Параметры кислотно основного состояния крови. Интерпретация анализа кислотно – основного состояния крови

💖 Нравится? Поделись с друзьями ссылкой


2

Нарушения кислотно-щелочного состояния (КЩС ) являются в большинстве случаев следствием серьезного патологического нарушения и редко имеют самостоятельное значение. Исследование газового состава артериальной крови (ГАК) - незаменимый метод диагностики у пациентов с подозрением на респираторную патологию или метаболические нарушения. Повторный анализ газового состава артериальной крови (ГАК) позволяет отслеживать течение основного заболевания и контролировать эффект проводимой терапии. Результаты исследования газового состава артериальной крови (ГАК) должны рассматриваться параллельно с оценкой клинического состояния пациента. Метод имеет ограничения, поскольку позволяет исследовать только жидкость внеклеточного компартмента и не дает информации о pH и газовом составе внутриклеточной жидкости.

Многие клиницисты сталкиваются с трудностями при интерпретации газового состава крови. В этом обзоре даются базовые сведения о газовом и кислотно-основном гомеостазе и принципы пошагового подхода к интерпретации их нарушений. Раздел, посвященный физическим аспектам, направлен на углубленное изучение рассматриваемого вопроса; при желании его можно пропустить и перейти непосредственно к клиническому приложению.

Основы физики

Показатель pH представляет собой отрицательный десятичный логарифм концентрации ионов водорода (H +). При показателе pH = 7,0 концентрация H+ составляет 10 -7 или 1/10 7 . При этом значении pH среда является нейтральной, поскольку концентрации OH - и H + равны.

H 2 O → H + + OH -

При pH = 1, концентрация H + составляет 10 -1 или 1/10, среда при этом является очень концентрированной кислотой.

pH 7,0 = нейтральная среда

pH > 7 = щелочная среда

pH < 7 = кислая среда

pH 7,4 = физиологическое значение pH внеклеточной жидкости (нормальные значения колеблются от 7,35 до 7,45)

В связи с особенностями логарифмического исчисления незначительные изменения pH соответствуют выраженным изменениям концентрации H+. При падении показателя с 7,4 до 7,0, кислотность среды (концентрация ионов водорода) повышается в 2,5 раза.

pH Концентрация H +
7,4 1/25.118.864
7,3 1/19.952.623
7,2 1/15.848.931
7,1 1/12.589.254
7,0 1/10.000.000

♦ Обычно pH измеряют прямым методом при помощи специального стеклянного электрода, который имеет мембрану, проницаемую для H+.

♦ Концентрация ионов бикарбоната - HCO 3 - измеряется бикарбонатным электродом или может быть получена расчетным путем.

♦ CO 2 обычно измеряется прямым методом при помощи СО 2 -электрода.

Существуют разнообразные физиологические буферные системы, которые помогают предотвратить внезапные скачки внутриклеточного значения pH (такие, как бикарбонатная, лактатная, фосфатная, аммонийная, гемоглобиновая, белковая и прочие). Бикарбонатная система участвует в регуляции pH всех компартментов внутренней среды, обладая возможностью вмешиваться в кислотно-щелочное состояние на двух уровнях: концентрация HCO 3 - регулируется почками, a CO 2 - легкими.

H + + HCO 3 - → H 2 CO 3 → H 2 O + CO 2

Точное значение pH среды может быть рассчитано при помощи уравнения Гендерсона-Хассельбаха :

pH = pK + log

[основание] / [кислота] = pK + log /

pK представляет собой специфичную для данного буфера константу (например, для бикарбонатной системы при 37°С pK составляет 6,1).

Поскольку концентрация HCO 3 - регулируется почками, а выведение CO 2 - легкими, уравнение принимает следующий вид:

pH = константа ПОЧКИ / ЛЕГКИЕ

Терминологические замечания: ацидоз / ацидемия и алкалоз / алкалемия

Суффикс "емия" ("aemia") означает "определяемый в крови".

При описании суммарного кислотно-щелочного состояния крови корректным является использование терминов ацидемия или алкалемия. Определяющую роль в этом случае играет исключительно значение pH. При этом не учитываются прочие моменты: носит ли первичное нарушение метаболический либо респираторный характер и каковы механизмы его компенсации.

При описании влияния метаболических или респираторных нарушений на состояние крови и прочих физиологических жидкостей используется суффикс "оз" ("osis"). Например, при метаболическом ацидозе с неполной респираторной компенсацией отмечается снижение pH - данное состояние будет носить название ацидемия.

Клиническое значение

Нормальные значения газового состава крови
Показатель Границы нормы Единицы Примечания
pH 7,35 - 7,4 - 7,45 (относительная величина)
PaCO 2

мм рт. ст.

PaO 2

мм рт. ст.

На уровне моря FiO 2 = 21%, становится ниже с повышением высоты, повышается при кислородотерапии

HCO 3 - (актуальный бикарбонат - AB)

22 - 24 - 26 ммоль/л Нормальные значения могут варьировать при изменении PCO 2
Стандартный бикарбонат (SB) 22 - 24 - 26 ммоль/л после его стандартизации (эквилибровка) по значению CO 2 40 мм рт. ст. (5,3 кПа)
Избыток оснований (BE) -2,0 - +2,0 ммоль/л При отрицательном значении BE говорят о дефиците оснований

Бикарбонатная буферная система играет наиболее важную роль в поддержание постоянства кислотно-щелочного состояния и может быть оценена при анализе газового состава крови. Легкие способны регулировать выведение CO 2 , а почки экскрецию или задержку HCO 3 - . Это взаимодействие позволяет с высокой точностью поддерживать и регулировать соотношение кислот и оснований в организме.

Каково значение показателей кислотно-щелочного состояния (КЩС) и газового состава артериальной крови (ГАК)?
pH

Общие кислотно-щелочные свойства среды.

Указывает, имеется ли у пациента ацидемия или алкалемия.

PCO 2 Респираторный компонент
PO 2

Регуляция и значение кислотно-щелочного состояния организма (КЩС) – знания необходимые каждому врачу, поскольку даже небольшие изменения КЩС могут привести к смерти больного.

Что такое кислотно-щелочное состояние

Организм на 80% состоит из воды, остальную часть составляют минеральные и органические вещества, многие в растворенном виде, как ионы. Способность воды образовывать ионы водорода и гидроксильной группы, и соединятся с другими ионами приводит к изменению равновесия Н- и ОН- групп.

Если количество этих групп равное, то раствор нейтральный, при повышении Н- групп его называют кислотным, при избытке ОН- щелочным. Определить реакцию раствора можно путем измерения его РН, которое принимает значения от 0 (кислота) до 14 (щелочь). Вода считается нейтральной жидкостью с РН равной 7.

Показатели КЩС организма и их изменение

Жидкости организма могут иметь разную реакцию, так желудочный сок, который способствует расщеплению питательных веществ, имеет кислую реакцию, РН спермы щелочную. Реакция мочи, слюны может меняться в зависимости от РН крови.

Кровь имеет слабощелочную реакцию, показатели кислотно-щелочного состояния крови колеблются в пределах 7,37-7,44. Даже незначительные колебания приводят к серьезным нарушениям. Так, изменение КЩС крови на 0,2 вызывают кому, а на 0,3 смерть.

Нарушение кислотно-щелочного состояния, когда РН крови снижается, называют ацидозом, если повышается, то это алкалоз. Изменения зависят от пищи, различных патологических процессов и заболеваний.

Анализ и оценка кислотно-щелочного состояния, проводится путем измерения РН, сдвиг РН в ту или иную сторону требует немедленного вмешательства с целью восстановления. Значимые нарушения РН наблюдаются у тяжелых больных или людей с критическими нарушениями сердечнососудистой и дыхательной систем.

Регуляция КЩС

Обычно организм самостоятельно справляется с регуляцией кислотно-щелочного состояния. Природные механизмы регуляции – это буферные системы, которые поддерживают РН в пределах нормы. Выделяют три основные группы механизмов, регулирующих КЩС:

  • буферная система крови;
  • легочная система;
  • почечная система.

Буферная система крови

Есть несколько механизмов, которые восстанавливают кислотно-щелочное состояние при его нарушении:

  • Бикарбонатный буфер снижает ацидоз путем присоединения ионов Н- к НСО3-, получившаяся в результате кислота быстро распадается на воду и углекислый газ, который выводится легкими.
  • Гемоглобиновый буфер меняет КЩС, путем восстановления калиевой соли гемоглобина крови.
  • Фосфатный буфер действует по принципу бикарбонатного.
  • Белковый буфер связан со способностью аминокислот к образованию ионов.

Легочная система

Легкие регулируют КЩС путем изменения содержания углекислого газа и кислорода в крови (бикарбонатный и гемоглобиновый буфер). Ацидоз вызывает возбуждение дыхательного центра и гипервентиляцию легких. Поэтому при нарушении КЩС нередко требуется терапия кислородом или ИВЛ.

Почечная система

Почки изменяют кислотно-щелочное состояние, выводя избыток ионов с мочой, поэтому показатели РН мочи также нередко меняются и по ним можно определить баланс в организме.

В реанимационной и анестезиологической практике часто встречаются больные с нарушением КЩС, поэтому применяются методы его регуляции:

  • введение щелочных растворов (бикарбонат натрия);
  • гипо или гипервентиляция легких, ИВЛ;
  • терапия кислородом;
  • инфузионная терапия с форсированным диурезом.

Кислотно-щелочное состояние – важный показатель состояния больного, регулировать его нужно осторожно, постоянно осуществляя контроль за РН крови.

Я создал этот проект, чтобы простым языком рассказать Вам о наркозе и анестезии. Если Вы получили ответ на вопрос и сайт был полезен Вам, я буду рад поддержке, она поможет дальше развивать проект и компенсировать затраты на его обслуживание.

Активная реакция крови - чрезвычайно важная гомеостатическая константа организма, обеспечивающая течение окислительно-восстановительных процессов, деятельность ферментов, направление и интенсивность всех видов обмена.
Кислотность или щелочность раствора зависит от содержания в нем свободных ионов водорода [Н+]. Количественно активная реакция крови характеризуется водородным показателем - рН {power hydrogen - «сила водорода»).
Водородный показатель - отрицательный десятичный логарифм концентрации водородных ионов, т. е. pH=-lg.
Символ рН и шкалу рН (от 0 до 14) ввел в 1908 г. Сервисен. Если рН равно 7,0 (нейтральная реакция среды), то содержание ионов Н+ равно 107 моль/л. Кислая реакция раствора имеет рН от 0 до 7; щелочная - от 7 до 14.
Кислота рассматривается как донор ионов водорода, основание - как их акцептор, т. е. вещество, которое может связывать ионы водорода.
Постоянство кислотно-основного состояния (КОС) поддерживается как физико-химическими (буферные системы), так и физиологическими механизмами компенсации (легкие, почки, печень, другие органы).
Буферными системами называют растворы, обладающие свойствами достаточно стойко сохранять постоянство концентрации водородных ионов как при добавлении кислот или щелочей, так и при разведении.
Буферная система - это смесь слабой кислоты с солью этой кислоты, образованной сильным основанием.
Примером может служить сопряженная кислотно-основная пара карбонатной буферной системы: Н2СО3 и NaHC03.
В крови существует несколько буферных систем:
1) бикарбонатная (смесь Н2СОз и НСО3-);
2) система гемоглобин - оксигемоглобин (оксигемоглобин имеет свойства слабой кислоты, а дезоксигемоглобин - слабого основания);
3) белковая (обусловленная способностью белков ионизироваться);
4) фосфатная система (дифосфат - монофосфат).
Самой мощной является бикарбонатная буферная система - она включает 53% всей буферной емкости крови, остальные системы составляют соответственно 35%, 7% и 5%. Особое значение гемоглобинового буфера заключается в том, что кислотность гемоглобина зависит от его оксигенации, то есть газообмен кислорода потенцирует буферный эффект системы.
Исключительно высокую буферную емкость плазмы крови можно проиллюстрировать следующим примером. Если 1 мл децинормальной соляной кислоты добавить кіл нейтрального физиологического раствора, который не является буфером, то его рН упадет с 7,0 до 2,0. Если такое же количество соляной кислоты добавить кіл плазмы, то рН снизится всего с 7,4 до 7,2.
Роль почек в поддержании постоянства кислотно-основного состояния заключается в связывании или выведении ионов водорода и возвращении в кровь ионов натрия и бикарбоната. Механизмы регуляции КОС почками тесно связаны с водно-солевым обменом. Метаболическая почечная компенсация развивается гораздо медленнее дыхательной компенсации - в течение 6-12 ч.
Постоянство кислотно-основного состояния поддерживается также деятельностью печени. Большинство органических кислот в печени окисляется, а промежуточные и конечные продукты либо не имеют кислого характера, либо представляют собой летучие кислоты (углекислота), быстро удаляющиеся легкими. Молочная кислота в печени преобразуется в гликоген (животный крахмал). Большое значение имеет способность печени удалять неорганические кислоты вместе с желчью.
Выделение кислого желудочного сока и щелочных соков (панкреатического и кишечного) также имеет значение в регуляции КОС.
Огромная роль в поддержании постоянства КОС принадлежит дыханию. Через легкие в виде углекислоты выделяется 95% образующихся в организме кислых валентностей. За сутки человек выделяет около 15 ООО ммоль углекислоты, следовательно, из крови исчезает примерно такое же количество ионов водорода (Н2СОз=С02Т + Н20). Для сравнения: почки ежедневно экскретируют 40-60 ммоль Н+ в виде нелетучих кислот.
Количество выделяемой двуокиси углерода определяется ее концентрацией в воздухе альвеол и объемом вентиляции. Недостаточная вентиляция приводит к повышению парциального давления С02 в альвеолярном воздухе (альвеолярная гиперкапния) и соответственно увеличению напряжения углекислого газа в артериальной крови (артериальная гиперкапния). При гипервентиляции происходят обратные изменения - развивается альвеолярная и артериальная гипокапния.
Таким образом, напряжение углекислого газа в крови (РаС02), с одной стороны, характеризует эффективность газообмена и деятельность аппарата внешнего дыхания, с другой - является важнейшим показателем кислотно-основного состояния, его дыхательным компонентом.
Респираторные сдвиги КОС самым непосредственным образом участвуют в регуляции дыхания. Легочный механизм компенсации является чрезвычайно быстрым (коррекция изменений рН осуществляется через 1-3 мин) и очень чувствительным.
При повышении РаС02 с 40 до 60 мм рт. ст. минутный объем дыхания возрастает от 7 до 65 л/мин. Но при слишком большом повышении РаС02 или длительном существовании гиперкапнии наступает угнетение дыхательного центра с понижением его чувствительности к С02.
При ряде патологических состояний регуляторные механизмы КОС (буферные системы крови, дыхательная и выделительная системы) не могут поддерживать рН на постоянном уровне. Развиваются нарушения КОС, и в зависимости от того, в какую сторону происходит сдвиг рН, выделяют ацидоз и алкалоз.
В зависимости от причины, вызвавшей смещение рН, выделяют дыхательные (респираторные) и метаболические (обменные) нарушения КОС: дыхательный ацидоз, дыхательный алкалоз, метаболический ацидоз, метаболический алкалоз.
Системы регуляции КОС стремятся ликвидировать возникшие изменения, при этом респираторные нарушения нивелируются механизмами метаболической компенсации, а метаболические нарушения компенсируются изменениями вентиляции легких.

6.1. Показатели кислотно-основного состояния

Кислотно-основное состояние крови оценивается комплексом показателей.
Величина рН - основной показатель КОС. У здоровых людей рН артериальной крови равен 7,40 (7,35-7,45), тв е. кровь имеет слабощелочную реакцию. Снижение величины рН означает сдвиг в кислую сторону - ацидоз (рН < 7,35), увеличение рН - сдвиг в щелочную сторону - алкалоз (рН > 7,45).
Размах колебаний рН кажется небольшим вследствие применения логарифмической шкалы. Однако разница в единицу рН означает десятикратное изменение концентрации водородных ионов. Сдвиги рН более чем на 0,4 (рН менее 7,0 и более 7,8) считаются несовместимыми с жизнью.
Колебания рН в пределах 7,35-7,45 относятся к зоне полной компенсации. Изменения рН вне пределов этой зоны трактуются следующим образом:
субкомпенсированный ацидоз (рН 7,25-7,35);
декомпенсированнй ацидоз (рН < 7,25);
субкомпенсированный алкалоз (рН 7,45-7,55);
декомпенсированный алкалоз (рН > 7,55).
РаС02 (РС02) - напряжение углекислого газа в артериальной крови. В норме РаС02 составляет 40 мм рт. ст. с колебаниями от 35 до 45 мм рт. ст. Повышение или снижение РаС02 является признаком респираторных нарушений.
Альвеолярная гипервентиляция сопровождается снижением РаС02 (артериальной гипокапнией) и респираторным алкалозом, альвеолярная гиповентиляция - повышением РаС02 (артериальной гиперкапнией) и респираторным ацидозом.
Буферные основания (Buffer Base, ВВ) - общее количество всех анионов крови. Поскольку общее количество буферных оснований (в отличие от стандартных и истинных бикарбонатов) не зависит от напряжения С02, по величине ВВ судят о метаболических нарушениях КОС. В норме содержание буферных оснований составляет 48,0 ± 2,0 ммоль/л.
Избыток или дефицит буферных оснований (Base Excess, BE) - отклонение концентрации буферных оснований от нормального уровня. В норме показатель BE равен нулю, допустимые пределы колебаний ±2,3 ммоль/л. При повышении содержания буферных оснований величина BE становится положительной (избыток оснований), при снижении - отрицательной (дефицит оснований). Величина BE является наиболее информативным показателем метаболических нарушений КОС благодаря знаку (+ или -) перед числовым выражением. Дефицит оснований, выходящий за пределы колебаний нормы, свидетельствует о наличии метаболического ацидоза, избыток - о наличии метаболического алкалоза.
Стандартные бикарбонаты (SB) - концентрация бикарбонатов в крови при стандартных условиях (рН=7,40; РаС02=40 мм рт. ст.; t=37 °С; S02=100%).
Истинные (актуальные) бикарбонаты (АВ) - концентрация бикарбонатов в крови при соответствующих конкретных условиях, имеющихся в кровеносном русле. Стандартные и истинные бикарбонаты характеризуют бикарбонатную буферную систему крови. В норме значения SB и АВ совпадают и составляют 24,0 ± 2,0 ммоль/л. Количество стандартных и истинных бикарбонатов уменьшается при метаболическом ацидозе и увеличивается при метаболическом алкалозе.

6.2. Нарушения кислотно-основного состояния

Метаболический (обменный) ацидоз развивается при накоплении в крови нелетучих кислот. Он наблюдается при гипоксии тканей, нарушениях микроциркуляции, кетоацидозе при сахарном диабете, почечной и печеночной недостаточности, шоке й других патологических состояниях. Наблюдается уменьшение величины рН, снижение содержания буферных оснований, стандартных и истинных бикарбонатов. Величина BE имеет знак (-), что свидетельствует о дефиците буферных оснований.
К метаболическому (обменному) алкалозу могут приводить тяжелые нарушения обмена электролитов, потеря кислого желудочного содержимого (например, при неукротимой рвоте), чрезмерное потребление с пищей щелочных веществ. Увеличивается значение рН (сдвиг в сторону алкалоза) - повышается концентрация ВВ, SB, АВ. Величина BE имеет знак (+) - избыток буферных оснований.
Причиной дыхательных нарушений кислотно-основного состояния является неадекватная вентиляция.
Респираторный (дыхательный) алкалоз возникает в результате произвольной и непроизвольной гипер-вентиляции. У здоровых людей он может наблюдаться в условиях высокогорья, при беге на длинные дистанции, при эмоциональном возбуждении. Одышка легочного или сердечного больного, когда нет условий для задержки СО2 в альвеолах, искусственная вентиляция легких могут сопровождаться респираторным алкалозом. Он протекает с повышением рН, снижением РаСОг, компенсаторным уменьшением концентрации бикарбонатов, буферных оснований, нарастанием дефицита буферных оснований.
При выраженной гипокапнии (РаСОг < 20-25 мм рт. ст.) и респираторном алкалозе могут наступить потеря сознания и судороги. Особенно неблагоприятны гипокапния и респираторный алкалоз в условиях недостатка кислорода (гипоксии). Устойчивость организма к гипоксии при этом резко падает. С этими нарушениями обычно связывают летные происшествия.
Респираторный (дыхательный) ацидоз развивается на фоне гиповентиляции, которая может быть следствием угнетения дыхательного центра. При тяжелой дыхательной недостаточности, связанной с патологией легких, возникает респираторный ацидоз. Величина рН при этом смещена в сторону ацидоза, напряжение СО2 в крови повышено.
При значительном (более 70 мм рт. ст.) и достаточно быстром повышении РаС02 (например, при астматическом статусе) может развиться гиперкапническая кома. Сначала появляются головная боль, крупный тремор рук, потливость, затем психическое возбуждение (эйфория) или сонливость, спутанность сознания, артериальная и венозная гипертензия. Далее появляются судороги, потеря сознания.
Гиперкапния и респираторный ацидоз могут быть следствием пребывания человека в атмосфере с повышенным содержанием углекислого газа.
При хронически развивающемся дыхательном ацидозе наряду с повышением РаС02 и снижением рН наблюдается компенсаторное увеличение бикарбонатов и буферных оснований. Величина BE, как правило, имеет знак (+) - избыток буферных оснований.
При хронических заболеваниях легких может возникнуть и метаболический ацидоз. Его развитие связывают с активным воспалительным процессом в легких, гипоксемией, недостаточностью кровообращения. Метаболический и респираторный ацидоз нередко сочетаются, в результате чего возникает смешанный ацидоз.
Первичные сдвиги КОС не всегда можно отличить от компенсаторных вторичных. Обычно первичные нарушения показателей КОС выражены больше, чем компенсаторные, и именно первые определяют направление сдвига рН. Правильная оценка первичных и компенсаторных сдвигов КОС - обязательное условие адекватной коррекции этих нарушений. Чтобы избежать ошибок в трактовке КОС, необходимо наряду с оценкой всех его компонентов учитывать Ра02 и клиническую картину заболевания.
Определение рН крови осуществляется электрометрическим способом с использованием стеклянного электрода, чувствительного к ионам водорода.
Для определения напряжения углекислого газа в крови используется эквилибрационная методика Аструпа или электрод Северингхауса. Значения, характеризующие метаболические компоненты КОС, рассчитывают с помощью номограммы.
Исследуется артериальная кровь или артериализированная капиллярная кровь из кончика прогретого пальца. Требуемый объем крови не превышает 0,1-0,2 мл.
В настоящее время выпускаются приборы, определяющие рН, напряжение С02 и 02 крови; расчеты производятся микрокомпьютером, входящим в состав прибора.

Анализ нарушений кислотно-щелочного состояния

р Н а р т е р и а л ь н о й к р о в и

АЦИДОЗ (меньше 7.4) АЛКАЛОЗ (больше 7.4)

дыхательный недыхательный дыхательный недыхательный

рСО 2 >40 pCO 3 < 24 (BE <0) pCO 2 <40 HCO 3 > 24 (BE >0)

почечная легочная почечная легочная

компенсация компенсация компенсация компенсация

HCO 3 > 24 (BE >0) pCO 2 <40 pCO 3 < 24 (BE <0) рСО 2 >40

Нарушения кислотно-щелочного состояния (КЩС ) являются в большинстве случаев следствием серьезного патологического нарушения и редко имеют самостоятельное значение. Исследование газового состава артериальной крови (ГАК) - незаменимый метод диагностики.

♦ Обычно pH измеряют прямым методом при помощи специального стеклянного электрода, который имеет мембрану, проницаемую для H+.

♦ Концентрация ионов бикарбоната - HCO 3 - измеряется бикарбонатным электродом или может быть получена расчетным путем.

♦ CO 2 обычно измеряется прямым методом при помощи СО 2 -электрода.

Бикарбонатная система участвует в регуляции pH всех компартментов внутренней среды, обладая возможностью вмешиваться в кислотно-щелочное состояние на двух уровнях: концентрация HCO 3 - регулируется почками, a CO 2 – легкими: H + + HCO 3 - → H 2 CO 3 → H 2 O + CO 2

Точное значение pH среды может быть рассчитано при помощи уравнения Гендерсона-Хассельбаха :

pH = pK + log

[основание] / [кислота] = pK + log /

pK представляет собой специфичную для данного буфера константу (например, для бикарбонатной системы при 37°С pK составляет 6,1).

Поскольку концентрация HCO 3 - регулируется почками, а выведение CO 2 - легкими, уравнение принимает следующий вид: pH = константа ПОЧКИ / ЛЕГКИЕ

Терминологические замечания: ацидоз / ацидемия и алкалоз / алкалемия. Суффикс "емия" ("aemia") означает "определяемый в крови".

Нормальные значения газового состава крови
Показатель Границы нормы Единицы Примечания
pH 7,35 - 7,4 - 7,45 (относительная величина)
PaCO 2 4,8 - 5,3 - 5,9 36 - 40 - 44 кПа мм рт. ст.
PaO 2 11,9 - 13,2 90 - 100 кПа мм рт. ст. На уровне моря FiO 2 = 21%, становится ниже с повышением высоты, повышается при кислородотерапии
HCO 3 - (актуальный бикарбонат - AB) 22 - 24 - 26 ммоль/л Нормальные значения могут варьировать при изменении PCO 2
Стандартный бикарбонат (SB) 22 - 24 - 26 ммоль/л после его стандартизации (эквилибровка) по значению CO 2 40 мм рт. ст. (5,3 кПа)
Избыток оснований (BE) -2,0 - +2,0 ммоль/л При отрицательном значении BE говорят о дефиците оснований

Бикарбонатная буферная система играет наиболее важную роль в поддержание постоянства кислотно-щелочного состояния и может быть оценена при анализе газового состава крови. Легкие способны регулировать выведение CO 2 , а почки экскрецию или задержку HCO 3 - . Это взаимодействие позволяет с высокой точностью поддерживать и регулировать соотношение кислот и оснований в организме.

Каково значение показателей кислотно-щелочного состояния (КЩС) и газового состава артериальной крови (ГАК)?
pH Общие кислотно-щелочные свойства среды. Указывает, имеется ли у пациента ацидемия или алкалемия.
PCO 2 Респираторный компонент
PO 2 Характеризует оксигенацию и не имеет отношения к кислотно-щелочному состоянию (КЩС). В общих чертах является маркером тяжести заболеваний легких, но не поддается интерпретации при неизвестном значении FiO 2 . PO 2 может быть выше 650 мм рт. ст. (85 кПа) при нормальной функции легких на фоне FiO 2 = 100%. Прогнозируемый уровень PaO 2 при нормальной функции легких может быть рассчитан при помощи уравнения альвеолярного газа. В грубом приближении значение прогнозируемого PaO 2 может быть рассчитано как FiO 2 (%) х 6 мм рт. ст. (например, при вентиляции пациента с FiO 2 = 40% PaO 2 должно составить 6 х 40 = 240 мм рт. ст.). Если реальное значение ниже расчетного, имеет место внутрилегочное шунтирование крови (кровь не проходит через вентилируемые альвеолы и поступает в аорту неоксигенированной.). Чем тяжелее поражение легких, тем ниже будет значение PaO 2 при данном уровне FiO 2 .
HCO 3 - (актуальный бикарбонат) Ренальный компонент компенсации.
Стандартный бикарбонат Дополнительный показатель, характеризующий ренальный (метаболический) компонент в нарушениях кислотно-щелочного состояния (КЩС). Имеет большую ценность, чем актуальный бикарбонат, поскольку корректирован по отношению к измененному значению PCO 2 .
Избыток оснований Соответствует количеству сильной кислоты (или основания в случае дефицита оснований), необходимому для титрования 1 литра крови и возвращении значения pH к значению 7,4 при PCO 2 = 5,3 кПа и температуре 37°С. Дополнительный показатель, характеризующий ренальный (метаболический) компонент нарушения. Информационная ценность близка к таковой стандартного бикарбоната (нормальное значение около 0 ммоль/л, для стандартного бикарбоната - 24 ммоль/л).

Дыхательная система способна осуществлять быструю компенсацию нарушений кислотно-щелочного состояния (КЩС ) (в течение нескольких минут). Метаболическая компенсация (почки, система бикарбоната) запускается в течение часов или нескольких дней. Взаимодействие этих компенсаторных систем позволяет точно регулировать кислотно-щелочного состояние (КЩС ). Их цель состоит в поддержании внеклеточного значения pH на уровне 7,4, который является оптимальным для протекания большинства метаболических процессов, например, химических реакций, катализируемых ферментами, и переноса веществ через клеточные мембраны.

Патологические процессы, такие, как тканевая гипоксия, почечная недостаточность, гиповентиляция ведут к нарушению кислотно-щелочного баланса. При нарушении со стороны одной из регуляторных систем другая будет пытаться компенсировать изменения кислотно-щелочного состояния (КЩС ) и привести pH к оптимальному значению. Нарушения кислотно-щелочного состояния (КЩС) и некоторые их причины представлены в таблице "Нарушения кислотно-щелочного состояния ".

Нарушения кислотно-основного состояния
Респираторный ацидоз PaCO 2 повышено Развивается при неадекватной вентиляции, когда продукция CO 2 превышает его элиминацию. Возможные причины: обструкция дыхательных путей, депрессия дыхания (вследствие действия препаратов, ЧМТ, заболеваний дыхательной системы и т.д.)
Респираторный алкалоз PaCO 2 снижено Возникает при гипервентиляции. Гипервентиляция может быть следствием ответа на гипоксемию и включения гипоксического респираторного драйва. Способность легких к выведению CO 2 значительно выше, чем к абсорбции O 2 , в связи с чем при заболеваниях легких часто наблюдается гипоксемия на фоне нормального или пониженного уровня CO 2 . Причиной респираторного алкалоза может быть ИВЛ с высоким минутным объемом вентиляции.
Метаболический ацидоз HCO 3 - снижен (дефицит оснований) Множество этиологических факторов: ♦ Потери бикарбоната через ЖКТ или хроническое поражение почек (нормальный анионный интервал) ♦ Поступление дополнительных количеств неорганических кислот, например, при диабетическом кетоацидозе, лактат-ацидозе, связанном с тканевой гипоксией, передозировка салицилатов, отравление этиленгликолем и прочими ядами, снижение экскреции кислот при почечной недостаточности (повышение анионного интервала).
Метаболический алкалоз HCO 3 - повышен (избыток оснований) Возникает при потерях желудочного содержимого (например, пилоро-стеноз) и терапии диуретиками. Метаболический алкалоз часто сопровождается снижением хлоридов (Cl -) сыворотки.
Смешанный ацидоз PaCO 2 повышено, HCO 3 - снижено Крайне опасное нарушение. Может развиваться при таких тяжелых расстройствах, как септический шок, полиорганная недостаточность, остановка кровообращения.


Компенсаторные механизмы пытаются вернуть pH к нормальному значению, несмотря на сохранение отклонений и PCO 2 до коррекции первичного нарушения. Компенсация нарушений кислотно-щелочного состояния (КЩС ) не должна носить характер избыточной. Например, при метаболическом ацидозе наблюдается падение значения pH < 7,4. При адекватной респираторной компенсации pH будет стремиться к нормальному значению, но не превысит 7,4.

Вот несколько подсказок, которые помогут Вам дифференцировать первичное нарушение и компенсаторный эффект.

Первичное нарушение (метаболического или респираторного характера) по типу параллельно отклонению pH: при снижении pH имеет место ацидотическое нарушение, при повышении pH развивается алкалоз. Компенсаторный эффект (респираторный или метаболический) имеет противоположное направление. Механизмы компенсации будут отклонять pH в сторону нормального значения, при этом полная компенсация достигается редко (восстановление нормального исходного значения), а избыточная компенсация - никогда.

К примеру, если Вы обнаружили сочетание метаболического ацидоза и респираторного алкалоза, значение pH подскажет, какое из нарушений носит первичный, а какое - компенсаторный характер. Если значение pH снижено, первичным дефектом является метаболический ацидоз с респираторной компенсацией. При повышении pH в роли первичного нарушения выступает респираторный алкалоз с метаболической компенсацией.

Пошаговая интерпретация газового состава крови
Шаг 1 Общая картина без отклонений, имеется ацидемия или алкалемия? pH < 7,35 = ацидемия [... перейдите к шагу 2] pH > 7,45 = алкалемия [... перейдите к шагу 5]
Шаг 2 Если наблюдается ацидемия: Характер первичного нарушения: метаболический, респираторный или смешанный? CO2 повышен = респираторный ацидоз [... шаг 3] Бикарбонат снижен, значение BE отклонено в отрицательном направлении = метаболический ацидоз [... шаг 4]
Шаг 3 Если имеет место респираторный ацидоз: Имеется метаболическая компенсация? CO 2 повышено (респираторный ацидоз), но метаболический компонент изменяется в противоположном направлении (BE или стандартный бикарбонат (SB) повышены, как при метаболическом алкалозе), что говорит о метаболической компенсации первичных нарушений кислотно-щелочного состояния (КЩС ).
Шаг 4 Если имеет место метаболический ацидоз: Имеется ли респираторная компенсация? Значение BE принимает отрицательное значение (метаболический ацидоз); респираторный компонент изменяется в противоположном направлении (CO 2 снижен - респираторный алкалоз), что говорит о респираторной компенсации.
Шаг 5 Если наблюдается алкалемия: Характер первичного нарушения: метаболический или респираторный? Первичное нарушение имеет то же направление, что и изменения pH (в сторону алкалоза). Респираторный алкалоз сопровождается снижением CO 2 . При метаболическом алкалозе CO 2 повышается и значение BE становится положительным.
Шаг 6 При наличии респираторного или метаболического алкалоза: Есть ли элементы компенсации? Изменения равнозначны вышеуказанным.
Шаг 7 Обратите внимание на оксигенацию Соответствует ли значение PaO 2 установленному FiO 2 ? Уровень оксиге-нации ниже прогнозированного может указывать на заболевание легких, шунтирование крови или ошибочный забор образца венозной крови (в последнем случае PaO 2 обычно < 40 мм рт. ст., сатурация < 75%). Способность легких к элиминации CO 2 превышает их резерв в отношении оксигенации. В связи с этим заболевания легких часто сопровождаются гипоксемией на фоне нормального или сниженного значения PCO 2 . Значительное повышение CO 2 сопровождается параллельным снижением O 2 .
Шаг 8 Суммируйте Ваши наблюдения Например: наблюдается метаболический ацидоз (поскольку pH снижен, BE имеет отрицательное значение) с респираторной компенсацией (поскольку параллельно снижено значение PCO 2).
Шаг 9 Попытайтесь установить причину нарушений

Определение водородного показателя (рН) крови проводят электрометрическим способом с применением специального стеклянного электрода, чувствительного к ионам водорода.

Кислотно-основное состояние крови связано с содержанием в ней углекислого газа. Для установления уровня напряжения углекислого газа и кислорода в крови применяют эквилибрационную методику Аструпа или электрод Северингхауса. Значения, характеризующие изменения кислотно-основного состояния, рассчитывают посредством составления номограммы.

Сейчас массово выпускают приборы, определяющие рН, напряжение С0 2 и 0 2 в крови; расчеты производятся с помощью микрокомпьютера, входящего в состав прибора. В настоящее время для определения кислотно-щелочного состояния наиболее широко применяется так называемая методика Аструпа.

Для определения кислотно-основного состояния крови берется артериальная или капиллярная (из кончика пальца) кровь. Следует отметить, что наиболее высокое постоянство кислотно-щелочных показателей отмечается все же в артериальной крови.

У здорового человека рН артериальной крови составляет 7,35-7,45, т.е. кровь имеет слабощелочную реакцию.

Снижение величины рН свидетельствует о сдвиге реакции крови в кислую сторону, что называется «ацидоз» (рН < 7,35), а увеличение данного показателя свыше 7,45 - о сдвиге реакции крови в щелочную сторону (алкалозе).

Сдвиги рН более чем на 0,4 (рН менее 7,0 и более 7,8) расцениваются как несовместимые с жизнью.

Изменения рН, отличные от нормы, обозначаются как:
1) субкомпенсированный ацидоз (рН 7,25-7,35);
2) декомпенсированый ацидоз (рН < 7,25);
3) субкомпенсированный алкалоз (рН 7,45-7,55);
4) декомпенсированный алкалоз (рН > 7,55).

Немаловажно учитывать при оценке кислотно-основного состояния организма РаС02, т.е. напряжение углекислого газа в артериальной крови. В норме данный показатель составляет в среднем 40 мм рт. ст. (от 35 до 45), а более значительные отклонения от нормы являются признаком дыхательных нарушений.

Метаболический алкалоз или ацидоз определяется в том числе по избытку или недостаточности буферных оснований (Buffer Base, ВВ) в крови. У здорового человека В В = 0, а допустимые пределы колебаний составляют ±2,3 ммоль/л.

Такой показатель как «стандартные бикарбонаты» (SB) отражает концентрацию бикарбонатов в крови при стандартных условиях (рН = 7,40; РаС02 = 40 мм рт. ст.; t = 37 °С; S02 = 100%). «Истинные, или актуальные бикарбонаты» (АВ) отражают состояние бикарбонатного буфера в условиях конкретного организма, в норме совпадают со «стандартными» и составляют 24,0 ± 2,0 ммоль/л.

Показатели SB и АВ снижаются при нарушение обмена веществ со сдвигом реакции крови в кислую сторону и уменьшаются при сдвиге реакции крови в щелочную сторону.

Если лабораторные данные свидетельствуют о наличии метаболического ацидоза, это может быть признаком кетоацидоза, сахарного диабета, кислородного голодания (гипоксии) тканей, шокового состояния, а также ряда других патологических состояний.

Причиной метаболического алкалоза может стать неукротимая рвота (с большой потерей кислоты с желудочным соком) или чрезмерное употребление в пищу продуктов, вызывающих ощелачивание организма (растительных, молочных).

8. Определение осмотической резистентности эритроцитов Работа 3.5 – стр. 82

Определение осмотической резистентности эритроцитов (осмотической стойкости): используют набор гипотонических растворов NaCl (концентрация соли ниже 0.9%), помещают в них эритроциты исследуемой крови и отмечают концентрацию раствора, в котором (а) начинается гемолиз отдельных эритроцитов (в норме 0.48% NaCl и (б) происходит полный гемолиз всех эритроцитов (в норме 0.33% NaCl). Например, осмотическая стойкость эритроцитов уменьшается при сфероцитозе и увеличивается при талассемии.

9. Исследование буферных свойств сыворотки крови (опыт Фриденталя). Учебник

Показатель рН – 7.35 – 7.4 (отрицательный логарифм концентрации водородных ионов) – влияет на ход всех биохимических реакций в организме. Сдвиг рН в кислую сторону называется ацидозом, сдвиг в щелочную сторону – алкалозом . Регуляция рН: (1) В крови имеются буферные системы, которые могут связывать водородные и гидроксильные ионы и, таким образом, уменьшать колебания рН (доли секунды); (2) дыхательная система – удаление СО 2 легкими (несколько минут); (3) выделительная функция почек – выведение кислых и щелочных продуктов обмена; самый медленный механизм (часы, дни), но самый мощный. Буферные системы крови : (1) бикарбонатный буфер (угольная кислота и бикарбонат натрия) – буферная система крови; (2) фосфатный буфер (гидрофосфат и дигидрофосфат натрия) – буферная система крови, почечных канальцев, а также внутриклеточная буферная система многих тканей; (3) гемоглобиновый буфер (восстановленный гемоглобин ННв и калиевая соль оксигенированного гемоглобина КНвО 2) – буферная система эритроцитов, самая мощная (75% общей буферной емкости); (4) белковый буфер (амфолитные свойства белков) – буферная система крови, а также внутриклеточная буферная система.



Рассказать друзьям