Излучение. Излучение: его виды и воздействие на организм

💖 Нравится? Поделись с друзьями ссылкой

Введение……………………………………………………………………………..3

1. Виды излучений………………………………………………………………….5

2. Нормирование радиационной безопасности…………………………………10

3. Основные дозовые пределы….......................................................................13

4. Допустимые и контрольные уровни облучения…………………………………18

Заключение………………………………………………………………………….26

Список использованных источников……………………………………………….28

ВВЕДЕНИЕ

Среди вопросов, представляющих научный интерес, немногие приковывают к себе столь постоянное внимание общественности и вызывают так много споров, как вопрос о действии радиации на человека и окружающую среду.

К сожалению, достоверная научная информация по этому вопросу очень часто не доходит до населения, которое пользуется из-за этого всевозможными слухами. Слишком часто аргументация противников атомной энергетики опирается исключительно на чувства и эмоции, столь же часто выступления сторонников ее развития сводятся к мало обоснованным успокоительным заверениям.

Научный комитет ООН по действию атомной радиации собирает всю доступную информацию об источниках радиации и ее воздействии на человека и окружающую среду и анализирует ее. Он изучает широкий спектр естественных и созданных искусственно источников радиации, и его выводы могут удивить даже тех, кто внимательно следит за ходом публичных выступлений на эту тему.

Радиация действительно смертельно опасна. При больших дозах она вызывает серьезнейшие поражения тканей, а при малых может вызвать рак и индуцировать генетические дефекты, которые, возможно, проявятся у детей и внуков человека, подвергшегося облучению, или у его более отдаленных потомков.

Но для основной массы населения самые опасные источники радиации - это вовсе не те, о которых больше всего говорят. Наибольшую дозу человек получает от естественных источников радиации. Радиация, связанная с развитием атомной энергетики, составляет лишь малую долю радиации, порождаемой деятельностью человека; значительно большие дозы мы получаем от других, вызывающих гораздо меньше нареканий, форм этой деятельности, например от применения рентгеновских лучей в медицине. Кроме того, такие формы повседневной деятельности, как сжигание угля и использование воздушного транспорта, в особенности же постоянное пребывание в хорошо герметизированных помещениях, могут привести к значительному увеличению уровня облучения за счет естественной радиации. Наибольшие резервы уменьшения радиационного облучения населения заключены именно в таких «бесспорных» формах деятельности человека.

В настоящей работе освещены различные виды излучений, как от естественных, так и от техногенных источников, оказывающих воздействие на человека и окружающую среду, приведены нормативные источники информации о радиационной безопасности, дозовые пределы облучений и их допустимые и контрольные уровни.

    ВИДЫ ИЗЛУЧЕНИЙ

Проникающая радиация представляет собой большую опасность для здоровья и жизни людей. В больших дозах она вызывает серьезные поражения тканей организма, развивается острая лучевая болезнь, в малых дозах – онкологические заболевания, провоцирует генетические дефекты. В природе существует ряд элементов, ядра атомов которых превращаются в ядра других элементов. Эти превращения сопровождаются излучением – радиоактивностью. Ионизирующее излучение представляет собой потоки элементарных частиц и квантов электромагнитных излучений, способных вызывать ионизацию атомов и молекул среды, в которой они распространяются.

Разные виды излучений сопровождаются высвобождением разного количества энергии и обладают разной проникающей способностью, поэтому они оказывают неодинаковое воздействие на ткани живого организма (рис. 1). Альфа-излучение, которое представляет собой поток тяжелых частиц, состоящих из нейтронов и протонов, задерживается, например, листом бумаги и практически не способно проникнуть через наружный слой кожи, образованный отмершими клетками. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие α-частицы, не попадут внутрь организма через открытую рану, с пищей или с вдыхаемым воздухом; тогда они становятся чрезвычайно опасными. Бета-излучение обладает большей проникающей способностью: оно проходит в ткани организма на глубину один - два сантиметра. Проникающая способность гамма-излучения, которое распространяется со скоростью света, очень велика: его может задержать лишь толстая свинцовая или бетонная плита. В силу очень высокой проникающей способности гамма-излучения представляют большую опасность для человека. Особенность ионизирующего излучения состоит в том, что его воздействие человек начнет ощущать лишь по прошествии некоторого времени.

Рис. 1. Три вида излучений и их проникающая способность

Источники радиации бывают естественными, присутствующими в природе, и не зависящими от человека.

Основную часть облучения население земного шара получает от естественных источников радиации (рис. 2).

Рис. 2. Средние годовые эффективные эквивалентные дозы облучения от естественных и техногенных источников радиации (цифры указывают величину дозы в миллизивертах)

Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним.

Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частности, от того, где они живут. Уровень радиации в некоторых местах земного шара, там, где залегают особенно радиоактивные породы, оказывается значительно выше среднего, а в других местах - соответственно ниже. Доза облучения зависит также от образа жизни людей. Применение некоторых строительных материалов, использование газа для приготовления пищи, открытых угольных жаровень, герметизация помещений и даже полеты на самолетах – все это увеличивает уровень облучения за счет естественных источников радиации.

Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. В среднем они обеспечивают более 5 / 6 годовой эффективной эквивалентной дозы, получаемой населением, в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом путем внешнего облучения (рис. 3).

Рис. 3. Средние годовые эффективные эквивалентные дозы облучения от естественных источников радиации (цифры указывают дозу в миллизивертах)

По некоторым данным 1 средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников естественной радиации, составляет примерно 350 микрозивертов, т.е. чуть больше средней индивидуальной дозы облучения из-за радиационного фона, создаваемого космическими лучами на уровне моря.

В среднем примерно 2 / 3 эффективной эквивалентной дозы облучения, которую человек получает от естественных источников радиации, поступает от радиоактивных веществ, попавших в организм с пищей, водой и воздухом.

Установлено, что из всех естественных источников радиации наибольшую опасность представляет радон – тяжелый газ без цвета и запаха. Он высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно отличается для разных точек Земного шара. Основное излучение от радона человек получает, находясь в закрытом помещении. Радон концентрируется в воздухе внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды. Просачиваясь через фундамент и пол из грунта или, реже, из стройматериалов, радон накапливается в помещении. Самые распространенные стройматериалы – дерево, кирпич и бетон – выделяют относительно немного радона. Гораздо большей удельной радиоактивностью обладают гранит, пемза, изделия из глиноземного сырья, фосфогипса.

Еще один источник поступления радона в жилые помещения – вода и природный газ. Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из глубоких колодцев или артезианских скважин содержит очень много радона. Однако основная опасность исходит вовсе не от питья, даже при высоком содержании радона. Обычно люди употребляют кипяченую воду или в виде горячих напитков, а при кипячении радон практически полностью улетучивается. Большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате или в парилке. В природный газ радон проникает под землей. В результате предварительной переработки и в процессе хранения газа перед поступлением его к потребителю большая часть радона улетучивается, но концентрация радона может возрасти, если кухонные плиты не снабжены вытяжкой. Следовательно, радон особенно опасен для малоэтажных зданий с тщательной герметизацией помещений (с целью сохранения тепла) и при использовании глинозема в качестве добавки к строительным материалам.

Другие источники радиации, представляющие опасность, к сожалению, созданы самим человеком. Радиация в настоящее время широко используется в различных областях: медицине, промышленности, сельском хозяйстве, химии, науке и т. д. Источниками искусственной радиации служат созданные с помощью ядерных реакторов и ускорителей искусственные радионуклиды, пучок нейтронов и заряженных частиц. Они получили название техногенных источников ионизирующего излучения. Все мероприятия, связанные с получением и применением искусственной радиации, строго контролируются. Особняком по своему воздействию на организм человека стоят испытания ядерного оружия в атмосфере, аварии на АЭС и ядерных реакторах и результаты их работы, проявляющиеся в радиоактивных осадках и радиоактивных отходах. При выпадении радиоактивных осадков в некоторых местностях Земли радиация может попадать внутрь организма человека непосредственно через сельскохозяйственную продукцию и питание.

Радиоактивное излучение является мощным воздействием на человеческий организм, способным вызвать необратимые процессы, ведущие к трагическим последствиям. В зависимости от мощности различные виды радиоактивных излучений могут вызвать тяжелые заболевания, а могут, наоборот, лечить человека. Некоторые из них используются в диагностических целях. Другими словами, все зависит от контролируемости процесса, т.е. его интенсивности и продолжительности воздействия на биологические ткани.

Сущность явления

В общем случае под понятием радиация подразумевается высвобождение частиц и их распространение в виде волн. Радиоактивность подразумевает самопроизвольный распад ядер атомов некоторых веществ с появлением потока заряженных частиц большой мощности. Вещества, способные на такое явление, получили название радионуклидов.

Так что такое радиоактивное излучение? Обычно под этим термином отмечаются как радиоактивные, так и радиационные излучения. По своей сути, это направленный поток элементарных частиц значительной мощности, вызывающих ионизацию любой среды, попадающей на их пути: воздух, жидкости, металлы, минералы и другие вещества, а также биологические ткани. Ионизация любого материала ведет к изменению его структуры и основных свойств. Биологические ткани, в т.ч. человеческого организма, подвергаются изменениям, которые не совместимы с их жизнедеятельностью.

Различные типы радиоактивного излучения имеют разную проникающую и ионизирующую способность. Поражающие свойства зависят от следующих основных характеристик радионуклеидов: вид радиации, мощность потока, период полураспада. Ионизирующая способность оценивается по удельному показателю: количеству ионов ионизируемого вещества, формируемых на расстоянии в 10 мм по пути проникновения излучения.

Негативное воздействие на человека

Радиационное облучение человека приводит к структурным изменениям в тканях организма. В результате ионизации в них появляются свободные радикалы, которые представляют собой активные в химическом плане молекулы, поражающие и убивающие клетки. Первыми и наиболее сильно страдают желудочно-кишечная, мочеполовая и кроветворная системы. Появляются выраженные симптомы их дисфункции: тошнота и рвота, повышенная температура, нарушение стула.

Достаточно типичной является лучевая катаракта, вызванная воздействием излучения на глазные ткани. Наблюдаются и другие серьезные последствия радиационного облучения: сосудистый склероз, резкое снижение иммунитета, гематогенные проблемы. Особую опасность представляет повреждение генетического механизма. Возникающие активные радикалы способны изменить структуру главного носителя генетической информации — ДНК. Такие нарушения могут приводить к непрогнозируемым мутациям, отражающимся на следующих поколениях.

Степень поражения человеческого организма зависит от того, какие виды радиоактивного излучения имели место, какова интенсивность и индивидуальная восприимчивость организма. Главный показатель — доза облучения, показывающая, какое количество радиации проникло в организм. Установлено, что разовая большая доза значительно опаснее, чем накопление такой дозы при длительном облучении маломощным излучением. Поглощенное организмом количество радиации измеряется в эйвертах (Эв).

Любая жизненная среда имеет определенный уровень радиации. Нормальным считается радиационный фон не выше 0,18-0,2 мЭв/ч или 20 микрорентгенов. Критический уровень, ведущий к летальному исходу, оценивается в 5,5-6,5 Эв.

Разновидности излучения

Как отмечалось, радиоактивное излучение и его виды могут по-разному воздействовать на человеческий организм. Можно выделить следующие основные разновидности радиации.

Излучения корпускулярного типа, представляющие собой потоки частиц:

  1. Альфа-излучение. Это поток, составленный из альфа-частиц, имеющих огромную ионизирующую способность, но глубина проникновения небольшая. Даже листок плотной бумаги способен остановить такие частицы. Одежда человека достаточно эффективно исполняет роль защиты.
  2. Бета-излучение обусловлено потоком бета-частиц, летящих со скоростью, близкой к скорости света. Из-за огромной скорости эти частицы имеют повышенную проникающую способность, но ионизирующие возможности у них ниже, чем в предыдущем варианте. В качестве экрана от данного излучения могут служить оконные окна или металлический лист толщиной 8-10 мм. Для человека оно очень опасно при прямом попадании на кожу.
  3. Нейтронное излучение состоит из нейтронов и обладает наибольшим поражающим воздействием. Достаточная защита от них обеспечивается материалами, в структуре которых есть водород: вода, парафин, полиэтилен и т.п.

Волновое излучение, представляющее собой лучевое распространение энергии:

  1. Гамма-излучение является, по своей сути, электромагнитным полем, создающимся при радиоактивных превращениях в атомах. Волны испускаются в виде квантов, импульсами. Излучение имеет очень высокую проницаемость, но низкую ионизирующую способность. Для защиты от таких лучей нужны экраны из тяжелых металлов.
  2. Рентгеновское излучение, или Х-лучи. Эти квантовые лучи во многом аналогичны гамма-излучению, но проникающие возможности несколько занижены. Такой тип волны вырабатывается в вакуумных рентгеновских установках за счет удара электронами о специальную мишень. Общеизвестно диагностическое назначение данного излучения. Однако следует помнить, что продолжительное действие его способно нанести человеческому организму серьезный вред.

Как может облучиться человек

Человек получает радиоактивное облучение при условии проникновения радиации в его организм. Оно может происходить 2 способами: внешнее и внутреннее воздействие. В первом случае источник радиоактивного излучения находится снаружи, а человек по разным причинам попадает в поле его деятельности без надлежащей защиты. Внутреннее воздействие осуществляется при проникновении радионуклида внутрь организма. Это может произойти при употреблении облученных продуктов или жидкостей, с пылью и газами, при дыхании зараженным воздухом и т.д.

Внешние источники радиации можно подразделить на 3 категории:

  1. Естественные источники: тяжелые химические элементы и радиоактивные изотопы.
  2. Искусственные источники: технические устройства, обеспечивающие излучение при соответствующих ядерных реакциях.
  3. Наведенная радиация: различные среды после воздействия на них интенсивного ионизирующего излучения сами становятся источником радиации.

К наиболее опасным объектам в части возможного радиационного облучения можно отнести следующие источники радиации:

  1. Производства, связанные с добычей, переработкой, обогащением радионуклидов, изготовлением ядерного топлива для реакторов, в частности урановая промышленность.
  2. Ядерные реакторы любого типа, в т.ч. на электростанциях и кораблях.
  3. Радиохимические предприятия, занимающиеся регенерацией ядерного топлива.
  4. Места хранения (захоронения) отходов радиоактивных веществ, а также предприятия по их переработке.
  5. При использовании радиационных излучений в разных отраслях: медицина, геология, сельское хозяйство, промышленность и т.п.
  6. Испытание ядерного оружия, ядерные взрывы в мирных целях.

Проявление поражения организма

Характеристика радиоактивных излучений играет решающую роль в степени поражения человеческого организма. В результате воздействия развивается лучевая болезнь, которая может иметь 2 направления: соматическое и генетическое поражение. По времени проявления выделяется ранний и отдаленный эффект.

Ранний эффект выявляет характерные симптомы в период от 1 часа до 2 месяцев. Типичными считаются такие признаки: кожная краснота и шелушение, мутность глазного хрусталика, нарушение кроветворного процесса. Крайний вариант при большой дозе облучения — летальный исход. Локальное поражение характеризуются такими признаками, как лучевой ожог кожного покрова и слизистой оболочки.

Отдаленные проявления выявляются через 3-5 месяцев, а то и через несколько лет. В этом случае отмечаются устойчивые кожные поражения, злокачественные опухоли различной локализации, резкое ухудшение иммунитета, изменение состава крови (значительное снижение уровня эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов). В результате этого часто развиваются различные инфекционные болезни, существенно снижается продолжительность жизни.

Для предотвращения облучения человека ионизирующим излучением применяются различные виды защиты, которые зависят от типа радиации. Кроме того, регламентируются жесткие нормы по максимальной продолжительности пребывания человека в зоне облучения, минимальному расстоянию до источника радиации, использованию индивидуальных средств защиты и установке защитных экранов.

Радиоактивное излучение способно оказывать сильное разрушительное воздействие на все ткани человеческого организма. В то же время оно используется и при лечении различных болезней. Все зависит от дозы облучения, получаемой человеком в разовом или длительном режиме. Только неукоснительное соблюдение норм радиационной защиты поможет сохранить здоровье, даже если находиться в пределах действия радиационного источника.

Моноэнергетическое ионизирующее излучение - ионизирующее излучение, состоящее из фотонов одинаковой энергии или частиц одного вида с одинаковой кинетической энергией.

Смешанное ионизирующее излучение - ионизирующее излучение, состоящее из частиц различного вида или из частиц и фотонов.

Направленное ионизирующее излучение ионизирующее излучение с выделенным направлением распространения.

Естественный фон излучения - ионизирующее излучение, создаваемое космическим излучением и излучением естественно распределенных природных радиоактивных веществ (на поверхности Земли, в приземной атмосфере, в продуктах питания, воде, в организме человека и др.).

Фон - ионизирующее излучение, состоящее из естественного фона и ионизирующих излучений посторонних источников.

Космическое излучение - ионизирующее излучение, которое состоит из первичного излучения, поступающего из космического пространства, и вторичного излучения, возникающего в результате взаимодействия первичного излучения с атмосферой.

Узкий пучок излучения - такая геометрия излучения, при которой детектор регистрирует только нерассеянное излучение источника.

Широкий пучок излучения - такая геометрия излучения, при которой детектор регистрирует нерассеянное и рассеянное излучения источника.

Поле ионизирующего излучения - пространственно-временное распределение ионизирующего излучения в рассматриваемой среде.

Поток ионизирующих частиц (фотонов) - отношение числа ионизирующих частиц (фотонов)dN, проходящих через данную поверхность за интервал времениdt, к этому интервалу:F =dN/dt.

Поток энергии частиц - отношение энергии падающих частиц к интервалу времени Ψ=dЕ/dt.

Плотность потока ионизирующих частиц (фотонов) - отношение потока ионизирующих частиц (фотонов)dF

проникающих в объем элементарной сферы, к площади центрального поперечного сечения dS этой сферы: φ = dF/dS = d 2 N/dtdS. (Плотность потока энергии частиц определяется аналогично).

Флюенс (перенос) ионизирующих частиц (фотонов) - отношение числа ионизирующих частиц (фотонов)dN , проникающих в объем элементарной сферы, к площади центрального поперечного сеченияdS этой сферы:Ф = dN/dS.

Энергетический спектр ионизирующих частиц - распределение ионизирующих частиц по их энергии.Эффективная энергия фотонного излучения - энергия фотонов такого моноэнергетического фотонного

излучения, относительное ослабление которого в поглотителе определенного состава и определенной толщины то же самое, что и рассматриваемого немоноэнергетического фотонного излучения.

Граничная энергия спектра β -излучения - наибольшая энергия β -частиц в непрерывном энергетическом спектре β -излучения данного радионуклида.

Альбедо излучения - отношение числа частиц (фотонов), отражающихся от границы раздела двух сред, к числу частиц (фотонов), падающих на поверхность раздела.

Запаздывающее излучение : частицы, излучаемые продуктами распада, в отличии от частиц (нейтронов и гамма - лучей), возникающих непосредственно в момент деления.

Ионизация в газах: отрыв от атома или молекулы газа одного или нескольких электронов. В результате ионизации в газе возникают свободные носители заряда (электроны и ионы) и он приобретает способность проводить электрический ток.

Термин «излучение» охватывает диапазон электромагнитных волн, включая видимый спектр, инфракрасную и ультрафиолетовую области, а также радиоволны, электрический ток и ионизирующее излучение. Вся несхожесть этих явлений обусловлена лишь частотой (длиной волны) излучения. Ионизирующее излучение может представлять опасность для здоровья человека. Ионизирующее излучение (радиация ) - вид излучения, который изменяет физическое состояние атомов или атомных ядер, превращая их в электрически заряженные ионы или продукты ядерных реакций. При определенных обстоятельствах присутствие таких ионов или продуктов ядерных реакций в тканях организма может изменять течение процессов в клетках и молекулах, а при накоплении этих событий может нарушить ход биологических реакций в организме, т.е. представлять опасность для здоровья человек.

2. ВИДЫ ИЗЛУЧЕНИЙ

Различают корпускулярное излучение, состоящее из частиц с массой отличной от нуля, и электромагнитное (фотонное) излучение.

2.1. Корпускулярное излучение

К корпускулярному ионизирующему излучению относят альфа-излучение, электронное, протонное, нейтронное и мезонное излучения. Корпускулярное излучение, состоящее из потока заряженных частиц (α-, β-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при

столкновении, относится к классу непосредственно ионизирующего излучения. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят.

Соответственно, корпускулярное излучение, состоящее из потока незаряженных частиц, называют косвенно ионизирующим излучением.

Рис.1 . Схема распада212 Bi.

2.1.1 Альфа-излучение

Альфа частицы (α - частицы) - ядра атома гелия, испускаемые при α - распаде некоторыми радиоактивными атомами. α - частица состоит из двух протонов и двух нейтронов.

Альфа излучение - поток ядер атомов гелия (положительно заряженных и

относительно тяжелых частиц).

Естественное альфа-излучение как результат радиоактивного распада ядра, характерно для неустойчивых ядер тяжелых элементов, начиная с атомного номера более 83, т.е. для естественных радионуклидов рядов урана, и тория, а также, для полученных искусственным путем трансурановых элементов.

Типичная схема α -распада природного радионуклида представлена наРис.1 , а энергетический спектр α -частиц, образующихся при распаде радионуклида – на

Рис.2.

Рис.2 Энергетический спектр α -частиц

Возможность α- распада связана с тем, что масса (а, значит, и суммарная энергия ионов) α- радиоактивного ядра больше суммы масс α- частицы и образующегося после α- распада дочернего ядра. Избыток энергии исходного (материнского) ядра освобождается в форме кинетической энергии α- частицы и отдачи дочернего ядра. α- частицы представляют собой положительно заряженные ядра гелия - 2 Не4 и вылетают из ядра со скоростью 15-20 тыс. км/сек. На своём пути они производят сильную ионизацию среды,

вырывая электроны из орбит атомов.

Пробег α- частиц в воздухе порядка 5-8 см, в воде - 30-50 микрон, в металлах - 10-20 микрон. При ионизации α- лучами наблюдаются химические изменения вещества, и нарушается кристаллическая структура твердых тел. Так как между α- частицей и ядром существует электростатическое отталкивание, вероятность ядерных реакций под действием α- частиц природных радионуклидов (максимальная энергия 8,78 МэВ у214 Ро) очень мала, и наблюдается лишь на легких ядрах (Li, Ве, В, С, N, Na, Al) с образованием радиоактивных изотопов и свободных нейтронов.

2.1.2 Протонное излучение

Протонное излучение – излучение, образующееся в процессе самопроизвольного распада нейтроннодефицитных атомных ядер или как выходной пучок ионного ускорителя (например, синхрофазоторона).

2.1.3 Нейтронное излучение

Нейтронное излучение - потокнейтронов, которые преобразуют свою энергию в упругих и неупругих взаимодействиях с ядрамиатомов. При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма-квантов (гамма-излучения). При упругих взаимодействиях возможна обычная ионизация вещества.

Источниками нейтронного излучения являются: спонтанно делящиеся радионуклиды; специально изготовленные радионуклидные источники нейтронов; ускорители электронов, протонов, ионов; ядерные реакторы; космическое излучение.

С точки зрения биологического Нейтроны образуются в ядерных реакциях (в ядерных реакторах и в других промышленных и лабораторных установках, а также при ядерных взрывах).

Нейтроны не обладают электрическим зарядом. Условно нейтроны в зависимости от кинетической энергии разделяются на быстрые (до 10 МэВ), сверхбыстрые, промежуточные, медленные и тепловые. Нейтронное излучение обладает большой проникающей способностью. Медленные и тепловые нейтроны вступают в ядерные реакции, в результате могут образовываться стабильные или радиоактивные изотопы.

Свободный нейтрон - это нестабильная, электрически нейтральная частица со следующими

свойствами:

Заряд (e - заряд электрона)

qn = (-0,4 ± 1,1)·10-21 е

939,56533 ± 0,00004 МэВ ,

в атомных единицах

1,00866491578 ± 0,00000000055 а.е.м.

Разность масс нейтрона и протона

mn - mp = 1,2933318 ± 0,0000005МэВ ,

в атомных единицах

0,0013884489 ± 0,0000000006 а.е.м.

Время жизни

tn = 885,4 ± 0,9stat ± 0,4syst с

Магнитный момент

mn = -1,9130427 ± 0,0000005 mN

Электрический дипольный момент

dn < 0,63·10-25 e ·см (CL=90%)

Электрическая поляризуемость

an = (

)·10-3 Фм 3

Эти свойства нейтрона позволяют использовать его, с одной стороны, как объект, который изучается и, с другой стороны, как инструмент, при помощи которого ведутся исследования. В первом случае исследуются уникальные свойства нейтрона, что является актуальным и дает возможность наиболее надежно и точно определить фундаментальные параметры электрослабого взаимодействия и, тем самым либо подтвердить, либо опровергнуть Стандартную модель. Наличие магнитного момента у нейтрона уже свидетельствует о его сложной структуре, т.е. его "неэлементарности". Во втором случае взаимодействие неполяризованных и поляризованных нейтронов разных энергий с ядрами позволяет их использовать в физике ядра и элементарных частиц. Изучение эффектов нарушения пространственной четности и инвариантности относительно обращения времени в различных процессах - от нейтронной оптики до деления ядер нейтронами - это далеко не полный перечень наиболее актуальных сейчас направлений исследований.

Тот факт, что реакторные нейтроны тепловых энергий имеют длины волн, сравнимые с межатомными расстояниями в веществе, делает их незаменимым инструментом для исследования конденсированных сред. Взаимодействие нейтронов с атомами является сравнительно слабым, что позволяет нейтронам достаточно глубоко проникать в вещество - в этом их существенное преимущество по сравнению с рентгеновскими и γ - лучами, а также пучками заряженных частиц. из-за наличия массы нейтроны при том же импульсе (следовательно, при той же длине волны) обладают значительно меньшей энергией, чем рентгеновские иγ - лучи, и эта энергия оказывается сравнимой с энергией тепловых колебаний атомов и молекул в веществе, что дает возможность изучать не только усредненную статическую атомную структуру вещества, но и динамические процессы, в нем происходящие. Наличие магнитного момента у нейтронов позволяет использовать их для изучения магнитной структуры и магнитных возбуждений вещества, что очень важно для понимания свойств и природы магнетизма материалов.

Рассеяние нейтронов атомами обусловлено, в основном, ядерными силами, следовательно сечения их когерентного рассеяния никак не связаны с атомным номером (в отличие от рентгеновских и γ -лучей). Поэтому облучение материалов нейтронами позволяет различать положения атомов легких (водород, кислород и др.) элементов, идентификация которых почти невозможна с использованием рентгеновских иγ - лучей. По этой причине нейтроны успешно применяются при изучении биологических объектов, в материаловедении, в медицине и др. областях. Кроме того, различие в сечениях рассеяния нейтронов у разных изотопов позволяет не только отличать в материале элементы с близкими атомными номерами, но и исследовать их изотопный состав. Наличие изотопов с отрицательной амплитудой когерентного рассеяния дает уникальную возможность контрастирования исследуемых сред, что также очень часто используют в биологии и медицине.

Когерентное рассеяние - рассеяние излучения с сохранением частоты и с фазой, отличающейся наπ от фазы первичного излучения. Рассеянная волна может интерферировать с падающей волной или другими когерентно рассеянными волнами.

Ранее люди, чтобы объяснить то, что они не понимают, придумывали различные фантастические вещи - мифы, богов, религию, волшебных существ. И хотя в эти суеверия всё ещё верит большое количество людей, сейчас нам известно, что у всего есть своё объяснение. Одной из наиболее интересных, таинственных и удивительных тем является излучение. Что оно собой представляет? Какие его виды существуют? Что такое излучение в физике? Как оно поглощается? Можно ли защититься от излучения?

Общая информация

Итак, выделяют следующие виды излучений: волновое движение среды, корпускулярное и электромагнитное. Наибольшее внимание будет уделено последнему. Относительно волнового движения среды можно сказать, что оно возникает как результат механического движения определённого объекта, что вызывает последовательное разрежение или сжатие среды. В качестве примера можно привести инфразвук или ультразвук. Корпускулярное излучение - это поток атомных частиц, таких как электроны, позитроны, протоны, нейтроны, альфа, что сопровождается естественным и искусственным распадом ядер. Об этих двух пока и поговорим.

Влияние

Рассмотрим солнечное излучение. Это мощный оздоровительный и профилактический фактор. Совокупность сопутствующих физиологических и биохимических реакций, что протекают при участии света, назвали фотобиологическими процессами. Они берут участие в синтезе биологически важных соединений, служат для получения информации и ориентации в пространстве (зрение), а также могут вызывать вредные последствия, как то появление вредных мутаций, разрушение витаминов, ферментов, белков.

Об электромагнитном излучении

В дальнейшем статья будет посвящена исключительно нему. Что такое излучение в физике делает, как влияет на нас? ЭМИ представляет собой электромагнитные волны, что испускаются заряженными молекулами, атомами, частицами. В качестве крупных источников могут выступать антенны или другие излучающие системы. Длина волны излучения (частота колебания) вместе с источников оказывает решающее значение. Так, в зависимости от этих параметров выделяют гамма, рентгеновское, оптическое излучение. Последнее делится на целый ряд других подвидов. Так, это инфракрасное, ультрафиолетовое, радиоизлучение, а также свет. Диапазон находится в пределах до 10 -13 . Гамма-излучение генерируют возбуждённые атомные ядра. Рентгеновские лучи можно получить при торможении ускоренных электронов, а также при их переходе не свободные уровни. Радиоволны оставляют свой след во время движения по проводникам излучающих систем (например, антенн) переменных электрических токов.

Об ультрафиолетовом излучении

В биологическом отношении наиболее активными являются УФ-лучи. При попадании на кожу они могут вызывать местные изменения тканевых и клеточных белков. Кроме этого, фиксируется воздействие на рецепторы кожи. Оно рефлекторным путём влияет на целый организм. Поскольку это неспецифический стимулятор физиологических функций, то он оказывает благоприятное влияние на иммунную систему организма, а также на минеральный, белковый, углеводный и жировой обмен. Всё это проявляется в виде общеоздоровительного, тонизирующего и профилактического действия солнечного излучения. Следует упомянуть и об отдельных специфических свойствах, что есть у определённого диапазона волн. Так, влияние излучений на человека при длине от 320 до 400 нанометров способствует эритемно-загарному действию. При диапазоне от 275 до 320 нм фиксируются слабо бактерицидный и антирахитический эффекты. А вот ультрафиолетовое излучение от 180 до 275 нм повреждает биологическую ткань. Поэтому, следует соблюдать осторожность. Длительное прямое солнечное излучение даже в безопасном спектре может привести к выраженной эритеме с отеками кожного покрова и существенному ухудшению состояния здоровья. Вплоть до повышения вероятности развития рака кожи.

Реакция на солнечный свет

В первую очередь следует упомянуть инфракрасное излучение. На организм оно оказывает тепловое воздействие, что зависит от степени поглощения лучей кожей. Для характеристики его влияния используется слово «ожог». Видимый спектр влияет на зрительный анализатор и функциональное состояние центральной нервной системы. А посредством ЦНС и на все системы и органы человека. Следует отметить, что на нас оказывает влияние не только степень освещенности, но и цветовая гамма солнечного света, то есть, весь спектр излучения. Так, от длины волны зависит цветоощущение и оказывается влияние на нашу эмоциональную деятельность, а также функционирование различных систем организма.

Красный цвет возбуждает психику, усиливает эмоции и дарит ощущение тепла. Но он быстро утомляет, способствует напряжению мускулатуры, учащению дыхания и повышению артериального давления. Оранжевый цвет вызывает ощущение благополучия и веселья, желтый поднимает настроение и стимулирует нервную систему и зрение. Зелёный успокаивает, полезен во время бессонницы, при переутомлении, повышает общий тонус организма. Фиолетовый цвет оказывает расслабляющее влияние на психику. Голубой успокаивает нервную систему и поддерживает мышцы в тонусе.

Небольшое отступление

Почему рассматривая, что такое излучение в физике, мы говорим в большей степени про ЭМИ? Дело в том, что именно его в большинстве случаев и подразумевают, когда обращаются к теме. То же корпускулярное излучение и волновое движение среды является на порядок менее масштабным и известным. Очень часто, когда говорят про виды излучений, то подразумевают исключительно те, на которые делится ЭМИ, что в корне не верно. Ведь говоря о том, что такое излучение в физике, следует уделять внимание всем аспектам. Но одновременно делается упор именно на наиболее важных моментах.

Об источниках излучения

Продолжаем рассматривать электромагнитное излучение. Мы знаем, что оно собой представляет волны, что возникают при возмущении электрического или магнитного поля. Этот процесс современной физикой трактуется с точки зрения теории корпускулярно-волнового дуализма. Так признаётся, что минимальная порция ЭМИ - это квант. Но вместе с этим считается, что у него есть и частотно-волновые свойства, от которых зависят основные характеристики. Для улучшения возможностей классификации источников выделяют разные спектры излучения частот ЭМИ. Так это:

  1. Жесткое излучение (ионизированное);
  2. Оптическое (видимое глазом);
  3. Тепловое (оно же инфракрасное);
  4. Радиочастотное.

Часть из них уже была рассмотрена. Каждый спектр излучения обладает своими уникальными характеристиками.

Природа источников

Зависимо от своего происхождения, электромагнитные волны могут возникать в двух случаях:

  1. Когда наблюдается возмущение искусственного происхождения.
  2. Регистрация излучения, идущего от естественного источника.

Что можно сказать о первых? Искусственные источники чаще всего представляют собой побочное явление, что возникает вследствие работы различных электрических приборов и механизмов. Излучение естественного происхождения генерирует магнитное поле Земли, электропроцессы в атмосфере планеты, ядерный синтез в недрах солнца. От уровня мощности источника зависит степень напряженности электромагнитного поля. Условно, излучение, что регистрируется, разделяют на низкоуровневое и высокоуровневое. В качестве первых можно привести:

  1. Практически все устройства, оборудованные ЭЛТ дисплеем (как, пример, компьютер).
  2. Различная бытовая техника, начиная от климатических систем и заканчивая утюгами;
  3. Инженерные системы, что обеспечивают подачу электроэнергии к разным объектам. В качестве примера можно привести кабель электропередач, розетки, электросчетчики.

Высокоуровневым электромагнитным излучением обладают:

  1. Линии электропередачи.
  2. Весь электротранспорт и его инфраструктура.
  3. Радио- и телевышки, а также станции мобильной и передвижной связи.
  4. Лифты и иное подъемное оборудование, где применяются электромеханические силовые установки.
  5. Приборы преобразования напряжения в сети (волны, исходящие от распределяющей подстанции или трансформатора).

Отдельно выделяют специальное оборудование, что используется в медицине и испускает жесткое излучение. В качестве примера можно привести МРТ, рентгеновские аппараты и тому подобное.

Влияние электромагнитного излучения на человека

В ходе многочисленных исследований ученые пришли к печальному выводу - длительное влияние ЭМИ способствует настоящему взрыву болезней. При этом многие нарушение происходят на генетическом уровне. Поэтому актуальной является защита от электромагнитного излучения. Это происходит из-за того, что ЭМИ обладает высоким уровнем биологической активности. При этом результат влияния зависит от:

  1. Характера излучения.
  2. Продолжительности и интенсивности влияния.

Специфические моменты влияния

Всё зависит от локализации. Поглощение излучения может быть местным или общим. В качестве примера второго случая можно привести эффект, что оказывают линии электропередачи. В качестве примера местного воздействия можно привести электромагнитные волны, что испускают электронные часы или мобильный телефон. Следует упомянуть и о термальном воздействии. За счет вибрации молекул энергия поля преобразуется в тепло. По этому принципу работают СВЧ излучатели, что используются для нагревания различных веществ. Следует отметить, что при влиянии на человека, термальный эффект всегда является негативным, и даже пагубным. Следует отметить, что мы постоянно облучаемся. На производстве, дома, перемещаясь по городу. Со временем негативный эффект только усиливается. Поэтому, все актуальнее становится защита от электромагнитного излучения.

Как же можно обезопасить себя?

Первоначально необходимо знать, с чем приходится иметь дело. В этом поможет специальный прибор для измерения излучения. Он позволит оценить ситуацию с безопасностью. На производстве для защиты используются поглощающие экраны. Но, увы, на использование в домашних условиях они не рассчитаны. В качестве начала можно соблюдать три рекомендации:

  1. Следует пребывать на безопасном расстоянии от устройств. Для ЛЭП, теле- и радиовышек это как минимум 25 метров. С ЭЛТ мониторами и телевизорами достаточно тридцати сантиметров. Электронные часы должны быть не ближе 5 см. А радио и сотовые телефоны не рекомендуется подносить ближе, чем на 2,5 сантиметра. Подобрать место можно с помощью специального прибора - флюксметра. Допустимая доза излучения, фиксируемая ним, не должна превышать 0,2мкТл.
  2. Старайтесь сократить время, когда приходится облучаться.
  3. Всегда следует выключать неиспользуемые электроприборы. Ведь даже будучи неактивными, они продолжают испускать ЭМИ.

О тихом убийце

И завершим статью важной, хотя и довольно слабо известной в широких кругах темой - радиационным излучением. На протяжении всей своей жизни, развития и существования, человек облучался естественным природным фоном. Естественное радиационное излучение может быть условно поделено на внешнее и внутреннее облучение. К первому относятся космическое излучение, солнечная радиация, влияние земной коры и воздуха. Даже строительные материалы, из которых создаются дома и сооружения, генерируют определённый фон.

Радиационное излучение обладает значительной проникающей силой, поэтому остановить его проблематично. Так, чтобы полностью изолировать лучи, необходимо укрыться за стеной из свинца, толщиной в 80 сантиметров. Внутреннее облучение возникает в тех случаях, когда естественные радиоактивные вещества попадают внутрь организма вместе с продуктами питания, воздухом, водой. В земных недрах можно найти радон, торон, уран, торий, рубидий, радий. Все они поглощаются растениями, могут быть в воде - и при употреблении пищевых продуктов попадают в наш организм.

Атомная энергия достаточно активно используется с мирными целями, например, в работе рентгеновского аппарата, ускорительной установки, что позволило распространять ионизирующие излучения в народном хозяйстве. Учитывая то, что человек ежедневно подвергается его воздействию, необходимо узнать, какими могу быт последствия опасного контакта и как обезопасить себя.

Основная характеристика

Ионизирующее излучение – это разновидность энергии лучистой, попадающей в конкретную среду, вызывая процесс ионизации в организме. Подобная характеристика ионизирующих излучений подходит для рентгеновских лучей, радиоактивных и высоких энергий, а также многое другое.

Ионизирующее излучение оказывает непосредственное влияние на организм человека. Несмотря на то что ионизирующее излучение может применяться в медицине, оно чрезвычайно опасно, о чем свидетельствует его характеристика и свойства.

Известными разновидностями являются облучения радиоактивные, которые появляются по причине произвольного расщепления атомного ядра, что вызывает трансформацию химических, физических свойств. Вещества, которые могут распадаться, считаются радиоактивными.

Они бывают искусственными (семьсот элементов), естественными (пятьдесят элементов) – торий, уран, радий. Следует отметить, что у них имеются канцерогенные свойства, выделяются токсины в результате воздействия на человека могут стать причиной рака, лучевой болезни.

Необходимо отметить следующие виды ионизирующих излучений, которые оказывают воздействие на организм человека:

Альфа

Считаются положительно заряженными ионами гелия, которые появляются в случае распада ядер тяжелых элементов. Защита от ионизирующих излучений осуществляется с помощью бумажного листка, ткани.

Бета

– поток отрицательно заряженных электронов, которые появляются в случае распада радиоактивных элементов: искусственных, естественных. Поражающий фактор намного выше, чем у предыдущего вида. В качестве защиты понадобится толстый экран, более прочный. К таким излучениям относятся позитроны.

Гамма

– жесткое электромагнитное колебание, появляющееся впоследствии распада ядер радиоактивных веществ. Наблюдается высокий проникающий фактор, является самым опасным излучением из трех перечисленных для организма человека. Чтобы экранировать лучи, нужно воспользоваться специальными устройствами. Для этого понадобятся хорошие и прочные материалы: вода, свинец и бетон.

Рентгеновское

Ионизирующее излучение формируется в процессе работы с трубкой, сложными установками. Характеристика напоминает гамма лучи. Отличие заключается в происхождении, длине волны. Присутствует проникающий фактор.

Нейтронное

Излучение нейтронное – это поток незаряженных нейтронов, которые входя в состав ядер, кроме водорода. В результате облучения, вещества получают порцию радиоактивности. Имеется самый большой проникающий фактор. Все эти виды ионизирующих излучений очень опасны.

Главные источники излучения

Источники ионизирующего излучения бывают искусственными, естественными. В основном организм человека получает радиацию от естественных источников, к ним относятся:

  • земная радиация;
  • облучение внутреннее.

Что касается источников земной радиации, многие из них канцерогенные. К ним относят:

  • уран;
  • калий;
  • торий;
  • полоний;
  • свинец;
  • рубидий;
  • радон.

Опасность состоит в том, что они канцерогенные. Радон – газ, у которого отсутствует запах, цвет, вкус. Он тяжелее воздуха в семь с половиной раз. Продукты его распада намного опаснее, чем газ, поэтому воздействие на организм человека крайне трагично.

К искусственным источникам относятся:

  • энергетика ядерная;
  • фабрики обогатительные;
  • рудники урановые;
  • могильники с отходами радиоактивными;
  • рентгеновские аппараты;
  • взрыв ядерный;
  • научные лаборатории;
  • радионуклиды, которые активно используют в современной медицине;
  • осветительные устройства;
  • компьютеры и телефоны;
  • бытовая техника.

При наличии указанных источников поблизости, существует фактор поглощенной дозы ионизирующего излучения, единица которого зависит от продолжительности воздействия на организм человека.

Эксплуатация источников ионизирующего излучения происходит ежедневно, например: когда вы работаете за компьютером, смотрите телепередачу или говорите по мобильному телефону, смартфону. Все перечисленные источники в какой-то мере канцерогенные, они способны вызвать тяжелые и смертельные заболевания.

Размещение источников ионизирующего излучения включает в себя перечень важных, ответственных работ, связанных с разработкой проекта по расположению облучающих установок. Во всех источниках излучения содержится определенная единица радиации, каждая из которых оказывает определенное воздействие на организм человека. Сюда можно отнести манипуляции, проводимые для монтажа, введения данных установок в эксплуатацию.

Следует указать, что обязательно проводится утилизация источников ионизирующего излучения.

Это процесс, который помогает вывести из эксплуатации генерирующие источники. Данная процедура состоит из технических, административных мер, которые направлены на обеспечение безопасности персонала, населения, а также присутствует фактор защиты окружающей среды. Канцерогенные источники и оборудование являются огромной опасностью для организма человека, поэтому их нужно утилизировать.

Особенности регистрации излучений

Характеристика ионизирующих излучений показывает, что они невидимые, у них нет запаха и цвета, поэтому их сложно заметить.

Для этого существуют методы регистрации ионизирующих излучений. Что касается способов обнаружения, измерения, то все осуществляется косвенно, за основу берется какое-либо свойство.

Используют такие методы обнаружения ионизирующих излучений:

  • Физический: ионизационный, пропорциональный счетчик, газоразрядный счетчик Гейгера-Мюллера, камера ионизационная, счетчик полупроводниковый.
  • Калориметрический метод обнаружения: биологический, клинический, фотографический, гематологический, цитогенетический.
  • Люминесцентный: счетчики флуоресцентный и сцинтилляционный.
  • Биофизический способ: радиометрия, расчетный.

Дозиметрия ионизирующих излучений осуществляется с помощью приборов, они способны определить дозу излучения. Прибор включает в себя три основные части – счетчик импульса, датчик, источник питания. Дозиметрия излучений возможна благодаря дозиметру, радиометру.

Влияния на человека

Действие ионизирующего излучения на организм человека особенно опасно. Возможны такие последствия :

  • имеется фактор очень глубокого биологического изменения;
  • присутствует накопительный эффект единицы поглощенной радиации;
  • эффект проявляется через время, так как отмечается скрытый период;
  • у всех внутренних органов, систем разная чувствительность к единице поглощенной радиации;
  • радиация влияет на все потомство;
  • эффект зависит от единицы поглощенной радиации, дозы облучения, продолжительности.

Несмотря на использование радиационных приборов в медицине, их действие может быть пагубным. Биологическое действие ионизирующих излучений в процессе равномерного облучения тела, в расчете 100% дозы, происходит следующее:

  • костный мозг – единица поглощенной радиации 12%;
  • легкие – не менее 12%;
  • кости – 3%;
  • семенники, яичники – поглощенной дозы ионизирующего излучения около 25%;
  • железа щитовидная – единица поглощенной дозы около 3%;
  • молочные железы – приблизительно 15%;
  • остальные ткани – единица поглощенной дозы облучения составляет 30%.

В результате могут возникать различные заболевания вплоть до онкологии, паралича и лучевой болезни. Чрезвычайно опасно для детей и беременных, так как происходит аномальное развитие органов и тканей. Токсины, радиация – источники опасных заболеваний.



Рассказать друзьям