестра. Однако максимальный уровень звучания духового оркестра в помещении может достигать достаточно большого уровня (до 110 дБ).

Эффект маскировки

Субъективная оценка громкости зависит от условий, в которых звук воспринимается слушателем. В реальных условиях акустический сигнал не существует в абсолютной тишине. Одновременно с ним воздействуют на слух посторонние шумы, затрудняющие звуковое восприятие, маскируюшие в определенной мере основной сигнал. Эффект маскировки чистого синусоидального тона посторонним шумом оценивается величиной, указываюшей. на сколько децибел повышается порог слышимости маскируемого сигнала над порогом его восприятия в тишине.
Опыты по определению степени маскировки одного звукового сигнала другим показывают, что тон любой частоты маскируется более низкими тонами значительно эффективнее, чем более высокими. Например, если два камертона (1200 и 440 Гц) излучают звуки с одинаковой интенсивностью, то мы перестаем слышать первый тон, он замаскирован вторым (погасив вибрацию второго камертона, мы снова услышим первый).
Если одновременно существуют два сложных звуковых сигнала, состоящих из определенных спектров звуковых частот, то возникает эффект взаимной маскировки. При этом если основная энергия обоих сигналов лежит в одной и той же области диапазона звуковых частот, то эффект маскировки будет наиболее сильным, Так, при передаче оркестрового произведения из-за маскировки аккомпанементом партия солиста может стать плохо разборчивой, невнятной.
Достижение четкости или, как принято говорить, "прозрачности" звучания при звукопередаче оркестров или эстрадных ансамблей становится весьма трудным, если инструмент или отдельные группы инструментов оркестра играют в одном или близких регистрах одновременно.
Режиссер, производя запись оркестра, обязательно учитывает особенности маскировки. На репетициях он с помощью дирижера устанавливает баланс между силой звучания инструментов одной группы, а также между группами всего оркестра. Ясность основных мелодических линий и отдельных музыкальных партий достигается в этих случаях близким расположением микрофонов к исполнителям, умышленным выделением звукорежиссером наиболее важных в данном месте произведения инструментов и другими специальными приемами звукорежиссуры.
Явлению маскировки противостоит психофизиологическоя способность органов слуха выделять из обшей массы звуков один или несколько, несущих наиболее важную информацию. Например, при звучании оркестра дирижер замечает малейшие неточности в исполнении партии на каком-либо инструменте.
Маскировка может существенно влиять на качество передачи сигнала. Четкое восприятие принимаемого звука возможно в том случае, если его интенсивность существенно превышает уровень составляющих помех, находящихся в той же полосе, что и принимаемый звук. При равномерной помехе превышение сигнала должно быть 10- 15 дБ. Эта особенность слухового восприятия находит практическое применение, например, при оценке электроакустических характеристик носителей. Так, если отношение сигнал-шум аналоговой грампластинки 60 дБ, то динамический диапазон записанной программы может быть не более 45- 48 дБ.

Временные характеристики слухового восприятия

Слуховой аппарат, как и любая другая колебательная система, инерционен. При исчезновении звука слуховое ощущение исчезает не сразу, а постепенно, уменьшаясь до нуля. Время, в течение которого ошущение по уровню громкости уменьшается на 8- 10 фон, называется постоянной времени слуха. Эта постоянная зависит от ряда обстоятельств, а также от параметров воспринимаемого звука. Если к слушателю приходят два коротких звуковых импульса, одинаковых пи частотному составу и уровню, но один из них запаздывает, то они будут восприниматься слитно при запаздывании, не превышающем 50 мс. Пои больших интервалах запаздывания оба импульса воспринимаются раздельно, возникает эхо.
Эта особенность слуха учитывается при конструировании некоторых приборов обработки сигналов, например электронных линий задержки, ревербератов и др.
Следует отметить, что благодаря особому свойству слуха ощушение громкости кратковременного звукового импульса зависит не только от его уровня, но и от продолжительности воздействия импульса на ухо. Так, кратковременный звук, длящийся всего 10-12 мс, воспринимается ухом тише, чем звук такой же но уровню, но воздействующий на слух в течение, например 150-400 мс. Поэтому при прослушивании передачи громкость является результатом усреднения энергии звуковой волны в течение некоторого интервала. Кроме того, слух человека обладает инерцией, в частности, при восприятии нелинейных искажений он не ощущает таковых, если продолжительность звукового импульса меньше 10-20 мс. Именно поэтому в индикаторах уровня звукозаписывающей бытовой радиоэлектронной аппаратуры осуществляется усреднение мгновенных значений сигнала за промежуток, выбираемый в соответствии с временными характеристиками органов слуха.

Пространственное представление о звуке

Одной из важных способностей человека является возможность определять направление источника звука. Эта способность называется бинауральным эффектом и объясняется тем, что человек имеет два уха. Данные экспериментов показывают, откуда приходит звук: один для высокочастотных тонов, другой для низкочастотных.

До уха, обращенного к источнику, звук проходит более короткий по времени путь, чем до второго уха. Вследствие этого давление звуковых волн в ушных каналах различается по фазе и амплитуде. Амплитудные различия значительны только на высоких частотах, когда длина звуковой волны становится сравнимой с размерами головы. Когда разница в амплитудах превышает пороговое значение, равное 1 дБ, то кажется, что источник звука находится на той стороне, где амплитуда больше. Угол отклонения источника звука от средней линии (линии симметрии) приблизительно пропорционален логарифму отношения амплитуд.
Для определения направления источника звука с частотами ниже 1500-2000 Гц существенны фазовые различия. Человеку кажется, что звук приходит с той стороны, с которой волна, опережаюшая по фазе, достигает уха. Угол отклонения звука от средней линии пропорционален разности времени прихода звуковых волн к обоим ушам. Тренированный человек может заметить разность фаз при разннице во времени 100 мс.
Способность определять направление звука в вертикальной плоскости развита значительно слабее (примерно в 10 раз). Эту особенность физиологии связывают с ориентацией органов слуха в горизонтальной плоскости.
Специфическая особенность пространственного восприятия звука человеком проявляется в том, что органы слуха способны ощушать суммарную, интегральную локализацию, создаваемую с помошью искусственных средств воздействия. Например, в помещении по фронту на расстоянии 2-3 м друг от друга установлены две АС. На таком же расстоянии от оси соединяющей системы строго по центру находится слушатель. В помешении через АС излучаются два одинаковых по фазе, частоте и интенсивности звука. В результате идентичности звуков, проходящих в орган слуха, человек не может их разделить, его ощущения дают представления о едином, кажущемся (виртуальном) источнике звука, который находится строго по центру на оси симметрии.
Если теперь уменьшить громкость одной АС, то кажущийся источник переместится в сторону более громко работающего громкоговорителя. Иллюзию перемещения источника звука можно получить не только изменением уровня сигнала, но и искусственной задержкой одного звука относительно другого; в этом случае кажущийся источник сместится в сторону АС, излучающей сигнал с опережением.
Для иллюстрации интегральной локализации приведем пример. Расстояние между АС 2м, расстояние от фронтальной линии до слушателя 2 м; для того чтобы источник как бы сместился на 40 см влево или вправо, необходимо подать два сигнала с разностью по уровню интенсивности в 5 дБ или с временным запаздыванием в 0,3 мс. При разности уровней в 10 дБ или задержке по времени 0,6 мс источник "переместится" на 70 см от центра.
Таким образом, если изменять создаваемое АС звуковое давление, то возникает иллюзия перемещения источника звука. Это явление называется суммарной локализацией. Для создания суммарной локализации применяется двухканальная стереофоническая система звукопередачи.
В первичном помешении устанавливаются два микрофона, каждый из которых работает на свой канал. Во вторичном - два громкоговорителя. Микрофоны располагаются на определенном расстоянии друг от друга по линии, параллельной размещению излучателя звука. При перемещении излучателя звука на микрофон будет действовать разное звуковое давление и время прихода звуковой волны будет различно из-за неодинакового расстояния между излучателем звуха и микрофонами. Эта разница и создает во вторичном помешении эффект суммарной локализации, в результате чего кажущийся источник локализуется в определенной точке пространства, находящейся между двумя громкоговорителями.
Следует сказать о биноуральной системе звукопередачи. При использовании этой системы, называемой системой "искусственной головы", в первичном помешении размещают два отдельных микрофона, располагая их на расстоянии друг от друга, равном расстоянию между ушами человека. Каждый из микрофонов имеет независимый канал звукопередачи, на выходе которого во вторичном помещении включены телефоны для левого и правого уха. При идентичности каналов звукопередачи такая система точно передает бинауральный эффект, создаваемый около ушей "искусственной головы" в первичном помещении. Наличие головных телефонов и необходимость пользования ими в течение длительного времени является недостатком.
Орган слуха определяет расстояние до источника звука по ряду косвенных признаков и с некоторыми погрешностями. В зависимости от того, мало или велико расстояние до источника сигнала, субъективная его оценка меняется под воздействием различных факторов. Было установлено, что если определяемые расстояния невелики (до 3 м), то их субъективная оценка почти линейно связана с изменением громкости перемещающегося по глубине источника звука. Дополнительным фактором для сложного сигнала является его тембр, который становится все более "тяжелым"" по мере приближения источника к слушателю. Это связано со все большим усилением обертонов низкого по сравнению с обертонами высокого регистра, вызванным происходящим при этом повышением уровня громкости.
Для средних расстояний 3-10 м. удаление источника от слушателя будет сопровождаться пропорциональным уменьшением громкости, причем это изменение будет одинаково относиться к основной частоте и к гармоническим составляюшим. В результате происходит относительное усиление высокочастотной части спектра и тембр становится более ярким.
С ростом расстояния потери энергии в воздухе будут расти пропорционально квадрату частоты. Увеличенная потеря обертонов высокого регистра приведет к снижению тембральной яркости. Таким образом, субъективная оценка расстояний связана с изменением его громкости и тембра.
В условиях закрытого помещения сигналы первых отражений, запаздывающие относительно прямого на 20-40 мс, воспринимаются органом слуха как приходящие с различных направлений. Вместе с этим все большее их запаздывание создает впечатление о значительном удалении точек, от которых происходят эти отражения. Таким образом, по времени запаздывания можно судить об относительной удаленности вторичных источников или, что то же, о размерах помещения.

Некоторые особенности субъективного восприятия стереофонических передач.

Стереофоническая система звукопередачи имеет ряд существенных особенностей по сравнению с обычной монофонической.
Качество, отличающее стереофоническое звучание, объемность, т.е. естественную акустическую перспективу, можно оценить с помощью некоторых дополнительных показателей, не имеющих смысла при монофонической технике передачи звука. К таким дополнительным показателям следует отнести: угол слышимости, т.е. угол, под которым слушатель воспринимает звуковую стереофоническую картину; стереофоническую разрешающую способность, т.е. определяемую субъективно локализацию отдельных элементов звукового образа в определенных точках пространства в пределах угла слышимости; акустическую атмосферу, т.е. эффект возникновения у слушателя ощущения присутствия в первичном помещении, где происходит передаваемое звуковое событие.

О роли акустики помещения

Красочность звучания достигается не только с помощью аппаратуры воспроизведения звука. Даже при достаточно хорошей аппаратуре качество звучания может оказаться низким, если помещение, предназначенное для прослушивания, не обладает определенными свойствами. Известно, что в закрытом помешении возникает явление нослезвучания, называемое реверберацией. Воздействуя на органы слуха, реверберация (в зависимости от ее длительности) может улучшать или ухудшать качество звучания.

Человек, находящийся в помещении, воспринимает не только прямые звуковые волны, создаваемые непосредственно источником звука, но и волны, отраженные потолком и стенами помещения. Отраженные волны слышны еше некоторое время после прекращения действия источника звука.
Иногда считают, что отраженные сигналы играют только отрицательную роль, создавая помехи восприятию основного сигнала. Однако такое представление неправильно. Определенная часть энергии начальных отраженных эхосигналов, достигая ушей человека с малыми задержками, усиливает основной сигнал и обогашает его звучание. Напротив, более поздние отраженные эхосигналы. время задержки которых превышает некоторое критическое значение, образуют звуковой фон, затрудняющий восприятие основного сигнала.
Помещение прослушивания не должно иметь большое время реверберации. Жилые комнаты, как правило, имеют малое воемя реверберации в силу ограниченности своих размеров и наличия звукопоглощающих поверхностей, мягкой мебели, ковров, занавесок и т. п.
Различные по характеру и свойствам преграды характеризуются коэффициентом поглощения звука, который представляет собой отношение поглощенной энергии к полной энергии падающей звуковой волны.

Для повышения звукопоглощающих свойств ковра (и снижения шумов в жилом помещении) ковер желательно вешать не вплотную к стене, а с зазором 30-50 мм).

Слух - вид чувствительности, обусловливающий восприятие звуковых колебаний. Его значение неоценимо в психическом развитии полноценной личности. Благодаря слуху познается звуковая часть окружающей действительности, познаются звуки природы. Без звука невозможны звуковые речевые общения между людьми, людьми и животными, между людьми и природой, без него не могли появиться и музыкальные произведения.

Острота слуха у людей неодинакова. У одних она понижена или нормальная, у других повышена. Бывают люди с абсолютным слухом. Они способны узнавать по памяти высоту заданного тона. Музыкальный слух позволяет точно определять интервалы между звуками различной высоты, узнавать мелодии. Индивидуумы с музыкальным слухом при исполнении музыкальных произведений отличаются чувством ритма, умеют точно повторить заданный тон, музыкальную фразу.

Пользуясь слухом, люди в состоянии определять направление звука и по нему - его источник. Это свойство позволяет ориентироваться в пространстве, на местности, различать говорящего среди нескольких других. Слух вместе с другими видами чувствительности (зрением) предупреждает об опасностях, возникающих во время труда, пребывания на улице, среди природы. В целом слух, как и зрение, делает жизнь человека духовно богатой.

Человек воспринимает звуковые волны с помощью слуха с частотой колебаний от 16 до 20 000 герц. С возрастом восприятие высоких частот снижается. Снижается слуховое восприятие и при действии звуков большой силы, высоких и особенно низких частот.

Одна из частей внутреннего уха - вестибулярная - обусловливает чувство положения тела в пространстве, поддерживает равновесие тела, обеспечивает прямохождение человека.

Как устроено ухо человека

Наружное, среднее и внутреннее — основные отделы уха

Височная кость человека является костным вместилищем органа слуха. Он состоит из трех основных отделов: наружного, среднего и внутреннего. Первые два служат для проведения звуков, третий содержит звукочувствительный аппарат и аппарат равновесия.

Строение наружного уха


Наружное ухо представлено ушной раковиной, наружным слуховым проходом, барабанной перепонкой. Ушная раковина улавливает и направляет звуковые волны в слуховой проход, но у человека она почти утратила свое основное назначение.

Наружный слуховой проход проводит звуки к барабанной перепонке. В его стенках имеются сальные железы, выделяющие так называемую ушную серу. Барабанная перепонка находится на границе между наружным и средним ухом. Это круглая по форме пластинка размером 9*11мм. Она принимает звуковые колебания.

Строение среднего уха


Схема строения среднего уха человека с описанием

Среднее ухо расположено между наружным слуховым проходом и внутренним ухом. Оно состоит из барабанной полости, которая расположена непосредственно за барабанной перепонкой, в которая через евстахиеву трубу сообщается с носоглоткой. Барабанная полость имеет объем около 1 куб.см.

Она содержит три слуховых косточки, соединенных между собой:

  • Молоточек;
  • наковальня;
  • стремечко.

Эти косточки передают звуковые колебания с барабанной перепонки к овальному окну внутреннего уха. Они уменьшают амплитуду и увеличивают силу звука.

Строение внутреннего уха


Схема строения внутреннего уха человека

Внутреннее ухо, или лабиринт, представляет собой систему полостей и каналов, заполненных жидкостью. Функцию слуха здесь выполняет только улитка - спирально закрученный канал (2,5 завитка). Остальные части внутреннего уха обеспечивают сохранение равновесия тела в пространстве.

Звуковые колебания от барабанной перепонки посредством системы слуховых косточек через овальное отверстие передаются жидкости, заполняющей внутреннее ухо. Вибрируя, жидкость раздражает рецепторы, расположенные в спиральном (кортиевом) органе улитки.

Спиральный орган - это звуковоспринимающий аппарат, расположенный в улитке. Он состоит из основной мембраны (пластинки) с опорными и рецепторными клетками, а также из нависающей над ними покровной мембраны. Рецепторы (воспринимающие) клетки имеют удлиненную форму. Их один конец фиксирован на основной мембране, а противоположный содержит 30-120 волосков разной длины. Эти волоски омываются жидкостью (эндолимфой) и соприкасаются с нависающей над ними покровной пластинкой.

Звуковые колебания от барабанной перепонки и слуховых косточек передаются жидкости, заполняющей улитковые каналы. Эти колебания вызывают колебания основной мембраны вместе с волосковыми рецепторами спирального органа.

Во время колебаний волосковые клетки касаются покровной мембраны. В результате этого в них возникает разность электрических потенциалов, приводящая к возбуждению волокон слухового нерва, которые отходят от рецепторов. Получается своего рода микрофонный эффект, при котором механическая энергия колебаний эндолимфы превращается в электрическую нервного возбуждения. Характер возбуждений зависит от свойств звуковых волн. Высокие тона улавливаются узкой частью основной мембраны, у основания улитки. Низкие тона регистрируются широкой частью основной мембраны, у вершины улитки.

От рецепторов кортиева органа возбуждение распространяется по волокнам слухового нерва в подкорковые и корковые (в височной доле) центры слуха. Вся система, включающая звукопроводящие части среднего и внутреннего уха, рецепторы, нервные волокна, центры слуха в головном мозге, составляет слуховой анализатор.

Вестибулярный аппарат и ориентация в пространстве

Как уже упоминалось, внутреннее ухо выполняет двойную роль: восприятие звуков (улитка с кортиевым органом), а также регуляцию положения тела в пространстве, равновесие. Последняя функция обеспечивается вестибулярным аппаратом, который состоит из двух мешочков - округлого и овального - и трех полукружных каналов. Они соединены между собой и заполнены жидкостью. На внутренней поверхности мешочков и расширений полукружных каналов находятся чувствительные волосковые клетки. От них отходят волокна нервов.


Угловые ускорения воспринимаются, главным образом, рецепторами, расположенными в полукружных каналах. Рецепторы возбуждаются при давлении жидкости каналов. Прямолинейные ускорения регистрируются рецепторами мешочков преддверия, где находится отолитовый аппарат . Он состоит из чувствительных волосков нервных клеток, погруженных в желатинообразное вещество. Вместе они образуют мембрану. Верхняя часть мембраны содержит вкрапления кристаллов бикарбоната кальция - отолиты . Под влиянием прямолинейных ускорений эти кристаллы силой своей тяжести заставляют мембрану прогибаться. При этом происходят деформации волосков и в них возникает возбуждение, транслирующееся по соответствующему нерву в центральную нервную систему.

Функцию вестибулярного аппарата в целом можно представить следующим образом. Движение жидкости, содержащейся в вестибулярном аппарате, вызываемое перемещением тела, тряской, качкой, вызывает раздражение чувствительных волосков рецепторов. Возбуждения передаются по черепномозговым нервам в продолговатый мозг, мост. Отсюда они направляются к мозжечку, а также спинному мозгу. Эта связь со спинным мозгом обусловливает рефлекторные (непроизвольные) движения мышц шеи, туловища, конечностей, благодаря чему выравнивается положение головы, туловища, предотвращается падение.

При осознанном определении положения головы возбуждение поступает из продолговатого мозга и моста через зрительные бугры в кору большого мозга. Считается, что корковые центры контроля равновесия и положения тела в пространстве находятся в теменной и височной долях мозга. Благодаря корковым концам анализатора возможен осознанный контроль равновесия и положения тела, обеспечивается прямохождение.

Гигиена слуха

  • Физическими;
  • химическими
  • микроорганизмами.

Физические вредные факторы

Под физическими факторами следует понимать травмирующие воздействия во время ушибов, при ковырянии различными предметами в наружном слуховом проходе, а также постоянные шумы и особенно звуковые колебания ультравысоких и особенно инфранизких частот. Травмы являются несчастными случаями и их не всегда удается предотвратить, а вот травмы барабанной перепонки во время чистки ушей можно полностью избежать.

Как правильно чистить уши человеку ? Чтобы удалялась сера, достаточно ежедневно мыть уши и не будет необходимости вычищать ее грубыми предметами.

С ультразвуками и инфразвуками человек сталкивается только в условиях производства. Для предотвращения их вредного действия на органы слуха необходимо соблюдать правила техники безопасности.

Вредно сказываются на органе слуха постоянные шумы в условиях больших городов, на предприятиях. Однако медико-санитарная служба ведет борьбу с этими явлениями, а инженерно-техническая мысль направлена на разработку технологии производства со снижением уровня шума.

Хуже дело обстоит у любителей громкой игры на музыкальных инструментах. Особенно отрицательно влияние наушников на слух человека, при прослушивании громкой музыки. У таких лиц уровень восприятия звуков понижается. Рекомендация одна - приучать себя к умеренной громкости.

Химические вредные факторы

Болезни органа слуха в результате действия химических веществ бывают, главным образом, при нарушениях техники безопасности в обращении с ними. Поэтому нужно соблюдать правила работы с химическими веществами. Если же вы не знаете свойств какого-то вещества, то не следует им пользоваться.

Микроорганизмы как вредный фактор

Повреждения органа слуха болезнетворными микроорганизмами можно предотвратить своевременным оздоровлением носоглотки, из которой возбудители проникают в среднее ухо через евстахиев канал и вызывают вначале воспаление, а при запоздалом лечении - снижение и даже утрату слуха.

Для сохранения слуха немаловажны общеукрепляющие меры: организация здорового образа жизни, соблюдение режима труда и отдыха, физическая подготовка, разумное закаливание.

Для людей, страдающих слабостью вестибулярного аппарата, проявляющейся в непереносимости поездки в транспорте, желательны специальные тренировки, упражнения. Эти упражнения направлены на уменьшение возбудимости аппарата равновесия. Они проделываются на вращающихся креслах, специальных тренажерах. Наиболее доступную тренировку можно осуществлять на качелях, постепенно увеличивая ее время. Кроме того, применяются гимнастические упражнения: вращательные движения головы, тела, прыжки, кувыркания. Разумеется, тренировку вестибулярного аппарата осуществляют под медицинским контролем.

Все рассмотренные анализаторы обусловливают гармоничное развитие личности только при тесном взаимодействии.



Рассказать друзьям