Теломеры и теломераза. Зачем изучать теломеры и теломеразу

💖 Нравится? Поделись с друзьями ссылкой

Главным кандидат на звание эликсира бессмертия July 26th, 2016

Когда мне было лет 10 все вокруг практически уверенно говорили, что пройдет буквально 50 лет и люди будут жить не менее 200 лет. Наука и медицина несомненно должна была шагать семимильными шагами и мы точно должны были увидеть прорыв. Но сейчас понятно, что на это надо наверное еще лет 200. Однако, смотрите про что я узнал...

Оказывается существуют теломеры - это концевые участки линейной молекулы ДНК, которые состоят из повторяющейся последовательности нуклеотидов. У человека и других позвоночных повторяющееся звено имеет формулу TTAGGG (буквы обозначают нуклеиновые основания). В отличие от других участков ДНК теломеры не кодируют белковые молекулы, в некотором роде это "бессмысленные" участки генома.

В 1971 году российский ученый Алексей Матвеевич Оловников впервые предположил, что при каждом делении клеток эти концевые участки хромосом укорачиваются. То есть длина теломерных участков определяет "возраст" клетки - чем короче теломерный "хвост", тем она "старше".

Через 15 лет это предположение экспериментально подтвердил английский ученый Говард Кук. Правда, нервные и мышечные клетки взрослого организма не делятся, теломерные участки в них не укорачиваются, а между тем они "стареют" и умирают. Поэтому вопрос о том, как "возраст" клетки связан с длиной теломер, остается по сей день открытым. Одно несомненно - теломеры служат своего рода счетчиком клеточных делений: чем они короче, тем большее число делений прошло с момента рождения клетки-предшественницы.



Сколько отведено человеку для жизни, мало кто может сказать, почему человек стареет. Ученые уже давно задаются вопросом: что происходит в организме и запускает процесс старения? Клетки могут делиться, и казалось бы, организм будет вечно молодым, здоровым и жить вечно, но оказывается наши клетки могут обновляться до определенного количества раз, а потом наступает время болезней и процесса старения, что приводит к смерти, невозможности клеток возобновляться. Существует много теорий, рассматривающие разные аспекты, как первопричину старения, но сегодня известная настоящая причина, с которой справиться никто не может.

Одни ученые говорят, что старение начинается с процессом повреждения и распада белка. А белок, как мы уже знаем, является строительным материалом нашего тела, в частности костей. Другие исследователи видят гены смерти, которые начинают активизироваться в старости. Еще одно мнение: организм накапливает загрязнения, если доза мусора в организме превышает допустимую, то запускается очередность заболеваний, организм истощается и умирает. Также существует иммунологическая теория. В какую из них верить, дело каждого. Истинная причина, почему человек стареет и начинается отмирание клеток находится в нашем генетическом коде.

Старение начинается из-за укорачивания длины теломер – это конечный участок генетического кода (ДНК). Теломеры направлены защищать хромосомы от прилипания друг к другу, что может повлечь потерю информации. Такие выводы сделали ученные в процессе наблюдения за жизнью клеток молодых и в процессе их старения. Длина теломер в генах молодых клеток отличается от состарившихся. Теломеры ДНК в молодых клетках длиннее, чем концы в старых клетках. Когда теломера разрушается, погибает клетка. Клетка имеет способность делиться до тех пор, пока ее теломера не разрушиться.

Такая теория должна была найти объяснения и доводы. Были проведены опыты над мышами. Специалисты в области генетики искусственным образом укорачивали теломеры клетки ДНК у здоровой молодой мыши. Чем короче становилась теломера, тем больше появлялось заболеваний, характеризующих процесс старения. Полученные результаты послужили доказательством теории зависимости молодости и старения от длины теломер в клетках. При укорачивании длины теломер возникают такие заболевания: артрит, артроз, дегенеративный и дистрофические процессы, заболевания, связанные с сердечно-сосудистой системой, нарушения нервной системы, остеопороз, изменения в кожном покрове.


Теломераза - это фермент-"удлинитель", его функция - достраивать концевые участки линейных молекул ДНК, "пришивая" к ним повторяющиеся нуклеотидные последовательности - теломеры. Клетки, в которых функционирует теломераза (половые, раковые), бессмертны. В обычных (соматических) клетках, из которых в основном и состоит организм, теломераза "не работает", поэтому теломеры при каждом делении клетки укорачиваются, что в конечном итоге приводит к ее гибели.

В 1997 году американские ученые из университета Колорадо получили ген теломеразы. Затем в 1998-м исследователи из Юго-Западного медицинского центра Техасского университета в Далласе встроили ген теломеразы в клетки кожи, зрительного и сосудистого эпителия человека, где фермент в обычных условиях "не работает". В таких генетически модифицированных клетках теломераза находилась "в рабочем состоянии" - пришивала к концевым участкам ДНК нуклеотидные последовательности, поэтому длина теломер от деления к делению не менялась. Таким способом ученым удалось увеличить жизнь обычных клеток человека в полтора раза. Не исключено, что этот метод поможет найти ключ к продлению жизни.

Итак, теломераза остается главным кандидатом на звание эликсира бессмертия. И в то же время этот фермент - один из главных факторов злокачественного перерождения клеток. Раковые клетки бессмертны благодаря тому, что в них "работает" теломераза. Вот почему бессмертие и рак в природе как бы уравновешивают друг друга: бессмертный организм теоретически может жить вечно, но он неминуемо погибнет от рака.

И вот в прошлом году был найден способ удлинения теломер для продления жизни. Ученые из Стэнфордского университета разработали метод стимуляции концевых участков хромосом, которые отвечают за старение человека.


Новая технология использует модифицированную РНК, несущую в себе ген обратной теломеразной транскриптазы (TERT). Введение рибонуклеиновой кислоты многократно повышает активность теломеразы на 1−2 дня, за которые та активно удлиняет теломеры, и запрограммированная РНК распадается. Полученные в итоге клетки ведут себя аналогично «молодым» и делятся во много раз интенсивнее, чем клетки контрольной группы.

Таким образом удалось удлинить теломеры более чем на 1000 нуклеотидов, что эквивалентно нескольким годам человеческой жизни. Что важно, процесс совершенно безопасен для здоровья и не приводит к неконтролируемому делению клеток: иммунная система просто не успевает отреагировать на введенную в организм РНК, которая бесследно распадается. Открытие поможет увеличить количество клеток для исследований медицинских препаратов и моделирования заболеваний, а в перспективе и для продления жизни.

источники

Старение всегда считалось физиологическим процессом, не требующим вмешательств. Однако человек пытается отодвинуть этот рубеж своей жизни любыми способами. Современные ученые настаивают, что старение — это эпигенетическая болезнь, и ее возможно лечить. Начинать можно с любого возраста.

Насколько можно быть моложе?

Правильный подход остановит старение и обеспечит долголетие на максимально возможный срок. Это значит, каждый человек может прожить до 100 лет и более без болезней, с ясным умом. Внешняя молодость зависит от более сложных факторов, но обе области изучения подвластны эпигенетикам. Однако, даже то, что зависит от самого человека, поможет ему выглядеть моложе на 10-20 лет своего реального возраста. При этом, чем старше человек, тем больше будет эта разница.

Следует отметить, что без генной предрасположенности организму не обойтись. Однако гены помогают лишь на 30%, остальное зависит от самого человека. Именно поэтому, если наследственность плохая, не стоит «опускать руки». Её можно улучшить доступными способами, добиться долгой и здоровой жизни собственными усилиями.

Всё происходит в клетках

В некотором смысле человек сам является эпигенетиком по отношению к своему организму. Ведь от качества жизни во многом зависит способность клеток долго жить и правильно делиться. Можно сказать, что любая клетка организма по своему характеру — ипохондрик, она только и ждет момента, когда сможет совершить «самоубийство». Живет она, благодаря системе налаженных биохимических сигналов. Именно они должны обеспечиваться человеком при помощи правильного образа жизни. При определённых условиях клетка получает сигнал о самоуничтожении и исполняет его молниеносно. А ведь он может быть ошибочным.

Кто починит поломанные клетки?

Самоуничтожение (апоптоз) — запрограммированный процесс, но иногда он даёт сбой по отношению к здоровым клеткам, которым ещё необходимо функционировать. Всё происходит на уровне ДНК в ядре клетки. А пока клетка живет, в её ДНК также происходят поломки и ремонт. Собственные белки восстанавливают поврежденные участки спирали, которые появляются довольно часто. Эти белки можно назвать: восстановители ДНК, «хирурги», «ремонтники». Но не всегда они делают работу правильно.

Порой «восстановители», наоборот, разрушают спираль, и такая группа белков «работает» в каждой клетке организма. С одной стороны их роль невозможно переоценить: они разрезают, вырезают, лечат, склеивают нить ДНК. Однако вред «восстановителей» так же огромен, как и польза. За разорванный участок ДНК они принимают естественные концы хромосом и склеивают их с другими связями. Так нарушается генетическая цепочка, что приводит к развитию тяжёлых заболеваний.

Теломеры как фактор долголетия

Однако хромосомы защитились от таких нападок «хирургов»: на их концах расположены теломеры, которые предотвращают случайное склеивание. Роль теломеров — охватить нить ДНК и защитить от несанкционированных действий «восстановителей».

Теломеры — особые белки, которые укорачиваются в течение жизни человека. Это происходит во время каждого деления клетки: от теломеров словно отщипывается маленький кусочек, и каждый из них становится короче. Почему это важно для нашего долголетия? Когда теломеры укорачиваются до такой степени, что просто кончаются (исчезают), клетка умирает, так как теряет способность делиться. В масштабах целого организма это приводит к разрушительным процессам: болезням, старости, смерти.

Почему укорачиваются теломеры или формула старения

Учёные объясняют этот факт эволюционными изменениями ДНК. У бессмертных организмов данная молекула замкнута в кольцо. Например, у бактерий. Практически у всех живых существ в ходе эволюции она разорвалась и стала линейной. При этом ген, делающий копию белка для синтеза, продолжал работать в прежнем режиме. В связи с этим кончики хромосом оставались некопированными, и каждая новая молекула получалась короче оригинала. Это и есть — формула старения. Она образовалась эволюционным способом.

Кто защитит теломеры?

Однако организмы — это усовершенствованные системы, в которых предусмотрена ещё одна защита. В состав каждой теломеры входит фермент теломераза.

Его роль — удлинять ДНК и теломеру после каждого деления клетки. Однако происходит это не во всех клетках.

Лишь следующие клетки подвержены удлинению теломеров:

- стволовые,

- раковые,

- яйцеклетки,

- предшественники сперматозоидов.

Именно они остаются молодыми на протяжении жизни организма. Таким образом, теломераза является источником вечной молодости. Пока этот фермент присутствует в клетке, её теломеры восстанавливаются («наращиваются»). Этот факт доказывает опыт ученых: если выключить ген, который программирует синтез теломеразы, теломеры погибают из-за стремительного укорачивания за 25 делений клетки.

Бессмертие создано, но…

Таким образом, молодость и долголетие зависят от активности гена, кодирующего теломеразы. Интересно, что ученые научились искусственно добавлять в клетку теломеразу и продлевать её жизнь до бесконечности. Она становится абсолютно бессмертной. Почему же этот опыт нельзя применить к человеку? Причина — серьёзный побочный эффект.

Главное условие старения — стресс

Итак, человек стареет, когда в его клетках не хватает или полностью отсутствует фермент теломераза. Если добавлять его самостоятельно человек ещё не может, то известны внешние факторы, которые уменьшают количество фермента. В первую очередь это — стресс.

Увеличение гормона стресса в крови приводит к данным последствиям, и человек начинает быстро стареть. Это доказывает факт, что на длину теломеров можно влиять. Надо полностью исключить или ограничить факторы стресса в своей жизни.

Для противодействия стрессу необходимы:

- здоровое питание,

- двигательная и умственная активность,

- наличие здоровых факторов расслабления (полноценный сон, релакс, медитация),

- положительное эмоциональное равновесие.

Как самому удлинить теломеры?

Сегодня учёными доказано, что длина теломеров больше у тех людей, кто регулярно занимается спортом с невысокими нагрузками. При отсутствии продолжительных стрессов такой спорт можно назвать главным условием долголетия без помощи генетических вмешательств.

Конкретно это:

- бег трусцой,

- велосипедная езда,

- пешие прогулки.

Как происходит влияние? Спорт оказывает положительное действие на эпигеном человека. И, значит — на обмен веществ и иммунную систему.

А именно действительно:

- повышается активность и количество теломеразы,

- клетки живут дольше (вместо «самоубийства»).

Питание — главный фактор долгой жизни

Кроме спорта неоценимое влияние оказывает здоровое питание.

Диета включает в себя:

- потребление сырых овощей,

- малое потребление жиров (но не отказ от них),

- отказ от искусственного рафинированного сахара.

Препятствия на пути к долгой жизни

На основе вышесказанного можно предположить, что для достижения, если не вечной молодости, то, хотя бы, долгой жизни, достаточно соблюдать вышеперечисленные рекомендации. Это, конечно, позволит выглядеть моложе своих лет, быть бодрее и меньше болеть приобретёнными заболеваниями.

Однако следует помнить такие факторы:

1. Теломеразы удлиняют теломеры лишь в следующих клетках: предшественниках сперматозоидов, яйцеклетках, стволовых и раковых. Именно поэтому, в определённом смысле, эти клетки бессмертные.

2. Организм человека состоит, в основном, из соматических клеток. В них теломераза свою молодильную функцию не выполняет.

Достижения учёных

Заставить фермент это делать может лишь генная инженерия внедрением генов, кодирующих теломеразу на необходимую «работу».

Сегодня ученые достигли хороших результатов. Они умеют встраивать ген теломеразы в клетки:

- кожи,

- глаз,

- сосудов.

На основе вышесказанного можно отметить, что найден «эликсир молодости». Однако мешает этому тот факт, что фермент «работает» и в раковых клетках. Таким образом, в погоне за молодостью человек может приобрести онкологическое заболевание. Ведь именно теломераза дала раковым клеткам возможность делиться вечно. А это значит, что, достигнув вечной молодости, человек умрёт от рака.

Второй довод в пользу этого мнения: долгая жизнь возможна не только способом активации теломераз, но и выключением гена, который даёт клетке команду самоубийства. Этот ген — белок p66Shc. Однако и здесь присутствует аналогичная проблема — перестанут самоуничтожаться клетки, в которых возможно образование рака.

Круг сомкнулся: отключение гена апоптоза продлевает жизнь, но приводит к образованию онкологического процесса. Следует помнить, что болезнь образуется не только в результате действия внешних факторов, но и внутренних поломок, которых в огромном и сложном человеческом организме происходит великое множество.

При этом следует отметить: процент смерти от рака увеличится, но такая участь постигнет не все организмы. Таким образом, погоня за молодостью и долголетием методами генной инженерии превращается в игру в рулетку.

Итак, перед человечеством стоит 2 задачи, которые нельзя решать отдельно:

1. Продление жизни.

2. Исключение негативных последствий.

И, значит, пока люди не научатся побеждать рак, о существенном продлении молодости и жизни на генном уровне говорить не приходится.

Другие рычаги влияния на жизнь

Поговорим о других генах, которые определяют продолжительность жизни человека. А также о том, как на них можно влиять самостоятельно.

Гены Мафусаила: носителям можно всё

Кроме фермента теломеразы, которым можно управлять при помощи кодирующего гена, на продление молодости оказывают влияние гены Мафусаила. Название этим белкам дано по аналогии с библейским персонажем: Мафусаилом, старейшим человеком, прожившим 969 лет. Имя Мафусаил стало нарицательным. Его применяют, когда говорят о долгожителях.

Известные гены Мафусаила:

- ADIPOQ,

- CETP,

- ApoC3

встречаются примерно у 10% людей. Счастливчикам можно меньше заботиться о регуляции уровня инсулина в крови, концентрации холестерина и других веществ в организме. Однако поддерживать здоровье всё-равно необходимо, иначе природный фактор — подарок предков — не поможет, так как ген не сможет самостоятельно обеспечивать долголетие.

К долголетию через инсулин

Сегодня ученым необходимо определить белки, которые образуются под влиянием генов Мафусаила. На их основе можно создать долгожданный «эликсир». Однако точно не известно, как именно он будет действовать. И следует помнить о главном препятствии на пути генной инженерии: человечество ещё не способно победить рак.

Отмечено, что гены Мафусаила воздействуют на рецептор инсулина. Вследствие этого рецептор сигнализирует о пониженном уровне сахара, независимо от его реальных показателей. Этот факт поддерживает здоровье на высоком уровне в течение жизни человека и является мощным стимулом долголетия (доказано на примере людей-долгожителей, перешагнувших 100-летний возраст).

Ген Мафусаила, который регулирует реакцию организма на инсулин, называется FOXO3A. Следует отметить, что именно поэтому диабетические лекарства, снижающие уровень глюкозы в крови, продлевают жизнь. К таким относится, например, метформин.

Как при помощи этих знаний влиять на продолжительность жизни?

Посредством возможностей генной инженерии, от которых зависит активность:

- НАД+,

- теломераз,

- генов Мафусаила,

- рецепторов инсулина.

Повышаем НАД+ и сиртуины самостоятельно

Воздействовать на них можно через транскрипционный фактор, который является маркером контрольных участков гена в синтезе белков. Следует отметить огромную роль в продлении молодости кофермента НАД+ (NAD+). Это — окисленная форма никотинамидадениндинуклеотида. Вещество влияет на активность молодильных белков сиртуинов. Именно они регулируют фермент теломеразу: чем больше НАД+, тем активнее сиртуины, тем дольше живёт организм. И именно через них человек может удлинять теломеры без генетиков, ведь гормон инсулин и ИФР-1 являются антагонистами сиртуинов, а его можно контролировать самостоятельно.

Повышают уровень НАД+ и, значит, сиртуинов:

- низкокалорийное питание,

- лекарство: никотинамид рибозид.

Важно: питание должно включать все необходимые микроэлементы, витамины при малом количестве калорий (половина нормы). Норма составляет 2000-3500 Ккал/сутки. На все эти ферменты, гены, транскрипционные факторы влияют: гормон инсулин и ИФР-1 (инсулиноподобный фактор роста).

Такое же полезное действие оказывают некоторые продукты питания. А именно:

- черника,

- арахис,

- красный виноград,

- красное сухое вино.

Это возможно, благодаря природному веществу ресвератрол.

Пользу ресвератрола невозможно переоценить, он оказывает на организм действия следующего характера:

- противоопухолевое,

- противовоспалительное,

- снижающее сахар в крови,

- защищающее сосуды сердца,

- компенсирующее влияние жирной диеты.

Ресвератрол — не панацея

Суть действия вещества: нейтрализовать свободные радикалы кислорода, ведь они способствуют развитию онкологических заболеваний. Следует отметить, что при радиотерапии рака лёгких, ресвератрол оказывает обратное действие. Вещество увеличивает количество раковых клеток. И ещё: выводы учёных относительно ресвератрола подтверждены на мышах, но не на людях.

Следует отметить и другие лекарственные препараты, продлевающие жизнь:

- карведилол,

- метформин,

- телмисартан,

- витамины Д и В6,

- глюкозамин сульфат,

- никотинамид рибозид.

Примечательно: чем старее клетка, тем меньше в ней содержится сиртуинов, а больше — ацетильных групп. Именно это приводит к изменению структуры ДНК и, как следствие, к тяжёлым заболеваниям. Отсюда вывод: на старение клетки оказывают влияние эпигенетические факторы. Значит, человек может самостоятельно воздействовать на фактор старения.

Особенности питания, о которых надо помнить

Итак, омолаживающий эффект в живых организмах ярко выражен при следующих условиях:

- низкий уровень инсулина и ИФР-1,

- низкокалорийная умеренная диета постоянно.

Важно: следует отличать низкокалорийное и неполноценное питание. Во втором случае недостаток витаминов и микроэлементов быстро приводит к развитию различных патологий и сокращению жизни.

Спорт, без которого ничего не будет

Альтернативой целенаправленному недоеданию является спорт. Физкультура позволяет сжигать лишнюю энергию, одновременно с этим — снижать уровень инсулина и повышать активность генов молодости (сиртуинов). Но всё же, занятия не означают, что позволено забыть о здоровой диете.

Полезные виды спорта при условии регулярных занятий:

- бег трусцой 30-40 минут,

- велосипедная езда не менее 1 часа,

- плавание, активные спортивные игры.

Совет: лучше бегать утром натощак. Пищу принимать через 1 час после занятий спортом.

Еда, с которой будет долголетие

Так ли безопасны Омега-3?

Стоит сказать о полезных Омега-3 кислотах, которые в огромном количестве продаются фармацевтикой и употребляются людьми. Доказан их эффект на теломеры: кислоты данной группы замедляют степень укорачивания хромосом. Однако есть и отрицательный момент, который также доказан учёными: эти полиненасыщенные жиры в клетках организма быстро окисляются. Вследствие этого приводят к «поломке» клеток, ускоренному старению, развитию рака.

Оливковое масло для долгожительства

Более безобидными и не менее полезными учёные называют мононенасыщенные жирные кислоты. Больше всего их содержится в оливковом масле. Совет: принимать оливковое масло лучше всего в сыром виде. Покупать следует продукт холодного первого отжима нефильтрованный (Extra Virgin) испанского, греческого, итальянского производства. Масло нельзя нагревать. От этого продукт разлагается, пропадают целебные качества, появляется канцерогенный фактор.

Для сравнения: подсолнечное масло содержит больше, чем оливковое, витамина Е; а льняное — больше ненасыщенных жирных кислот Омега-3. Льняное масло также необходимо употреблять в сыром виде, без нагревания. Именно поэтому в меню должны присутствовать разные растительные масла.

Самая полезная пища, доказанно продлевающая жизнь:

- кефир,

- сырая морковь,

- сырая капуста брокколи,

- жирная рыба (готовить на пару),

- орехи фундук, кунжут, семена льна,

- оливковое масло холодного отжима,

- сырые лук и чеснок,

- тёмные сорта винограда,

- свежая зелень: петрушка, укроп, — фасоль, гречка, овсянка (каши надо запаривать), — фрукты: черника, ежевика, чернослив, смородина, — также: вишня, гранат, клубника, яблоки кислых сортов.

Прогноз на старость

Постоянное применение рекомендаций по продлению жизни позволит добиться омоложения организма, меньше болеть или исключить заболевания полностью. Без генной инженерии это работает на 100%, если есть предрасположенность, и, если обеспечивается умственная и физическая активность человека. Однако и загубить наследственность очень легко, если образ жизни не соответствует данным рекомендациям. Начать можно прямо сейчас. Интересные факты: организм полностью «забывает» о вредном факторе курения через 5 лет после отказа от привычки. Организм способен восстановиться и после привычки «приложиться» к алкоголю. Организм — необыкновенно чуткий, он благодарно реагирует на любую естественную заботу улучшением внешности и увеличением срока жизни.

Фото, использованные в статье, взяты в основном из интернета.

20 Января 2014

XXI столетие ознаменовалось наступлением новой эры в области диетологии, продемонстрировавшей огромную пользу, которую может принести здоровью человека правильный подбор рациона. С этой точки зрения поиски секрета «таблеток от старости» уже не выглядят несбыточной мечтой. Последние открытия ученых указывают на то, что определенным образом подобранное питание может, по крайней мере частично, изменить ход биологических часов организма и замедлить его старение. В данной статье современная информация, полученная специализирующимися в области диетологии учеными, проанализирована в контексте улучшения состояния теломер, являющегося ключевым механизмом замедления старения в буквальном смысле этого слова.

Теломеры – это повторяющиеся последовательности ДНК, локализующиеся на концах хромосом. При каждом делении клетки теломеры укорачиваются, что в конечном итоге приводит к утрате клеткой способности к делению. В результате клетка вступает в фазу физиологического старения, ведущую к ее гибели. Накопление таких клеток в организме повышает риск развития заболеваний. В 1962 году Леонард Хейфлик (Leonard Hayflick) совершил революцию в биологии, разработав теорию известную как теория предела Хейфлика. Согласно этой теории, максимальная потенциальная продолжительность жизни человека составляет 120 лет. Согласно теоретическим подсчетам, именно к этому возрасту в организме становится слишком много клеток, не способных делиться и поддерживать его жизнедеятельность. Пятьдесят лет спустя появилось новое направление науки о генах, открывшее человеку перспективы оптимизации его генетического потенциала.

Различные стрессовые факторы способствуют преждевременному укорочению теломер, что, в свою очередь, ускоряет биологическое старение клеток. Многие пагубные для здоровья возрастные изменения организма ассоциированы с укорочением теломер. Доказано существование взаимосвязи между укорочением теломер и заболеваниями сердца, ожирением, сахарным диабетом и дегенерацией хрящевой ткани. Укорочение теломер снижает эффективность функционирования генов, что влечет за собой триаду проблем: воспаление, окислительный стресс и снижение активности иммунных клеток. Все это ускоряет процесс старения и повышает риск развития возрастных болезней.

Еще одним важным аспектом является качество теломер. Например, пациенты с болезнью Альцгеймера далеко не всегда имеют короткие теломеры. В то же время их теломеры всегда демонстрируют выраженные признаки функциональных нарушений, коррекции которых способствует витамин Е. В определенном смысле теломеры являются «слабым звеном» ДНК. Они легко повреждаются и нуждаются в восстановлении, однако не располагают мощными репарационными механизмами, используемыми другими регионами ДНК. Это приводит к накоплению частично поврежденных и плохо функционирующих теломер, низкое качество которых не зависит от их длины.

Одним из подходов к замедлению процесса старения является применение стратегий, замедляющих процесс укорочения теломер, одновременно защищающих их и устраняющих возникающие повреждения. В последнее время специалисты получают все больше данных, согласно которым этого можно добиться путем правильного подбора рациона питания.

Еще одной привлекательной перспективой является возможность удлинения теломер с одновременным поддержанием их качества, что в прямом смысле позволит повернуть стрелки биологических часов вспять. Этого можно добиться путем активизации фермента теломеразы, способного восстанавливать утраченные фрагменты теломер.

Базовое питание для теломер

Активность генов проявляет определенную гибкость, и питание является превосходным механизмом компенсирования генетических недостатков. Многие генетические системы закладываются в течение первых недель внутриутробного развития и формируются в раннем возрасте. После этого они подвергаются влиянию широкого спектра факторов, в т.ч. пищевых. Это влияние можно назвать «эпигенетическими настройками», определяющими то, как гены проявляют заложенные в них функции.

Длина теломер также регулируется эпигенетически. Это означает, что на нее оказывает влияние рацион питания. Плохо питающиеся матери передают детям неполноценные теломеры, что в будущем повышает риск развития заболеваний сердца (для клеток пораженных атеросклерозом артерий характерно большое количество коротких теломер). Напротив, полноценное питание матери способствует формированию у детей теломер оптимальной длины и качества.

Для полноценного функционирования теломер необходимо их адекватное метилирование. (Метилирование – это химический процесс, заключающийся в присоединении к нуклеиновому основанию ДНК метильной группы (-CH3).) Основным донором метильных групп в клетках человека является кофермент S-аденозилметионин, для синтеза которого организм использует метионин, метилсульфонилметан, холин и бетаин. Для нормального протекания процесса синтеза этого кофермента необходимо присутствие витамина В12, фолиевой кислоты и витамина В6. Фолиевая кислота и витамин В12 одновременно вовлечены во многие механизмы, обеспечивающие стабильность теломер.

Наиболее важными пищевыми добавками для поддержания теломер являются качественные витаминные комплексы, принимаемые на фоне рациона, содержащего адекватное количество белков, в особенности серосодержащих. В такой рацион должны входить молочные продукты, яйца, мясо, курица, бобовые, орехи и зерновые. Яйца являются наиболее богатым источником холина.

Для поддержания хорошего настроения мозгу также требуется большое количество метильных доноров. Хронический стресс и депрессия часто свидетельствуют о дефиците метильных доноров, что означает плохое состояние теломер и их подверженность преждевременному укорочению. Это является основной причиной того, что стресс старит человека.

Результаты исследования с участием 586 женщин показали, что теломеры участниц, регулярно принимавших мультивитамины, были на 5% длиннее теломер женщин, не принимавших витамины. У мужчин наиболее высокие уровни фолиевой кислоты соответствовали более длинным теломерам. Еще одно исследование с участием людей обоих полов также выявило положительную взаимосвязь между содержанием фолиевой кислоты в организме и длиной теломер.

Чем большую нагрузку вы испытываете и/или чем хуже себя чувствуете эмоционально или психически, тем больше внимания вам следует уделять получению достаточного количества базовых питательных веществ, которые помогут не только вашему мозгу, но и вашим теломерам.

Минералы и антиоксиданты способствуют сохранению стабильности генома и теломер

Питание является превосходным механизмом замедления износа организма. Многие питательные вещества защищают хромосомы, в том числе теломеразную ДНК, и повышают эффективность работы механизмов восстановления ее повреждений. Недостаток антиоксидантов ведет к увеличению количества повреждений под действием свободных радикалов и повышению риска деградации теломер. Например, теломеры пациентов с болезнью Паркинсона короче, чем теломеры здоровых людей такого же возраста. При этом степень деградации теломер непосредственно зависит от выраженности свободно-радикальных повреждений, ассоциированных с заболеванием. Также показано, что женщины, употребляющие с пищей мало антиоксидантов, имеют короткие теломеры и входят в группу повышенного риска развития рака молочной железы.

Для функционирования многих ферментов, вовлеченных в копирование и восстановление повреждений ДНК, необходим магний. Одно из исследований на животных показало, что недостаток магния ассоциирован с увеличением выраженности свободно-радикальных повреждений и укорочением теломер. Эксперименты на клетках человека продемонстрировали, что отсутствие магния приводит к стремительной деградации теломер и подавляет деление клеток. В день, в зависимости от интенсивности нагрузки и уровня стресса, организм человека должен получать 400-800 мг магния.

Цинк играет важную роль в функционировании и восстановлении ДНК. Недостаток цинка приводит к появлению большого количества разрывов цепочек ДНК. У пожилых людей недостаток цинка ассоциирован с короткими теломерами. Минимальное количество цинка, которое человек должен получать в день, составляет 15 мг, а оптимальные дозировки составляют около 50 мг в день для женщин и 75 мг – для мужчин. Получены данные, согласно которым новый цинкосодержащий антиоксидант карнозин уменьшает скорость укорочения теломер в фибробластах кожи, одновременно замедляя их старение. Карнозин также является важным антиоксидантом для мозга, что делает его хорошим помощников в борьбе со стрессом. Многие антиоксиданты способствуют защите и восстановлению ДНК. Например, установлено, что витамин С замедляет укорочение теломер в клетках сосудистого эндотелия человека.

Впечатляет тот факт, что одна из форм витамина Е, известная как токотриенол, способна восстанавливать длину коротких теломер в фибробластах человека. Также есть данные о способности витамина С стимулировать активность удлиняющего теломеры фермента теломеразы. Эти данные свидетельствуют в пользу того, что употребление определенных продуктов питания способствует восстановлению длины теломер, что потенциально является ключом к обращению процесса старения вспять.

ДНК находится под непрерывной атакой свободных радикалов. У здоровых полноценно питающихся людей система антиоксидантной защиты частично предотвращает и восстанавливает повреждения ДНК, что способствует сохранению ее функций.

По мере старения человека его здоровье постепенно ухудшается, в клетках происходит накопление поврежденных молекул, запускающих процессы свободно-радикального окисления и препятствующих восстановлению повреждений ДНК, в том числе теломер. Этот процесс, нарастающий по принципу «снежного кома», может усугубляться такими состояниями, как ожирение.

Воспаление и инфекции способствуют деградации теломер

На современном уровне понимания биологии теломер наиболее реалистичной перспективой является разработка методов замедления процесса их укорочения. Возможно, со временем человеку удастся достичь своего предела Хейфлика. Это возможно только в том случае, если мы научимся препятствовать износу организма. Сильные стрессы и инфекции являются двумя примерами причин такого износа, ведущего к укорочению теломер. Оба воздействия имеют выраженный воспалительный компонент, стимулирующий продукцию свободных радикалов и вызывающий повреждения клеток, в том числе теломер.

В условиях сильного воспалительного стресса гибель клеток стимулирует их активное деление, что, в свою очередь, ускоряет деградацию теломер. Кроме того, формирующиеся при воспалительных реакциях свободные радикалы также повреждают теломеры. Таким образом, мы должны прикладывать максимальные усилия к подавлению как острых, так и хронических воспалительных процессов и предотвращению инфекционных заболеваний.

Однако полное исключение из жизни стрессов и воспалительных реакций является невыполнимой задачей. Поэтому хорошей идеей при травмах и инфекционных заболеваниях является добавление в рацион витамина D и докозагексаеновой кислоты (омега-3 жирной кислоты), способных оказать поддержку теломерам в условиях воспаления.

Витамин D модулирует количество тепла, генерируемого иммунной системой в ответ на воспаление. При дефиците витамина D существует опасность перегрева организма, синтеза огромного количества свободных радикалов и повреждения теломер. Способность переносить стресс, в том числе инфекционные заболевания, во многом зависит от уровня витамина D в организме. В исследовании с участием 2 100 близнецов женского пола в возрасте 19-79 лет ученые продемонстрировали, что наиболее высокие уровни витамина D ассоциированы с наиболее длинными теломерами, и наоборот. Разница в длине теломер при наиболее высоких и наиболее низких уровнях витамина D соответствовала примерно 5 годам жизни. Еще одно исследование показало, что употребление взрослыми с избыточной массой тела 2 000 МЕ витамина D в день стимулирует активность теломеразы и способствует восстановлению длины теломер, несмотря на метаболический стресс.

Подавление воспалительных процессов естественным образом путем коррекции рациона питания является ключом к сохранению теломер. Немаловажную роль в этом могут сыграть омега-3 жирные кислоты – докозагексаеновая и эйкозапентаеновая. Наблюдение за группой пациентов с заболеваниями сердечно-сосудистой системы в течение 5 лет показало, что наиболее длинные теломеры были у пациентов, употреблявших большее количество этих жирных кислот, и наоборот. При проведении еще одного исследования было установлено, что повышение уровня докозагексаеновой кислоты в организме пациентов с умеренными нарушениями познавательной функции снижало скорость укорочения их теломер.

Существует очень большое количество пищевых добавок, подавляющих активность воспалительного сигнального механизма, опосредуемого ядерным фактором каппа-би (NF-kappaB). Экспериментально доказано положительное влияние на состояние хромосом, оказываемое посредством запуска этого противовоспалительного механизма, таких природных соединений, как кверцетин, катехины зеленого чая, экстракт виноградных косточек, куркумин и ресвератрол. Обладающие этим свойством соединения также содержатся во фруктах, овощах, орехах и цельном зерне.

Одним из наиболее активно изучаемых природных антиоксидантов является куркумин, придающий ярко-желтую окраску приправе карри. Разные группы исследователей изучают его способность стимулировать восстановление повреждений ДНК, в особенности эпигенетических нарушений, а также предотвращать развитие рака и повышать эффективность его лечения.
Еще одним многообещающим природным соединением является ресвератрол. Результаты исследований на животных свидетельствуют о том, что ограничение калорийности рациона при сохранении его питательной ценности сохраняет теломеры и увеличивает продолжительность жизни за счет активации гена sirtuin 1 (sirt1) и повышению синтеза белка сиртуина-1. Функция этого белка заключается в «настройке» систем организма на работу в «режиме экономии», что очень важно для выживания вида в условиях недостатка питательных веществ. Ресвератрол напрямую активирует ген sirt1, что положительно сказывается на состоянии теломер, в особенности в отсутствие переедания.

На сегодняшний день очевидно, что короткие теломеры являются отражением низкого уровня способности систем клетки к восстановлению повреждений ДНК, в том числе теломер, что соответствует повышенному риску развития рака и болезней сердечно-сосудистой системы. В рамках интересного исследования с участием 662 человек у участников с детского возраста до 38 лет регулярно оценивали содержание в крови липопротеинов высокой плотности (ЛПВП), известных как «хороший холестерин». Наиболее высокие уровни ЛПВП соответствовали наиболее длинным теломерам. Исследователи считают, что причина этого кроется в менее выраженном накоплении воспалительных и свободно-радикальных повреждений.

Резюме

Основной вывод из всего вышеперечисленного заключается в том, что человек должен вести образ жизни и соблюдать рацион питания, минимизирующие износ организма и предотвращающие повреждения, вызываемые свободными радикалами. Важным компонентом стратегии защиты теломер является употребление продуктов, подавляющих воспалительные процессы. Чем лучше состояние здоровья человека, тем меньше усилий он может предпринимать, и наоборот. Если вы здоровы, ваши теломеры будут укорачиваться в результате нормального процесса старения, поэтому для минимизации этого влияния вам достаточно по мере взросления (старения) увеличивать поддержку теломер с помощью пищевых добавок. Параллельно этому следует вести сбалансированный образ жизни и избегать видов деятельности и употребления веществ, оказывающих отрицательное влияние на здоровье и ускоряющих деградацию теломер.

Более того, при неблагоприятных стечениях обстоятельств, таких как несчастные случаи, заболевания или эмоциональные травмы, теломерам следует обеспечивать дополнительную поддержку. Затяжные состояния, такие как посттравматический стресс, чреваты укорочением теломер, поэтому очень важным условием для любого типа травмы или неблагоприятного воздействия является полное восстановление.

Теломеры отражают жизнеспособность организма, обеспечивающую его способность справляться с различными задачами и требованиями. При укорочении теломер и/или их функциональных нарушениях организму приходится прилагать бОльшие усилия для того, чтобы выполнять повседневные задачи. Такая ситуация приводит к накоплению в организме поврежденных молекул, что затрудняет процессы восстановления и ускоряет старение. Это является предпосылкой развития целого ряда заболеваний, указывающих на «слабые места» организма.

Состояние кожи является еще одним показателем статуса теломер, отражающим биологический возраст человека. В детстве клетки кожи делятся очень быстро, а с возрастом скорость их деления замедляется в стремлении сэкономить утрачивающие способность к восстановлению теломеры. Лучше всего биологический возраст оценивать по состоянию кожи предплечий рук.

Сохранение теломер является исключительно важным принципом сохранения здоровья и долголетия. Сейчас перед нами открывается новая эра, в которой наука демонстрирует все новые способы замедления старения с помощью продуктов питания. Никогда не поздно и не рано начать вносить в свой образ жизни и рацион питания изменения, которые направят вас в нужном направлении.

Евгения Рябцева
Портал «Вечная молодость» по материалам NewsWithViews.com:

1.2. КОРОТКИЕ ТЕЛОМЕРЫ И РАЗВИТИЕ ЗЛОКАЧЕСТВЕННЫХ ЗАБОЛЕВАНИЙ

Существует множество доказательств того, что укорочение теломер ассоциировано с развитием рака и, возможно, является предрасполагающим фактором для развития ряда онкологических заболеваний. Примером тому служат врожденные заболевания, в основе которых лежит первичная дисфункция теломеразы и, в частности, врожденный дискератоз. Врожденный дискератоз был первым идентифицированным у человека генетическим заболеванием, причиной которого является нарушение системы поддержания длины теломер. Это заболевание характеризуется гиперпигментацией кожи, ороговением эпителия, дистрофией ногтей и прогрессивной апластической анемией. У пациентов с врожденным дискератозом в 1000 раз повышен риск развития рака языка и примерно в 200 раз - риск развития острой миелоидной лейкемии . При апластической анемии, не связанной с дискератозом, для пациентов с наиболее короткими теломерами (при отсутствии мутаций) риск злокачественной трансформации заболевания в миелодисплазию или лейкемию повышен в 4-5 раз.

Наряду с другими изменениями, лишенные теломер концевые участки хромосом выявляются в культурах клеток костного мозга пациентов за годы до появления клинических симптомов злокачественных заболеваний. Так короткие теломеры лейкоцитов являются прогностическим фактором развития рака при синдроме Беретта (метаплазия слизистой оболочки и стриктуры пищевода в результате пищеводного рефлюкса) и язвенном колите .

Сотрудники Инсбрукского медицинского университета наблюдали за 787 участниками итальянского проспективного исследования Bruneck с 1995 по 2005 год. Возраст добровольцев составлял от 40 до 79 лет. В начале исследования у них определили длину теломер в лейкоцитах капиллярной крови. На тот момент у всех участников признаков рака обнаружено не было. За годы исследования у 11,7% добровольцев появилось какое-либо злокачественное новообразование. Рак кожи, кроме меланомы, не учитывался. Средняя длина теломер у пациентов с раком оказалась значительно меньше, чем у остальных участников исследования. После введения поправки на другие факторы риска оказалось, что по сравнению с теми, у кого длина теломер максимальна, добровольцы с самыми короткими теломерами в 3 раза больше рискуют заболеть раком и в 11 раз больше - умереть от него в 10-летний период. У участников исследования со средней длиной теломер риск рака оказался вдвое выше, чем у участников с наиболее длинными теломерами. При этом более короткие теломеры были чаще связаны с наиболее злокачественными опухолями, такими как рак желудка, легких и яичников . В чем же состоит взаимосвязь между существованием коротких теломер в клетке и развитием рака?

1.3. ПРОЦЕССЫ СТАРЕНИЯ И АПОПТОЗА

Одна из основных функций теломер - это защита генетической информации хромосом при делении клеток. Критически короткие теломеры неспособны защитить хромосомы от повреж¬дения при митозе (деление клетки). Их появление является сигналом для выхода клеток из митотического цикла. Критическим укорочением теломеры считается величина 3000-5000 пар нуклеотидов или менее 2 кb. Если этой величины достигает хотя бы одна теломера, то в клетке происходит резкое изменение метаболизма, и в первую очередь нарушение репликации ДНК, которые запускают механизмы клеточного сенесенса (репликативное старение) и апоптоза (гибель, разрушение клетки). Исключением из этого правила являются так называемые «иммортальные» (бессмертные) клетки, к которым относятся половые клетки, стволовые тотипотентные (способные дифференцироваться в любые клетки организма) клетки, а также клетки злокачественных опухолей, способные делиться неограниченное число раз.

В нормальной соматической клетке процесс сенесенса клетки в конечном итоге должен закончиться апоптозом - апофеозом или самоубийством нежизнеспособной клетки. Это генетически запрограммированный процесс, основные моменты которого упрощенно можно представить так: отсутствие теломеры на конце хромосомы останавливает митоз в точках G1 и G2. Остановка митоза в клетках, достигших лимита Хейфлика, по принципу обратной связи вызывает активацию гена р53, ответственного за выработку белка р53, индуцирующего апоптоз. В результате стареющая клетка прекращает свое существование. Старение и апоптоз- два взаимосвязанных процесса, которые служат для человека мощным барьером на пути развития рака. Однако апоптоз может происходить в стареющих клетках не сразу. Период от критического укорочения теломер до гибели клетки может длиться в течение нескольких месяцев и даже лет. Сравнительно небольшая длина теломер у большинства раковых клеток наводит на мысль о том, что они происходят из клеток, достигших предкризисного состояния. Уже известно, что в подавляющем большинстве случаев раковое перерождение происходит тогда, когда клетка не переходит в стадию репликативного старения или в клетке происходит нарушение течения самой стадии репликативного старения.

Профессор Ян Карлседер, и его команда из Инсбрукской лаборатории молекулярной и клеточной биологии считают, что: «Цепь, контролирующая остановку роста в G1-фазе, обычно изменена в раковых клетках, позволяя им делиться, несмотря на укороченные теломеры, что может привести к нестабильности генома, наблюдаемой в злокачественных клетках» . Специалисты Института биологических исследований Дж. Солка в Ла-Ойе (Сан-Диего, США) исследовали молекулярный механизм активации гена р53, который обычно защищает генетический материал клетки и подавляет опухоли, как ключевой фактор при реакции на снятие защиты теломер. Когда клетки теряют функцию p53, гена в центре цепи ДНК, нарушается механизм остановки роста клеток в фазе G1, важном моменте в клеточном цикле для ремонта повреждений ДНК или, если повреждение не может быть восстановлено, ген программирует клетки на уничтожение. Чаще всего, p53 исчезает в раковых клетках из-за мутации гена или деактивации функции белка p53 через инфекции от вызывающих рак вирусов. Клетки без функционального р53 способны делиться с незащищёнными теломерами, несмотря на чрезмерное укорачивание теломер, вплоть до их полного исчезновения, что вызывает нестабильность генома. При нестабильности генома высока вероятность возникновения спонтанных хромосомных аберраций, начиная от количественных изменений и заканчивая структурными аномалиями: транслокациями, инсерциями, делециями и ассоциированными с теломерами концевыми слияниями хромосом. Концевые слияния хромосом происходят за счет того, что сверхкороткие теломеры воспринимаются клеткой, как разрывы хромосом. Такие разрывы “чинятся” путем их соединения, т.е. происходят теломерные слияния. В результате образуются хромосомы, имеющие по две центромеры. При прохождении через митоз дицентрик, с большой вероятностью, образует хромосомный мост, который разрешается случайным разрывом хромосомы. Образуются две клетки: одна с нехваткой генов, другая с лишними копиями и с хромосомным разрывом. Клетка с нехваткой генов обычно погибает, а с лишними копиями и хромосомным разрывом продолжает размножаться. Последовательность событий “слияние-мост- разрыв” многократно повторяется, генерируя на каждом этапе новый генотип, состоящий из базового набора генов и некоторого меняющегося довеска. На каком-то этапе хромосомный разрыв может “залечиться” и превратиться в теломеру. Процесс “слияние-мост-разрыв” приводит к многократному увеличению скорости изменчивости клеток и появлению «дефектных» клеток.

Однако не всякая дефектная клетка сразу становится злокачественной. Раковое перерождение клетки в большинстве случаев многоступенчатый процесс, затрагивающий многочисленные хромосомные перестройки. В клетках опухолей человека подчас находят более 10 мутаций.

Необходимо отметить, что большинство дефектных клеток, в конце концов, погибают от апотоза или уничтожаются клетками иммунной системы. В противном случае была бы слишком высока вероятность того, что все человечество погибло бы от рака. Апоптоз охарактеризовал себя как отличный подавитель роста раковых клеток. Однако у части злокачественных клеток в результате случайных мутаций может активироваться постоянная экспрессия генов теломеразы, которая поддерживает длину теломер на уровне, необходимом и достаточном для их функционирования. Это характерный путь для быстрой пролиферации 85% злокачественных опухолей.

1.4. СТРУКТУРА ТЕЛОМЕРАЗЫ

Структура теломеразы еще не полностью изучена. Дело в том, что содержание фермента в клетке чрезвычайно низкое, имеются большие трудности получения ее компонентов в растворимой форме и в достаточном количестве и др. Но уже точно известны два основных компонента, составляющие коровый комплекс (сердце) теломеразы: это теломеразная обратная транскриптаза - TERT(наиболее важный домен-hTERT каталитическая субъединица) и TER- специальная теломеразная РНК. Предположительно, теломераза содержит и другие структурные комплексы, которые помогают ей работать в клетке: субъединица, отвечающая за поиск и связывание 3’-конца хромосомы (якорная функция), субъединица, ответственная за транслокацию, субъединицы, связывающие продукт реакции (однотяжевую ДНК), белковая субъединица с нуклеазной активностью, которая, по-видимому, отщепляет от 3’-конца теломерной ДНК один за другим несколько нуклеотидов до тех пор, пока на этом конце не окажется последовательность, комплементарная нужному участку матричного сегмента теломеразной РНК и др.

1.5. ФУНКЦИИ ТЕЛОМЕРАЗЫ

Основная и наиболее изученная функция теломеразы - наращивание теломерных районов хромосом, и в частности, 3’-конца хромосомной ДНК. Последние работы показали, что коровый комплекс теломеразы может влиять на рост клеток, их фенотип, независимо от эффекта на длину теломер. Нобелевский лауреат 2009 года Элизабет Блэкберн предложила следующее объяснение наблюдаемым явлениям: теломераза, помимо удлинения концов теломер, проявляет защитные функции на теломере . К настоящему времени появилось уже довольно много работ, свидетельствующих о том, что не столько укорочение теломер приводит к сенессенсу, сколько нарушение их структуры. Тем самым теломераза, не только препятствует укорочению теломер, но и защищает их структуру. Интересен тот факт, что отдельные структурные элементы теломеразы имеют свое функциональное предназначение в клетке. Оказалось, что непосредственно TERT участвует в транскрипции генов «Wnt-?-catenin» сигнального пути, который стимулирует пролиферацию эмбриональных и стволовых клеток. Такая функция TERT представляет собой, по сути, координацию аппарата поддержания теломер в делящихся клетках с помощью теломеразы с экспрессией генов, необходимых для пролиферации.

1.6. АКТИВНОСТЬ ТЕЛОМЕРАЗЫ В НОРМАЛЬНЫХ И ЗЛОКАЧЕСТВЕННЫХ КЛЕТКАХ

Все клетки человека в раннем эмбриогенезе обладают теломеразной активностью, которая по мере развития организма выключается во все большей доле клеток. К моменту рождения в подавляющем большинстве клеток человеческого организма происходит очень надежная репрессия теломеразы за счет подавления экспрессии гена ее каталитической субъединицы (обратной транскриптазы). Исключением являются клетки организма, которым суждено много пролиферировать Они сохраняют ограниченную, временно индуцируемую теломеразную активность. Наличие небольшой теломеразной активности дает возможность пролиферирующим клеткам с течением времени не подвергаться большой изменчивости. У здорового человека активность этого фермента можно выявить на сравнительно низком, но детектируемом уровне в стволовых, половых клетках, в слизистых клетках кишечника, в лимфоцитах периферической крови (ПК) и тимуса (Osterhage J.L., 2009). Установлено, что экспрессия теломеразы в лимфоцитах строго контролируется в течение их развития, дифференцировки и активации . Предполагается, что активность теломеразы усиливается на короткий срок в период интенсивной пролиферации (например, после встречи предшественника В-лимфоцита с антигеном). В результате стимуляции зрелые лимфоциты становятся способны экспрессировать теломеразу на довольно высоком уровне, причем после любой повторной стимуляции экспрессия теломеразы возрастает, но ее уровень уже не достигает уровня ответа на первичный стимул . Ферментативная активность теломеразы возрастает в основном за счет фосфорилирования TERT, вызывающего изменение локализации белка в клетке.

Несмотря на репрессию hTERT, другие составляющие теломеразы, включая теломеразную РНК, образуются в соматических клетках, хотя и в меньших количествах, чем в их “бессмертных” прародителях, но постоянно (или, как говорят, конститутивно). Открытие этого важного факта Дж. Шеем, В. Райтом и их сотрудниками и стало основой для сенсационной работы по преодолению “лимита Хейфлика”. В нормальные соматические клетки были внесены гены теломеразной обратной транскриптазы с помощью специальных векторов, сконструированных из вирусных ДНК. В практике клеточных технологий принято влиять на экспрессию генов через геномы вирусов, с определенными участками ДНК, которые внедряются в клетку-хозяина и быстро там размножаются. Результаты их экспериментов можно суммировать кратко: клетки, в которых теломераза поддерживала длину теломер на уровне, характерном для молодых клеток, продолжали делиться тогда, как контрольные клетки (без теломеразы) дряхлели и умирали.

Известно, что клетки большинства исследованных на сегодня раковых опухолей характеризуются достаточно высокой активностью теломеразы, которая поддерживает длину теломер на постоянном уровне. Этот уровень заметно ниже, чем, например, у эмбриональных клеток, но он достаточен, чтобы обеспечить опухолевым клеткам возможность безграничной пролиферации, что в свою очередь предоставляет им время и, соответственно, возможность изменяться, выживать и захватывать новые ниши в организме. Если бы в процессе канцерогенеза не происходило активации теломеразы, то клетки, в большинстве случаев, не смогли бы дожить до злокачественных стадий, и не было бы абсолютного большинства раковых опухолей. К, сожалению, на сегодняшний день нет объяснения тому факту, что при различных формах рака теломераза может активироваться как на ранних, так и на поздних стадиях. Так, при миелолекозе активность теломеразы определяется на ранних стадиях, а при раке почки или менингеоме активация теломеразы происходит уже в клетках сформировавшейся опухоли.

Существует гипотеза, у которой немало сторонников, предполагающая, что потеря теломеразной активности соматическими клетками современных организмов есть благоприобретенное в процессе эволюции свойство, уберегающее их от злокачественного перерождения. Но этот механизм, по-видимому, не единственный. Было установлено, что в 15% всех опухолей, злокачественные клетки поддерживают длину теломер на должном уровне в отсутствии теломеразы. Таким образом, в этих злокачественных клетках действует другой (не теломеразный, а скорее рекомбинантный) ALT механизм «альтернативного удлинения теломер», (аббревиатура от «Alternative Lengthening of Telomeres»). Во всех ALT- индуцированных опухолях высоко содержание APB - ALT-ассоциированных ядерных белков. APB-структуры хорошо видны при флуоресцентной микроскопии клеток, что использовалось для идентификации ALT- опухолей (так как, у нормальных клеток эти структуры отсутствуют). Инн Чанг и Карстен Риппе из Онкологического центра Германии в ходе совместного исследования с Генрихом Леонардом из Мюнхенского университета Людвига- Максимилиана применили новый подход к изучению APB. Им удалось искусственно создать APB-белки в живых клетках, «привязав» к теломерам белки промиелоцитарной лейкемии (promyeloeytie leukaemia) - PML. Таким образом, ученым удалось впервые доказать, что APB удлиняют теломеры, тем самым продлевая жизнь раковых клеток без теломеразы .

Однако сама по себе активация теломеразы в нормальных клетках не приводит к раковому перерождению.

В опытах Дж. Шеея, В. Райта (1998), Bodnar (1997), White (2000), Hannon et al. (1999; 2000), Franzese et al. (2001), and Yudoh et al. (2001) активность теломеразы обычно увеличивалась благодаря сверхэкспрессии hTRT или экспрессии белков, которые являются промежуточными компонентами теломеразы . Их результаты не выявили каких-либо нарушений в регуляции размножения или озлокачествления теломеризованых клеток. Более того, в последнее время появились данные о том, что, просто активации теломеразы недостаточно для иммортализации разных клонов клеток. В работах профессора Кионо с соавторами, введение каталитического компонента теломеразы hTERT или теломеразной активности с помощью онкобелка вируса папилломы человека E7 в кератиноциты или клетки эпителия человека не приводило к их полной иммортализации. Она наступала лишь при дополнительном торможении определенных онкогенов. Причем, для разных типов клеток требуется, по-видимому, инактивация разных супрессоров [ Wynford-Thomas, et all. 1997 ]. Так, в человеческих кератиноцитах и эпителиоцитах молочной железы иммортализация наблюдается при трансдукции TERT и одновременной инактивации белков либо pRb , либо p16INK4a , тогда как элиминация р53 или p19ARF не вызывает такого эффекта [ Kiyono, et all. 1998]

Эти научные факты еще раз подчеркивают, что экзогенная стимуляция активности теломеразы не вызывает в нормальных клетках ракового перерождения, и что особенно важно изолированная экспрессия гена теломеразы не ведет к иммортализации раковых клеток.

1.7. ИНГИБИРОВАНИЕ ТЕЛОМЕРАЗЫ КАК МЕТОД БОРЬБЫ С РАКОМ

Выше уже говорилось о том, что активность теломеразы повышена во многих злокачественных клетках и клеточных линиях. Это позволило искать пути борьбы с раковыми клетками через ингибирование теломеразы. Пока большинство работ связано с испытанием ингибиторов обратных транскриптаз (каталитических субъединиц теломераз). Однако проведенные исследования по эффективности и безопасности данного класса препаратов неоднозначны. По мнению профессора Егорова Е.Е., антираковая терапия с помощью подавления теломеразы является малоэффективной, потому, что в большинстве случаев, реактивация теломеразы при канцерогенезе происходит в процессе выхода клеток из состояния кризиса, когда наблюдается многократное повышение генетической изменчивости. Поскольку эти клетки попали в состояние кризиса, то в них разрушены или нейтрализованы механизмы репликативного старения. Поэтому подавление теломеразы в опухолевых клетках человека возвращает их в состояние кризиса, но не вызывает репликативного старения и следующего за ним апоптоза. А это значит, что снова будет происходить чрезмерное увеличение генетической нестабильности. В отличие от кризиса в процессе становления опухоли, этот кризис будет захватывать существенно большее число клеток. Эффект после подавления теломеразы наступает с задержкой, необходимой для укорачивания теломер вследствие недорепликации. Время этой задержки составляет десятки удвоений популяции, что равноценно десяткам дней. Поэтому, несмотря на то, что большинство клеток все же будет погибать, довольно быстро возникнут клетки, устойчивые к предложенной терапии. Кроме того, проблема данного класса препаратов состоит в их выраженной токсичности для нормальных клеток. И потому более перспективными являются работы, в которых описано избирательное подавление теломеразной РНК, так как действие искомого ингибитора должно быть направлено именно на теломеразную ДНК-синтезирующую активность .

Несомненно, что изучение путей ингибирования теломеразы актуально для снижения смертности от рака, однако изучение путей активации теломеразы представляется не менее важным направлением для профилактики рака, особенно у лиц пожилого возраста.

2. АКТИВАТОР ТЕЛОМЕРАЗЫ ТА-65 И КАНЦЕРОГЕНЕЗ

В процессе старения человека происходит гибель клеток организма, которая не может быть восполнена регенерацией. Со временем потеря клеток приводит к ослаблению функций органов и тканей, уменьшению их надежности, развитию болезней, связанных со старением, и в итоге к гибели организма. По данным Американского общества рака, 78% всех случаев рака диагностируют у лиц старше пятидесяти семи лет. Риск возникновения рака возникает тогда, когда более выражены признаки клеточного старения, что наиболее характерно для пожилых людей. Современный образ жизни, стресс, злоупотребление лекарствами приводят к недостатку отдельных теломеразных компонентов, и к более раннему фенотипическому старению с потерей функции на клеточном и системном уровне. Этот факт заставил исследователей искать пути продления жизни клетки через активацию теломеразы.

На сегодняшний день единственным биологическим комплексом с доказанным эффектом снижения процента критически коротких теломер в клетке, является ТА-65. Его действие направлено на индукцию активности теломеразы, которая способствует добавлению теломерных повторов, прежде всего, к коротким теломерам, тем самым омолаживая стареющие клетки и наделяя их способностью пролиферировать.

Потенциальный терапевтический эффект ТА-65 направлен на увеличение активности теломеразы, прежде всего, в стволовых клетках, клетках костного мозга, стромальных клетках костного мозга, молодых фибробластах кожи, предшественниках инсулоцитов, нейросферических клетках, адренокортикальных клетках, мышечных, остеопластических, ретинальных пигментированных эпителиалиальных клетках, клетках иммунной системы, включая клетки лимфоидного, миелоидного и эритроидного ростков, таких как В- и Т- лимфоциты, моноциты, циркулирующие и специализированные тканевые макрофаги, нейтрофилы, эозинофилы, базофилы, NK-клетки и их соответствующие предшественники. В этой связи основными показаниями для использования ТА-65 могут быть: обусловленные стрессом и возрастом нарушения иммунной системы, включая нарушение обновления тканей, которое происходит при естественном старении, раке, лечении рака, острых или хронических инфекциях или при генетических нарушениях, вызывающих ускоренную гибель клеток, апластических анемиях и других дегенеративных заболеваниях. Использование ТА-65 для профилактики рака выглядит на первый взгляд парадоксально. Каким же образом, активация теломеразы может предотвратить раковое перерождение клеток. Это происходит, во-первых, потому что за счет омоложения снижается вероятность хромосомных перестроек в клетках, а во-вторых, потому что теломераза может увеличить продолжительность жизни иммунных клеток, улучшив их способность находить и уничтожать раковые клетки. Ранее уже указывалось, что активация теломеразы «генетическим способом» в нормальных клетках приводит к их омоложению без признаков озлокачествления. Научная работа исследователей из Испанского Национального центра по изучению рака продемонстрировала, что TA-65 обладает подобным действием у мышей. В результате исследования были доказаны эффекты ТА-65 по удлинению коротких теломер, и улучшению здоровья старых мышей, включая состояния толерантности к глюкозе, остеопороза и дряблости кожи, без увеличения заболеваемости раком. Еще одно исследование на людях, известное под названием «Протокол Патона» показало, что у пациентов, использующих ТА-65 в течение года, как составляющий компонент программы омоложения не выявило не одного нового случая рака.

В одной из научных работ профессора иммунологии калифорнийского университета, занимающегося проблемами старения и ВИЧ-инфекции Риты Эфрос с соавторами проводилось исследование влияния молекулы ТАТ-2 на функции Т- и В-лимфоцитов. ТАТ-2 по химической структуре представляет собой циклоастрогенол. Аналогичная молекула входит в состав ТА-65. Исследование позволило сделать следующее заключение о безопасности ТАТ-2: «Во всех проведенных на сегодняшний день исследованиях в естественных условиях, не было получено никаких доказательств, что TAT2 способствовало потере контроля роста и преобразования. Например, TAT2 не приводит к какому-либо значительному увеличению конститутивной активности теломеразы в линии Jurkat Т клеток опухоли Supplemental. Кроме того, хроническое воздействие TAT2 не изменяет скорость EBV трансформации нормальных В-лимфоцитов в культуре клеток Важно отметить, что наблюдаемые эффекты регулирования теломеразы являются краткосрочными и обратимым. Удаление TAT2 из клеток возвращает уровни теломеразы к исходным в течение нескольких дней без каких-либо последствий для жизнеспособности клеток.»

3. ЗАКЛЮЧЕНИЕ

Все вышесказанное можно обобщить в следующих выводах:

1. Существует тесная взаимосвязь между существованием коротких теломер в клетке и развитием опухолевого процесса. Свидетельствами тому служат заболевания, при которых отмечаются короткие теломеры: врожденный дискератоз, апластическая анемия, синдром Баретта др.

2. Наличие критически коротких теломер в клетке - признак ее старения и нестабильности. В этот период велика возможность перехода клетки в кризисное состояние, при котором высок риск возникновения хромосомных мутаций, приводящих к развитию рака.

3. Теломераза препятствует укорочению теломер, защищает их структуру. Недостаток теломеразы в активно пролиферирующих клетках (стволовых клетках, клетках костного мозга, стромальных клетках костного мозга, молодых фибробластах кожи, предшественниках инсулоцитов, нейросферических клетках, адренокортикальных клетках, мышечных, остеопластических, ретинальных пигментированных эпителиалиальных клетках, клетках иммунной системы, включая клетки лимфоидного, миелоидного и эритроидного ростков, таких как В- и Т- лимфоциты, моноциты, циркулирующие и специализированные тканевые макрофаги, нейтрофилы, эозинофилы, базофилы) ведет к нарушению их функционирования и к быстрому старению.

4. Малигнизация клетки - сложный многоступенчатый процесс, при котором происходят множественные мутации генетического материала клетки.

5. Для иммортализации злокачественного клона не достаточно экспрессии (активации) гена теломеразы, необходимо еще «отключение» определенных сигнальных механизмов, которые предохраняют клетку от перерождения.

6. Сама по себе теломераза не является онкогеном. Изолированная активация теломеразы за счет генетических манипуляций с геном теломеразы, а также за счет фармакологической стимуляции ТА-65 не приводит к малигнизации клетки. Этот факт доказан множеством научных и экспериментальных работ.

7. ТА-65 способствует профилактике ракового перерождения за счет щадящей активации теломеразы и снижения процента коротких теломер. При этом снижается вероятность хромосомных перестроек в клетках, увеличивается продолжительность жизни иммунных клеток, улучшается их способность находить и уничтожать раковые клетки.

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА:

  1. Blackburn, E.H. (2005) FEBS Lett.,579, 859-862.
  2. Билибин Д.П роль апоптоза в патологии. Москва 2003
  3. Bodnar, A.G. et al., «Extension of life-span by introduction of telomerase into normal human cells», Science279 (5349): 349-52 (Jan. 16, 1998);
  4. Chung, I., Leonhardt, H., and Rippe, K. De novo assembly of a PML nuclear subcompartment occurs via multiple pathways and induces telomere elongation. Journal of Cell Science 124, 2011 3603-3618
  5. Chiu, C.P. et al., «Replicative senescence and cell immortality: the role of telomeres and telomerase» Proc.Soc. Exp. Biol. Med. 214 (2): 99-106 (Feb. 1997);
  6. Егоров Е.Е. Роль теломер и теломеразы в процессах клеточного старения и канцерогенеза.\автореферат докторской диссертации. Москва 2003 с300
  7. Fujimoto, R. et al., «Expression of telomerase components in oral keratinocytes and squamous cell carcinomas»,Oral Oncology 37 (2): 132-40 (Feb. 2001);
  8. Harle-Bachor, C. et al., «Telomerase activity in the regenerative basal layer of the epidermis inhuman skin and inimmortal and carcinoma-derived skin keratinocytes», Proc. Natl. Acad. Sci. USA 93 (13): 6476-81 (Jun. 25, 1996);
  9. Harley, C.B. et al., «Telomeres shorten during ageing of human fi broblasts», Nature 345 (6274): 458-60 (May 31, 1990);
  10. Harley, C.B. et al., «Telomerase, cell immortality, and cancer», Cold Spring Harb. Symp. Quant. Biol. 59:307-15 (1994);
  11. Harley, C.B. et al., «Telomeres and telomerase in aging and cancer», Curr. Opin. Genet. Dev. 5 (2): 249-55 (Apr. 1995);
  12. Harley, C.B. et al., «Telomerase and cancer», Inzportarzt. Adv. Oncol. 57-67 (1996);
  13. Harley, C.B., «Telomerase is not an oncogene», Oncogene 21: 494-502 (2002);
  14. Hannon, G.J. and Beach, D.H., «Increasing proliferative capacity and preventing replicative senescence by increasing telomerase activity and inhibiting pathways inhibiting cell roliferation)), PCT Int. Appl. Pubn. No.WO 2000/031238 (June 2000);
  15. Kiyono, T., Foster, S.A., Koop, J.I., McDougall, J.K., Galloway, D.A., and Klingelhutz, A.J. / Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells.(1998) Nature, 396, 84-88.
  16. Liu, K., Hodes, R.J., Weng, N. (2001)J. Immunol., 166, 4826-4830.
  17. Mitchell, J.R., Wood, E., Collins, K. (1999) Nature, 402, 551-555.
  18. Osterhage JL, Friedman KL. J Biol Chem. Chromosome end maintenance by telomerase.2009 Jun 12;284(24):16061-5. doi: 10.1074/jbc.R900011200. Epub 2009 Mar 12.
  19. Verdun, R.E., Crabbe, L., Haggblom, C. and Karlseder, J. (2005) Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell 20:551-561. Yudoh, K. et al., «Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomereshorting and replicative senescence in human osteoblasts», J. Bosle and Mineral Res. 16 (8): 1453-1464 (2001).
  20. White, M.A., «Assembly of telomerase components and chaperonins and methods and compositions forinhibiting or stimulating telomerase assembly», PCT Int. Appl. Pubn. No. WO 2000/08135 (Feb. 2000);
  21. Willeit P et.all, Telomere Length and Risk of Incident Cancer and Cancer Mortality, JAMA. 2010; 304(1):69-75.
  22. Steven Russell Fauce,* Beth D. Jamieson,† Allison C. Chin,2,‡ Ronald T. Mitsuyasu,† Stan T. Parish,* Hwee L. Ng,† Christina M. Ramirez Kitchen,§ Otto O. Yang,† Calvin B. Harley,‡ and Rita B. Effros3,* Telomerase-Based Pharmacologic Enhancement of Antiviral Function of Human CD8+ T Lymphocytes The Journal of Immunology November 15, 2008 vol. 181 no. 10 7400-7406

Функции теломер

Механические.

а) фиксация хромосом к ядерному матриксу;

б) теломеры сцепляют друг с другом концы сестринских хроматид; в то же время структура теломер такова, что допускает расхождение хроматид в анафазе.

2. Стабилизационные.

а) наличие теломер предохраняет от недорепликации генетически значимые отделы ДНК;

б) осуществляют стабилизацию концов разорванных хромосом. Например, у больных α-талассемией в генах α-глобина происходят разрывы хромосомы 16q, и к поврежденному концу добавляются теломерные повторы.

3. Влияние на экспрессию генов. Свойство теломер – эффект положения: активность генов, расположенных рядом с теломерами, снижена (репрессирована). Такой эффект обозначают как транскрипционное молчание, или сайленсинг. При значительном укорочении теломер эффект положения пропадает и прителомерные гены активируются.

а) Сайленсинг может быть результатом действия белков Rap1 или TRF1.

б) эффект положения может быть обусловлен близостью к ядерной оболочке. По гипотезе А.М. Оловникова, в этой облочке могут располагаться Са+-каналы, и поток ионов Са влияет на взаимолействие белков с близлежащими генами.

4. «Счетная» функция. Теломерные отделы ДНК выступают в качестве часового устройства (т.н.репликометра), которое отсчитывает количество делений клетки после исчезновения теломеразной активности. Каждое деление клетки приводит к укорочению теломеры на 50-65 н.п. Причем, для клетки важней не то сколько делений уже прошло, а сколько еще осталось до критического укорочения теломеры. Т.о. можно сказать, что теломеры – устройство, определяющее количество делений, которые способна совершит нормальная клетка в отсутствие теломеразы.

Достигая критически короткой длины, теломеры теряют возможность выполнять свои функции, клеточный цикл нарушается, и клетка погибает.

Фермент теломераза используется для поддержания длины теломерной ДНК.т Она удлиняет G-цепь каждой теломеры.

Ключевой вопрос теломерной биологии – в каких клетках имеется и функционирует теломераза, а в каких клетках ее нет. Считают, что именно в нем кроется связь данной проблемы со старением и канцерогенезом.

Распространение теломеразы в нормальных клетках:

а) с наибольшим постоянством теломераза обнаруживается в органах кроветворения – костном мозгу, лимфоузлах и т.д.

б) с меньшей частотой обнаруживают фермент в органах с условно постмитотическими клетками – печени, поджелудочной железе, а также, в респиратоныхотделах легких, в стволовых клетках предстательной железы;

в) не обнаруживается теломераза в мозгу и в мышечных тканях, где большинство составляют постмитотические клетки.

Т.о., теломераза имеется во многих из тех соматических клеток, которые способны к делениям.



Рассказать друзьям