Как сделать самодельный телескоп своими руками — схема и инструкции. Как сделать самодельный телескоп рефлектор Делаем самодельный телескоп

💖 Нравится? Поделись с друзьями ссылкой

В моем далеком уже детстве попалась мне хрестоматия по астрономии с тех ещё более далёких лет, которых я не застал, когда эта астрономия была предметом в школе. Читал её до дыр и мечтал о телескопе, чтобы хоть одним глазком посмотреть в ночное небо, но не сложилось. Рос в деревне, где ни знаний, ни наставника для этого не было. Так и ушло это увлечение. Но с возрастом обнаружил, что желание то осталось. Прошерстил интернет, оказывается людей, увлеченных телескопостроением и собирающих телескопы, да ещё какие, и с нуля - масса. Из профильных форумов набрался информации, теории, и решил построить небольшой телескоп для начинающего.

Спроси меня ранее, что такое телескоп, сказал бы - труба, с одной стороны смотришь, вторую направляешь на предмет наблюдения, одним словом подзорная труба, но побольше размером. Но оказывается для телескопостроения используют в основном другую конструкцию, которую ещё называют ньютоновским телескопом. При массе достоинств она имеет не так много недостатков, по сравнению с другими конструкциями телескопов. Принцип его работы понятен из рисунка - свет далёких планет падает на зеркало, имеющее в идеале параболическую форму, далее свет фокусируется и выносится за пределы трубы с помощью второго, установленного под 45 градусами по отношению к оси, по диагонали, зеркала, которое так и называют - диагональное. Далее свет попадает в окуляр и в глаз наблюдающего.


Телескоп это точный оптический прибор, поэтому при изготовлении необходимо соблюдать аккуратность. Перед этим необходимо произвести расчёты конструкции и мест установки элементов. В интернете существуют онлайн калькуляторы расчёта телескопов и грех этим не воспользоваться, но азы оптики знать тоже не помешает. Мне понравился калькулятор.

Для изготовления телескопа в принципе ничего сверхестественного не надо, я думаю что у любого хозяйственного человека в подсобке есть небольшой токарный станочек хотя бы по дереву, а то и по металлу. А если есть ещё и фрезеровочный станок - завидую белой завистью. И уж совсем не редкость теперь домашние лазерные станочки с ЧПУ для вырезания по фанере и 3D печатающий станок. К сожалению, у меня в хозяйстве из всего выше перечисленного ничего нет, окромя молотка, дрели, ножовки, электролобзика, тисков и мелкого ручного инструмента, плюс куча банок, ванночек с россыпью трубок, болтиков, гаечек, шайбочек и прочего гаражного металлолома, который вроде и выкинуть надо, но жалко.

При выборе размера зеркала (диаметр 114мм) мне кажется выбрал золотую середину, с одной стороны такой размер ходовой и уже не совсем маленький, с другой стороны стоимость не такая огромная, чтобы в случае фатальной неудачи пострадать финансово. Тем более главная задача была пощупать, разобраться и научиться на ошибках. Хотя, как говорят на всех форумах, самый хороший телескоп это тот, в которой наблюдают.

И так, для своего первого, надеюсь не последнего, телескопа я выбрал сферическое главное зеркало с диаметром 114мм и алюминиевым покрытием, фокусом 900мм и диагональным зеркалом, имеющего форму овала с малой диагональю в один дюйм. При таких размерах зеркала и фокусного расстояния различия форм сферы и параболы ничтожны, поэтому можно использовать недорогое сферическое зеркало.

Внутренний диаметр трубы по книге Навашина, Телескоп астронома-любителя (1979), для такого зеркала должен быть не менее 130мм. Конечно, лучше побольше. Трубу можно делать и самому из бумаги и эпоксидки, или из жести, но грех не воспользоваться готовым дешёвым материалом - в этот раз метровая канализационная PVH труба DN160, купленная за 4.46 евро в строймагазине. Толщина стенок 4мм мне показалась достаточной, с точки зрения прочности. Пилится и обрабатывается легко. Хотя есть и с 6мм толщины стенкой, но мне показалась тяжеловатой. Для того, чтобы распилить, пришлось на неё брутально сесть, никаких остаточных деформаций на глаз не наблюдается. Конечно, эстеты скажут фи, как можно в трубу для овна звёзды смотреть. Но для настоящих рукопоповцев это не преграда.

Вот она, красавица


Зная параметры зеркала, можно делать расчёт телескопа на вышеупомянутом калькуляторе. Сразу не всё понятно, но по мере создания всё становится на свои места, главное, как всегда, не зацикливаться на теории, а совмещать её с практикой.

С чего начать? Я начал, по моему мнению, с самого сложного - узла крепления диагонального зеркала. Как уже писал, изготовление телескопа требует точности, но которая не отменяет наличие возможности регулировки положения того же диагонального зеркала. Без тонкой регулировки - никак. Схем крепления диагонального зеркала несколько, на одной стойке, на трёх растяжках, на четырёх и прочие. У каждого есть свои плюсы и минусы. Так как размеры, вес моего диагонального зеркала, а значит и его крепления, скажем прямо, малы, я выбрал трёхлучевую систему крепления. В качестве растяжек использовал найденный регулировочный лист нержавейки толщиной 0.2мм. В качестве арматуры использовал медные муфты под 22мм трубу с наружным диаметром 24мм, чуть меньшим размера моей диагоналки, а также болт М5 и болты М3. Центральный болт М5 имеет конусную головку, которая просунутая в шайбу М8 работает как шаровая опора, и позволяет наклонять регулировочными болтами М3 диагональное зеркало при регулировке. Сначала припаял шайбу, потом обрезал грубо под углом и подогнал под 45 градусов на листе грубой наждачки. На обе детали (одна залита полностью, вторая 5мм через отверстие) ушло меньше 14мл пятиминутного двухкомпонентного эпоксидного клея Момент. Так как размеры узла малы, очень трудно всё разместить и чтобы всё это нормально работало, плечо регулировки маловато. Но получилось очень и очень не плохо, диагональное зеркало регулируется достаточно плавно. Болты с гайками макал в горячий воск, чтобы не прилипла смола при заливке. Только после изготовки этого узла этого заказал зеркала. Само диагональное зеркало клеил на двухсторонний вспененный скотч.


Под спойлером некоторые фото этого процесса.

Узел диагонального зеркала















Манипуляции с трубой были следующие: отпилил лишнее, ну и так как труба имеет раструб большего диаметра, использовал его для усиления района крепления растяжек диагоналки. Вырезал кольцо и на эпоксидку посадил на трубу. Хотя жесткость трубы и достаточна, на мой взгляд лишним не будет. Далее по мере поступления комплектующих сверлил и вырезал в ней отверстия, снаружи обклеил декоративной плёнкой. Очень важный момент - окраска трубы изнутри. Она должна быть такая, чтобы как можно больше поглощала свет. К сожалению продающиеся краски, даже матовые, совсем не подходят. Есть спец. краски для этого, но они дорогие. Я сделал так - по совету из одного форума покрыл изнутри краской из баллончика, потом засыпал в трубу ржаной муки, закрыл два конца плёнкой, хорошо покрутил - потряс, вытряхнул то, что не прилипло и опять задул краской. Получилось очень прилично, смотришь как в печную трубу.


Крепление главного зеркала делал из двух дисков фанеры толщиной 12мм. Один с диаметром под трубу 152мм, второй с диаметром главного зеркала 114мм. Зеркало ложится на три кружка приклеенных к диску кожи. Главное, чтобы зеркало не было жёстко зажато, я прикрутил уголки, обматал их изолентой. Само зеркало удерживается штрапсами. Два диска имеют возможность двигаться друг относительно друга для регулировки основного зеркала с помощью трёх регулировочных болта М6 с пружинами и тремя стопорными болтами, тоже М6. По правилам в дисках должны быть отверстия, для охлаждения зеркала. Но так как у меня телескоп дома храниться не будет (будет в гараже), то и температурное выравнивание не актуально. Второй диск в таком случае заодно играет роль пылезащитной задней крышки.

На фото крепление уже с зеркалом, но без заднего диска.


Фото самого процесса изготовления.

Крепление основного зеркала



В качестве опоры использовал монтировку Добсона. В интернете масса различных модификаций, в зависимости от наличия инструмента и материалов. Состоит из трёх частей, первая в которой зажимается сама труба телескопа -


Оранжевые круги это отпиленные кругляки трубы, в которые вставлены круги из 18мм фанеры и залитые эпоксидной смолой. Получилась составная часть подшипника скольжения.


Вторая - куда ставится первая, позволяет двигаться трубе телескопа по вертикали. И третья - круг с осью и ножками, на который ставится вторая деталь, позволяющая вращать её.


В местах опирания деталей прикручены кусочки тефлона, позволяющие легко и без рывков перемещать детали одну относительно другой.

После сборки и примитивной настройки прошли первые испытания.


Сразу же появилась проблема. Я пренебрёг советами умных людей не сверлить отверстия под крепления основного зеркала без испытания. Хорошо ещё, что пилил трубу с запасом. Фокусное расстояние зеркала оказалось не 900мм, а около 930мм. Пришлось сверлить новые отверстия (старые заклеены изолентой) и отодвигать дальше основное зеркало. Просто не смог поймать в фокус ничего, приходилось поднимать сам окуляр из фокусёра. Минус этого решения - крепёжные и регулировочные болты с торца не прячутся в трубе. а торчат. В принципе не трагедия.

Снимал с руки мобильником. На тот момент был только один 6мм окуляр, степень увеличения это отношение фокусных расстояний зеркала и окуляра. В данном случае получается 930/6=155 раз.
Испытание номер 1. До объекта 1км.




Номер два. 3км.



Главный результат достигнут - телескоп работает. Понятно, что для наблюдения планет и Луны нужна более качественная юстировка. Для неё был заказан коллиматор, ну и ещё один 20мм окуляр, и фильтр для Луны в полнолуние. После этого все элементы с трубы были сняты и поставлены обратно уже тщательней, прочнее и точнее.

Ну и наконец цель всего этого - наблюдения. К сожалению звёздных ночей в ноябре практически не было. Из объектов, что успел понаблюдать всего два, Луна и Юпитер. Луна выглядит не диском, а величаво проплывающим ландшафтом. С 6мм окуляром вмещается только её часть. А Юпитер с его спутниками просто сказка, принимая во внимание расстояние, которое нас отделяет. Выглядит он как полосатый шарик со звёздочками-спутниками на линии. Цвета этих линий различить не получается, тут нужен телескоп с другим зеркалом. Но всё равно - завораживает. Для фотографирования объектов нужно как дополнительное оборудование, так и другой тип телескопа - светосильный с малым фокусным расстоянием. Поэтому здесь только фото с просторов интернета, точно иллюстрирующая то, что видно с таким телескопом.

К сожалению для наблюдения Сатурна придётся ждать весны, а пока в ближайшем будущем Марс, Венера.

Понятно, что зеркала далеко не все расходы на постройку. Вот далее список того, что было куплено кроме этого.

Времена, когда открытие в науке мог сделать любой желающий, почти полностью остались в прошлом. Всё, что может открыть любитель в химии, физике, биологии — давно уже известно, переписано и посчитано. Астрономия — исключение из этого правила. Ведь это наука о космосе, пространстве неописуемо огромном, в котором невозможно изучить всё, и даже недалеко от Земли ещё существуют неоткрытые объекты. Однако, для того чтобы заниматься астрономией, необходим — дорогой оптический прибор. Самодельный телескоп своими руками — простая или сложная задача?

Может быть, поможет бинокль?

Начинающему астроному, который только-только начинает присматриваться к звёздному небу, рановато делать телескоп своими руками. Схема для него может показаться слишком сложной. На первых порах можно обойтись и обыкновенным биноклем.

Это не такой уж и несерьёзный прибор, как может показаться, и есть астрономы, которые продолжают пользоваться , даже став знаменитыми: так, японский астроном Хиякутаке, первооткрыватель кометы, названной его именем, прославился именно своим пристрастием к мощным биноклям.

Для первых шагов начинающего астронома — для того, чтобы понять «моё это, или не моё» — подойдет любой мощный морской бинокль. Чем больше , тем лучше. В бинокль можно наблюдать Луну (в достаточно внушительных подробностях), разглядеть диски ближних планет, таких, как Венера, Марс или Юпитер, рассмотреть кометы и двойные звёзды.

Нет, всё-таки телескоп!

Если Вы загорелись астрономией всерьёз и всё-таки хотите сделать телескоп своими руками, схема, которую вы выберете, может принадлежать к одной из двух основных категорий: рефракторы (в них используются только линзы) и рефлекторы (используются линзы и зеркала).

Для начинающих рекомендуются рефракторы: это менее мощные, но более простые в изготовлении телескопы. Потом, когда Вы наберетесь опыта в изготовлении рефракторов, сможете попробовать собрать рефлектор — мощный телескоп своими руками.

Чем отличается мощный телескоп?

Что за глупый вопрос — спросите вы. Конечно — увеличением! И будете неправы. Дело в том, что не все небесные тела в принципе возможно увеличить. Например, звёзды вы не увеличите никак: они расположены на расстоянии многих парсек, и с такого расстояния превращаются практически в точки. Никакого приближения не хватит, чтобы разглядеть диск далёкой звезды. «Увеличить» можно только объекты Солнечной системы.

А звёзды, телескоп, прежде всего, делает ярче. И за это его свойство отвечает его первая по важности характеристика — диаметр объектива. Во сколько раз объектив шире, чем зрачок человеческого глаза — во столько раз ярче становятся все светила. Если Вы хотите сделать мощный телескоп своими руками — Вам придется подыскивать, прежде всего, очень большую в диаметре линзу под объектив.

Простейшая схема телескопа-рефрактора

В наиболее простом своём виде телескоп-рефрактор состоит из двух выпуклых (увеличивающих) линз. Первая — большая, направленная на небо — называется объективом, а вторая — маленькая, в которую смотрит астроном, называется окуляром. Самодельный телескоп своими руками следует делать именно по этой схеме, если для Вас это первый опыт.

Объектив телескопа должен иметь оптическую силу в одну диоптрию и как можно больший диаметр. Найти подобную линзу можно, например, в мастерской по изготовлению очков, где из них вырезают стёклышки для очков различной формы. Лучше, если линза будет двояковыпуклой. Если не найдётся двояковыпуклой — можно использовать пару плосковыпуклых линз по полдиоптрии, расположенных одна за другой, выпуклостями в разные стороны, на расстоянии 3 сантиметра друг от друга.

В качестве же окуляра лучше всего сойдёт любая сильная увеличительная линза, в идеале — лупа в окуляре на ручке, какие выпускались раньше. Сойдёт и окуляр от любого оптического прибора заводского изготовления (бинокля, геодезического прибора).

Чтобы узнать, какое увеличение будет давать телескоп, замерьте фокусное расстояние окуляра в сантиметрах. Затем поделите 100 см (фокусное расстояние линзы в 1 диоптрию, то есть объектива) на эту цифру, и получите искомое увеличение.

Закрепите линзы в любой прочной трубе (сойдёт картонная, промазанная клеем и покрашенная изнутри самой чёрной краской, что сможете найти). Окуляр должен иметь возможность скользить вперёд-назад в пределах нескольких сантиметров; это нужно для наведения резкости.

Закрепить телескоп следует в деревянном штативе так называемой монтировки Добсона. Чертёж её легко можно найти в любом поисковике. Это самая простая в изготовлении и в то же время надёжная монтировка для телескопа, почти все телескопы-самоделки используют именно её.

Телескоп из очковых стекол

Что нужно для постройки телескопа из очковых стекол. Простейший телескоп-рефрактор.

Для постройки телескопа потребуется очковое стекло силой в 1 диоптрию (фокусным расстоянием 1 м), которое представляет собой мениск (выпукло-вогнутую линзу) диаметром 60 - 80 мм, и может быть приобретено в магазинах по продаже и изготовлению очков. Необходимо обратить внимание на то, что линза должна иметь положительную оптическую силу, т. е. быть "собирающей", в отличие от "рассеивающих" стекол, которые не могут построить действительное изображение объекта. Что такое положительная линза, большинство из нас знает, так как все мы пользовались в детстве увеличительным стеклом для выжигания. При этом лучи Солнца фокусируются на расстоянии от линзы, равном фокусному. Очковое стекло будет служить объективом телескопа. Такой телескоп называется рефрактором от слова "рефракция", т. е. "преломление". В объективе телескопа-рефрактора происходит преломление лучей света, пришедших от объекта наблюдения, в результате чего они собираются в фокальной плоскости, где рассматриваются наблюдателем в окуляр, т. е. в лупу той или иной конструкции. В нашем случае окуляром может служить простое увеличительное стекло фокусным расстоянием 20 - 70 мм, объектив от фотоаппарата, окуляр от бинокля, зрительной трубы, микроскопа и т. д.

Кроме объектива и окуляра потребуются несколько листов ватмана, клей (ПВА, столярный, эпоксидный), небольшое количество толстого и тонкого картона. Для изготовления штатива нужны будут рейки сечением примерно 25х15 мм, 5 мм фанера, обрезки дюймовой доски, несколько мелких шурупов, три длинных и один короткий болты М6 с гайками-барашками, клей.

Если не удастся достать линзу в 1 диоптрию, можно использовать другую, учитывая при этом, что фокусное расстояние объектива будет равно:

F (м) =1 м / оптическая сила в диоптриях.

Например, для линзы в 0,75 диоптрии:

F = 1 м / 0,75 = 1,33 м.

Нужно только учитывать, что слишком длинный телескоп будет неудобен в обращении, а короткофокусный объектив будет давать изображение неудовлетворительного качества. Из этих соображений целесообразно применить очковое стекло фокусом 0,6 - 1,5 м.

Полезный совет: Очковые стекла обычно имеют метку в виде точки около центра, которая указывает оптический центр линзы. Он может значительно отличаться от геометрического центра, это учитывают при изготовлении очков (при обтачивании стекла). Желательно выбрать стекло, в котором оптический центр отличается от геометрического на небольшую величину.


С чего начать? Оправа, труба, окулярный узел.

Начинать лучше всего с изготовления оправы объектива (см. черт., поз. 1), диаметр которой, а, следовательно, и диаметр трубы, будет зависеть от размера приобретенного очкового стекла. Оправой будет служить трубка, склеенная из ватмана в несколько слоев. Внутренний диаметр оправы должен быть равен диаметру нашей линзы, а длина - 70 - 80 мм. Линза фиксируется двумя бумажными или картонными кольцами, которые плотно вставляются внутрь оправы, зажимая с двух сторон стекло. Оправа должна быть достаточно жесткой.

Затем необходимо склеить из нескольких слоев ватмана главную трубу телескопа (поз. 2). Это можно сделать, наматывая листы на уже готовую оправу и обильно промазывая клеем внутреннюю поверхность бумаги. При этом нужно следить, чтобы бумага не перекашивалась. Длина трубы должна быть немного (на 150 - 200 мм) меньше фокусного расстояния объектива. Подвижная трубка (поз. 3) служит для фокусировки, т. е. для совмещения фокальных плоскостей объектива и окуляра. Она должна легко двигаться "на трении", но не болтаться. Ее склеиваем из ватмана аналогично главной трубе нашего телескопа.

Оправу окуляра, конструкция которой будет зависеть от того, что мы применим для этой цели, можно вставить непосредственно в подвижную трубку, но лучше, особенно если диаметр окуляра мал, сделать несложный фокусировочный узел. Основой узла будет служить кольцо из фанеры (выпилить лобзиком и просверлить отверстие) или двух - трех слоев толстого картона. Узел работает "на трении", и конструкция его ясна из чертежа (поз. 4). Поверхность неподвижной трубки окулярного узла можно оклеить бархатом или сукном, для снижения трения, подвижную можно подобрать или выточить металлическую, а можно склеить из нескольких слоев не очень толстой, но плотной, гладкой бумаги. Ей необходимо придать достаточную жесткость.

Передвижением подвижной трубки телескопа грубо совмещаются фокальные плоскости объектива и окуляра (при этом одну и ту же трубу можно использовать с разными объективами), а окулярный узел позволяет добиться точной фокусировки.


Испытание телескопа. Его основные характеристики.

Теперь несколько слов об испытании и настройке телескопа, его основных характеристиках. Прежде всего, скажу об увеличении, с которым мы будем работать. Увеличение телескопа равно фокусному расстоянию объектива, деленному на фокусное расстояние окуляра. Из этого видно, что, применяя разные окуляры, мы можем получать с одним и тем же объективом разные увеличения. Например, для окуляра с фокусным расстоянием 50 мм (нормальный объектив от фотоаппарата):

1000 мм / 50 мм = 20 крат,

а для окуляра от микроскопа с фокусным расстоянием 10 мм:

1000 мм / 10 мм = 100 крат.

Может показаться, что, применяя длиннофокусные стекла и короткофокусные окуляры, можно добиться очень большого увеличения, однако, поэкспериментировав с телескопом из очковых стекол, мы очень скоро убедимся, что это не так. Несовершенство нашего объектива накладывает существенные ограничения. На практике мы сможем использовать построенный инструмент с 20 - 50 кратным увеличением. Этого достаточно для того, чтобы увидеть многое из того, что украшает ночное небо, но недоступно невооруженному глазу, например, яркие туманности, кольцо Сатурна, диск и спутники Юпитера, не говоря уже о захватывающих панорамах Луны.

Итак, наш телескоп готов, клей просох, внутренние поверхности трубы и оправ зачернены тушью, и можно приступить к первым испытаниям. Совместив фокальные плоскости объектива и окуляра, и оперев трубу для устойчивости о подоконник, раму окна или другой предмет, попытаемся "навести на резкость" перемещением фокусировочной трубки с окуляром. Скорее всего, даже при наилучшей фокусировке изображение будет подернуто "дымкой". Это происходит потому, что только центральная часть очкового стекла строит неискаженное изображение. Для строительства телескопов-рефракторов с достаточно большими диаметрами применяют сложные объективы, в которых эти искажения, называемые аберрациями, исправляются. Ничего страшного, закрыв краевые части нашего объектива непрозрачным экраном, мы добьемся хорошего изображения. Такой экран называется диафрагмой (см. черт, поз. 5).Имеет смысл сделать несколько диафрагм - по числу окуляров, так как при малых увеличениях аберрации заметны меньше, а при больших - сильнее. Диафрагма изготовляется в виде кружка из картона с отверстием 10 - 30 мм посредине, красится в черный цвет и вставляется в оправу объектива перед очковым стеклом. При увеличениях 10 - 20 крат можно использовать 30мм диафрагму - это позволит увидеть больше слабых объектов (звезд и туманностей), при наблюдении Луны с увеличением 50 - 100 крат действующее отверстие объектива придется уменьшить до 15 - 10 мм. Во всех случаях увеличение и диаметр диафрагмы нужно будет определять опытным путем.

Здесь мы подошли к другому важнейшему параметру телескопа - диаметру объектива. Этот параметр является основным и определяет такие характеристики, как проницающую силу и разрешающую способность инструмента. Первая характеристика указывает на возможность телескопа показывать слабые объекты и выражается в звездных величинах. Вторая - на способность разделять близко расположенные звезды или детали на дисках планет и выражается в угловых величинах - в секундах и долях секунды дуги. Для примера можно сказать, что угловой размер видимого диска Луны составляет около 30 минут, а человеческий глаз обладает разрешающей способностью 1 - 2 минуты. Наш же телескоп может иметь разрешающую способность около 10 секунд дуги, т.е., по крайней мере, в 6 - 10 раз выше, чем невооруженный глаз. Проницающая сила инструмента пропорциональна квадрату диаметра объектива, и, если принять размер зрачка человеческого глаза равным 7 мм, а диаметр входного отверстия телескопа - 20 мм, то наш простейший рефрактор позволит нам наблюдать звезды и другие светила примерно в 8 раз более слабые, чем невооруженным глазом. Желающих более подробно ознакомиться с этими и другими понятиями геометрической и физической оптики, принципами работы и особенностями различных систем телескопов отсылаем к перечню литературы в конце этой статьи.

Наблюдения с телескопом.

Каждому, вероятно, известно, что важнейший прибор, главное орудие астронома - телескоп. Но в чем основное преимущество телескопа перед невооруженным глазом? Это знают далеко не все.

Принято думать, что главное свойство телескопа - увеличивать изображения небесных светил. Подходя к телескопу, школьники обычно спрашивают: "А во сколько раз он увеличивает?" На самом деле мощность телескопа определяется не даваемым им увеличением, а диаметром объектива. Ведь чем больше диаметр объектива, тем больше его площадь, а значит, и больше количество света, которое объектив собирает. Даже школьный телескоп с диаметром объектива всего 80 мм собирает света примерно в 250 раз больше, чем глаз. Это и понятно: диаметр зрачка (5 мм) в 16 раз меньше диаметра школьного телескопа, а 162=25. Поэтому в школьный телескоп мы увидим звезды, которые в 250 раз слабее видимых невооруженным глазом. Нужно помнить, что звезды даже в самый сильный телескоп кажутся светящимися точками, поэтому к их наблюдениям термин "увеличение" неприменим.

Иное дело - Солнце, Луна, планеты, туманности и другие так называемые протяженные небесные тела. Благодаря сочетанию в оптической системе телескопа объектива и специальной сложной лупы - окуляра можно получить увеличенные изображения этих светил. Посмотрим, как это происходит.

Объектив телескопа - это система линз, задача которой - построить действительное изображение светила. Это изображение, получаемое в главном фокусе объектива, можно принять на экран, сфотографировать, поставив здесь фотопластинку, или же рассматривать в окуляр. Расстояние от объектива или окуляра до главного фокуса называется фокусным расстоянием. Окуляр имеет свое фокусное расстояние, обычно во много раз меньшее, чем объектив. Увеличение телескопа равно отношению фокусных расстояний объектива и окуляра.

Казалось бы, следует добиваться как можно больших увеличений телескопа, чтобы рассмотреть мельчайшие подробности на Луне, Марсе и других планетах. На самом деле возможность рассматривать те или иные мелкие подробности (разрешающая сила телескопа) определяется опять-таки не увеличением. а диаметром объектива. Чтобы узнать, какие наименьшие детали можно различить в данный телескоп, надо 120 разделить на диаметр объектива, выраженный в миллиметрах. Мы получим видимые размеры наименьших различимых деталей в секундах дуги. Напомним, что 1" дуги - 1/3600°. Это угол, под которым видна толщина обычной спички с расстояния 400 м. На расстоянии Луны 1" дуги соответствует линейный размер детали в 2 км, на расстоянии Марса (в период великого противостояния) - в 300 км. Такие детали можно различить в телескоп с объективом в 120 мм и более.

Конечно, большие увеличения позволяют лучше рассматривать мелкие детали поверхности Луны или планет. Но они имеют и отрицательные стороны. При больших увеличениях изображение становится более бледным, менее ясным, так как собранное объективом количество света распределяется на большую площадь изображения. Кроме того, при больших увеличениях соответственно возрастает дрожание изображения, вызванное колебаниями атмосферы, а также искажения, связанные с несовершенством оптики телескопа (аберрации). Поэтому лучше выбрать не наибольшее увеличение, а такое, при котором светило в телескоп видно наиболее четко.

Телескопы бывают различных типов. Любителю астрономии обычно приходится иметь дело с двумя из них: рефрактором и рефлектором. Рефрактор - "преломляющий" - наиболее старый тип телескопа. Его объектив состоит из линз, преломляющих падающие на них лучи.

В СССР для школ выпускаются два типа телескопов-рефракторов. Большая модель (см. рис.) с объективом диаметром 80 мм, фокусным расстоянием 800 мм и тремя окулярами, дающими увеличение в 28, 40 и 80 раз. Телескоп смонтирован на так называемой экваториальной установке, которая позволяет следить за светилом длительное время, поворачивая телескоп вокруг только одной оси - полярной (направленной на Полярную звезду). Наклон полярной оси к горизонту должен быть равен географической широте места, которую определяют по карте. Перпендикулярно полярной оси проходит ось склонений. Поворачивая трубу вокруг обеих осей, мы наводим телескоп на светило, закрепляем зажимными винтами и, следя за светилом в окуляр, медленно с помощью микрометрического ключа поворачиваем телескоп вокруг полярной оси.

Схема самодельного телескопа-рефрактора из очковых стекол:
1 -главная труба, 2 -окулярная трубка, 3 -объектив, А - оправа объектива, 5 - окуляр, 6 -оправа окуляра, 7 - диафрагма.

Малая модель школьного телескопа-рефрактора(МШР) (см. рис.) имеет объектив диаметром 60 мм, фокусное расстояние 600 мм. Окуляры дают увеличение в 30 и 60 раз. В отличие от большой модели малая имеет азимутальную установку. В ней труба телескопа может поворачиваться вокруг двух осей: вертикальной и горизонтальной. Чтобы следить за светилом, телескоп приходится поворачивать одновременно вокруг обеих осей, что очень неудобно (о том, как этого избежать, рассказано в "Справочнике любителя астрономии" П. Г. Куликовского, "Наука", 1961, стр. 246). Ведь суточный путь светила по небу обычно расположен под углом к плоскости горизонта, а этот угол в течение суток меняется. К обоим телескопам прилагаются различные дополнительные приспособления: солнечный экран, зенит-призма, темные стекла и светофильтры и др. Часто любитель астрономии не имеет возможности приобрести фабричный телескоп. В этом случае мы можем предложить два варианта самодельного телескопа: для начинающих любителей - рефрактор из очковых стекол, для более опытных - рефлектор. Изготовление самодельного рефрактора доступно любому школьнику.

Прежде всего нужно приобрести объектив и окуляр. Для объектива можно использовать простую двояковыпуклую линзу в 1 диоптрию (фокусное расстояние ее равно 1 м). Такие линзы бывают в оптических магазинах и в аптеках. Два стекла для очков ("мениск") по +0,5 диоптрии, расположенных выпуклыми сторонами наружу на расстоянии 30 мм одно от другого, заменяют линзу в 1 диоптрию. Между ними нужно поставить диафрагму с отверстием диаметром около 30 мм. Годятся и насадочные линзы для фотоаппарата, например, типа "Любитель". Линзу в 1 диоптрию могут заменить линзы в 0,75 или 1,25 диоптрии (их фокусные расстояния - 133 и 80 см). Линза должна быть непременно круглая и иметь большой диаметр (до 50 мм). Для окуляра можно взять сильную лупу небольшого диаметра, окуляр от микроскопа (в том числе школьного типа), от старого теодолита, нивелира или бинокля.

Чтобы определить, какое увеличение даст наш телескоп, измерим фокусное расстояние окуляра. Для этого наведем в ясный день окуляр на Солнце и расположим за ним лист белой бумаги. Будем приближать и удалять лист, пока не получится самое маленькое и яркое изображение Солнца (чтобы бумага не загоралась, окуляр прикрывают засвеченной пленкой или пластинкой). Расстояние между центром окуляра и изображением и есть фокусное расстояние окуляра. Поделив фокусное расстояние объектива (оно равно 100 см, деленным на число диоптрий очковой линзы) на фокусное расстояние окуляра, получим увеличение телескопа.

Обычно у самодельного рефрактора можно получить увеличение в 20-50 раз. Трубу телескопа можно сделать из бумаги. Возьмите несколько листов бумаги большого формата и деревянную круглую болванку диаметром на 2-3 мм больше, чем линза объектива. Обмотайте болванку несколько раз бумагой, пока не получится достаточной прочности и толщины труба. Наматывая бумагу, промазывайте каждый слой клеем -обычным конторским, казеиновым, можно и клейстером из картофельной или пшеничной муки грубого помола. Наружную поверхность трубы покройте светлой эмалевой или масляной краской (можно лаком), а внутреннюю - вычерните тушью, чтобы избежать вредных отражений света от стенок трубы. Это лучше сделать до проклеивания трубы. Трубу можно изготовить и из листовой жести, дюраля и других материалов. Таким же способом изготовляется выдвижная трубка меньшего диаметра для окуляра. Внутренний диаметр ее зависит от внешнего диаметра оправы окуляра. Главную трубу (1) делают сантиметров на десять короче фокусного расстояния объектива; длина окулярной трубки (2) около 40 см. Чтобы наводить телескоп на фокус ("на ясное зрение"), окулярная трубка должна плотно, на трении, вдвигаться и выдвигаться. Звезды в телескоп при установке на фокус кажутся яркими точками, а не размытыми дисками. Линза объектива (3) вставляется в передний конец трубы с помощью оправы (4), состоящей из двух картонных колец с разрезом и двух коротких бумажных трубок чуть меньшего диаметра, чем линза. С помощью этих трубок линза плотно зажимается между кольцами.

Чтобы было удобнее вести наблюдение, надо изготовить для телескопа штатив. Проще всего сделать деревянный азимутальный штатив, на котором труба поворачивается вокруг двух осей: вертикальной и горизонтальной. Однако на таком штативе нельзя наводить трубу на небо близ зенита. Устранить это неудобство можно. Надо только слегка изменить конструкцию штатива. Трубу на другом конце горизонтальной оси нужно уравновесить грузом. Чтобы не приходилось поддерживать все время трубу рукой, сделайте стопорный винт, а еще лучше два: для вертикальной и горизонтальной осей.

С помощью сделанного вами рефрактора вы сможете наблюдать горы на Луне, кольца Сатурна, фазы Венеры, диск Юпитера и 4 его спутника, двойные звезды, некоторые звездные скопления - Плеяды, Ясли. Солнечные пятна наблюдайте, проецируя изображение Солнца на экран - лист белой бумаги, защитив его от прямых лучей Солнца куском картона с отверстием посредине, надетым на трубу. Для сложных наблюдений этот инструмент недостаточен.

Иногда так хочется понаблюдать за ночным небом, поближе взглянуть на звезды или посмотреть на летящую комету, однако возможности сделать это нет. Потому что телескопы достаточно дорогостоящие. А посмотреть на звезды нам хочется лишь иногда. Из такой ситуации есть выход, можно собрать телескоп своими руками .

Затраты на сборку простейшего телескопа рефрактора системы Галилея составили всего 5 долларов.

Для этого необходимо:
- увеличительная лупа диаметром 100мм;
- линза диаметром 25-50мм, на минус 18диоптрий, будем использовать ее в качестве окуляра;
- пластиковая труба диаметром 100мм;
- пластиковый переходник;
- небольшой кусок автомобильного резинового патрубка;
- два уплотнительных кольца разной ширины из 100мм пластиковой трубы;
- скотч;
- отвертка;
- канцелярский нож;
- молоток;
- скотч.


Итак, все необходимые инструменты и материал подготовлены, можно приступать непосредственно к сборке телескопа.

На кусок пластиковой трубы одевается два крепления для пластиковых труб открытой прокладки.




От увеличительной лупы отрезается лишняя деталь, т.е. ручка, она будет только мешать, место среза тщательно шлифуется. Далее увеличительную лупу в пластиковом ободке оборачивают узкой уплотнительной прокладкой, которая сделана из той же канализационной пластиковой трубы диаметром 100мм. Т.к. стекло немного больше диаметра прокладки, в ней делают разрез.




Затем увеличительное стекло вместе с уплотнительной прокладкой аккуратно вставляются в пластиковую трубу, на которую мы одевали крепления для пластиковых труб открытой прокладки, так, чтобы оно не выпирало. После этого одно из креплений поднимается на уровень увеличительного стекла и затягивается с двух сторон при помощи отвертки, так мы фиксируем увеличительное стекло на конце трубы.




Потом нам необходимо прикрепить пластиковый переходник, который можно купить в любой хозяйственно магазине. Оставшуюся уплотнительную прокладку вставляем внутрь широкого отверстия на переходнике, внутрь прокладки вставляется конструкция из трубы и увеличительного стекла. При помощи молоточка прокладка опускается как можно глубже в переходник.




Линзу-окуляр прикрепляем к куску автомобильного резинового патрубка при помощи скотча по всей окружности.






Эту конструкцию вставляем в узкую часть пластикового переходника, и также закрепляется при помощи скотча.

Рассказать друзьям