Общее строение зрительного анализатора. Строение и функции зрительного анализатора

💖 Нравится? Поделись с друзьями ссылкой

Дата: 20.04.2016

Комментариев: 0

Комментариев: 0

  • Немного о строении зрительного анализатора
  • Функции радужной оболочки и роговицы
  • Что дает преломление изображения на сетчатке
  • Вспомогательный аппарат глазного яблока
  • Глазные мышцы и веки

Зрительный анализатор – это парный орган зрения, представленный глазным яблоком, мышечной системой глаза и вспомогательным аппаратом. С помощью способности видеть человек может различать цвет, форму, величину предмета, его освещенность и расстояние на котором он находится. Так человеческий глаз способен различать направление движения предметов или их неподвижность. 90% информации человек получает благодаря способности видеть. Орган зрения является самым важным из всех органов чувств. Зрительный анализатор включает в себя глазное яблоко с мышцами и вспомогательный аппарат.

Немного о строении зрительного анализатора

Глазное яблоко расположено в глазнице на жировой подушке, которая служит амортизатором. При некоторых заболеваниях, кахексии (исхудание) жировая подушка истончается, глаза опускаются вглубь глазной впадины и создается ощущение, что они «запали». Глазное яблоко имеет три оболочки:

  • белочную;
  • сосудистую;
  • сетчатую.

Характеристики зрительного анализатора довольно сложны, поэтому разбирать их нужно по порядку.

Белочная оболочка (склера) является самой наружной оболочкой глазного яблока. Физиология этой оболочки устроена так, что она состоит из плотной соединительной ткани, не пропускающей лучи света. К склере прикрепляются мышцы глаза, обеспечивающие движения глаза и конъюнктива. Передняя часть склеры имеет прозрачную структуру и называется роговицей. На роговице сконцентрировано огромное количество нервных окончаний, обеспечивающих ее высокую чувствительность, а кровеносные сосуды в этой области отсутствуют. По форме она круглая и несколько выпуклая, что позволяет обеспечить правильное преломление лучей света.

Сосудистая оболочка состоит из большого количества кровеносных сосудов, которые обеспечивают трофику глазного яблока. Строение зрительного анализатора устроено так, что сосудистая оболочка прерывается в том месте, где склера переходит в роговицу и образует вертикально расположенный диск, состоящий из сплетений сосудов и пигмента. Эта часть оболочки носит название радужки. Пигмент, содержащийся в радужке у каждого человека свой, он и обеспечивает цвет глаз. При некоторых заболеваниях пигмент может уменьшаться или совсем отсутствовать (альбинизм), тогда радужная оболочка приобретает красный цвет.

В центральной части радужки расположено отверстие, диаметр которого изменяется в зависимости от интенсивности освещения. Лучи света проникают в глазное яблоко на сетчатую оболочку только через зрачок. Радужная оболочка имеет гладкую мускулатуру – круговые и радиальные волокна. Она отвечает за диаметр зрачка. Круговые волокна отвечают за сужение зрачка, иннервирует их периферическая нервная система и глазодвигательный нерв.

Радиальные мышцы относят к симпатической нервной системе. Управление этими мышцами осуществляется из единого мозгового центра. Потому расширение и сужение зрачков происходит сбалансированно, независимо от того на один глаз подействовать ярким светом или на оба.

Вернуться к оглавлению

Функции радужной оболочки и роговицы

Радужка является диафрагмой глазного аппарата. Она обеспечивает регулирование поступления лучей света на сетчатку. Зрачок сужается, когда на сетчатку после преломлений попадает меньшее количество лучей света.

Происходит это при повышении интенсивности освещения. При снижении освещения зрачок расширяется и на глазное дно попадает большее количество света.

Анатомия зрительного анализатора устроена так, что диаметр зрачков зависит не только от освещения, на этот показатель влияют и некоторые гормоны организма. Так, например, при испуге выделяется большое количество адреналина, который также способен действовать на сократительную способность мышц, отвечающих за диаметр зрачка.

Радужка и роговица не соединены: имеется пространство, которое называется передней камерой глазного яблока. Передняя камера заполнена жидкостью, выполняющей трофическую функцию для роговицы и участвующую в преломлении света при прохождении лучей света.

Третья сетчатая оболочка – это специфический воспринимающий аппарат глазного яблока. Сетчатая оболочка образована разветвленными нервными клетками, которые выходят из глазного нерва.

Сетчатая оболочка расположена сразу за сосудистой и выстилает большую часть глазного яблока. Схема строения сетчатки очень сложная. Воспринимать предметы способна только задняя часть сетчатой оболочки, которая образована специальными клетками: колбочками и палочками.

Схема строения сетчатки очень сложная. Колбочки отвечают за восприятие цвета предметов, палочки – за интенсивность освещения. Палочки и колбочки расположены вперемешку, но в некоторых участках есть скопление только палочек, а в некоторых – только колбочек. Свет, попадая на сетчатку, вызывает реакцию внутри этих специфических клеток.

Вернуться к оглавлению

Что дает преломление изображения на сетчатке

Вследствие такой реакции вырабатывается нервный импульс, который передается по нервным окончаниям в зрительный нерв, а затем в затылочную долю коры головного мозга. Интересно, что проводящие пути зрительного анализатора имеют полный и неполный перекрест между собой. Таким образом информация из левого глаза поступает в затылочную долю коры головного мозга справа и наоборот.

Интересным фактом является и то, что изображение предметов после преломлений на сетчатке передается в перевернутом виде.

В таком виде информация поступает в кору головного мозга, где потом обрабатывается. Воспринимать предметы в том виде, в каком они есть, это приобретенный навык.

Новорожденные дети воспринимают мир в перевернутом виде. По мере роста и развития головного мозга вырабатываются эти функции зрительного анализатора и ребенок начинает воспринимать внешний мир в истинном виде.

Система преломления представлена:

  • передней камерой;
  • задней камерой глаза;
  • хрусталиком;
  • стекловидным телом.

Передняя камера расположена между роговицей и радужкой. Она обеспечивает питание роговичной оболочки. Задняя камера находится между радужкой и хрусталиком. И передняя и задняя камеры заполнены жидкостью, которая способна циркулировать между камерами. Если эта циркуляция нарушается, то возникает заболевание, которое приводит к нарушению зрения и может привести даже к его потере.

Хрусталик – это двояковыпуклая прозрачная линза. Функция хрусталика – преломление лучей света. Если при некоторых заболеваниях изменяется прозрачность этой линзы, то возникает такое заболевание, как катаракта. На сегодняшний день единственным лечением катаракты является замена хрусталика. Операция эта несложная и довольно хорошо переносится пациентами.

Стекловидное тело заполняет все пространство глазного яблока, обеспечивая постоянную форму глаза и его трофику. Стекловидное тело представлено студенистой прозрачной жидкостью. При прохождении через нее лучи света преломляются.

У человека есть удивительный дар, который он не всегда ценит, — возможность видеть. Человеческий глаз способен различать мелкие предметы и малейшие оттенки, при этом видеть не только днем, но и ночью. Специалисты утверждают, что с помощью зрения мы узнает от 70 до 90 процентов всей информации. Многие произведения искусства не были бы возможны при отсутствии глаз.

Поэтому разберемся подробнее, зрительный анализатор – что это такое, какие он выполняет функции, какое имеет строение?

Составляющие зрения и их функции

Начнем с рассмотрения строения зрительного анализатора, состоящего из:

  • глазного яблока;
  • проводящих путей — по ним картинка, зафиксированная глазом, подается в подкоровые центры, а потом и в кору мозга.

Поэтому в целом выделяют три отдела зрительного анализатора:

  • периферическая – глаза;
  • проводниковая – зрительный нерв;
  • центральная – зрительная и подкорковая зоны коры головного мозга.

Зрительный анализатор еще называют зрительной секреторной системой. Глаз включает в себя глазницу, а также вспомогательный аппарат.

Центральная часть находится в основном в затылочной части мозговой коры. Вспомогательный аппарат глаза представляет собой систему защиты и движения. В последнем случае внутренняя часть век имеет слизистую оболочку, называемую конъюнктивой. Защитная система включает нижнее и верхнее веко с ресницами.

Пот с головы спускается вниз, но не попадает в глаза за счет существования бровей. В слезах есть лизоцим, который убивает вредоносные микроорганизмы, попадающие в глаза. Моргание век способствует регулярному увлажнению яблока, после чего слезы спускаются ближе к носу, где попадают в слезной мешок. Дальше они переходят в полость носа.

Глазное яблоко двигается постоянно, для чего предусмотрено 2 косые и 4 прямые мышцы. У здорового человека оба глазных яблока перемещаются в одном направлении.

Диаметр органа составляет 24 мм, а его масса – около 6-8 г. Яблоко располагается в глазнице, сформированной костями черепа. Есть три оболочки: сетчатка, сосудистая и наружная.

Наружная

Внешняя оболочка имеет роговицу и склеру. В первой нет кровеносных сосудов, однако имеет множество нервных окончаний. Питание осуществляется благодаря межклеточной жидкости. Роговица пропускает свет, а также выполняет защитную функцию, предотвращая повреждение внутренности глаза. Она имеет нервные окончания: в результате попадания на нее даже небольшой пыли появляются режущие боли.

Склера имеет либо белый, либо голубоватый цвет. К ней фиксируются глазодвительные мышцы.

Средняя

В средней оболочке можно выделить три части:

  • сосудистая оболочка, находящаяся под склерой, имеет множество сосудов, поставляет кровь для сетчатки;
  • ресничное тело контактирует с хрусталиком;
  • радужка – зрачок реагирует на интенсивность света, который попадает на сетчатку (расширяется при слабом, сужается при сильном освещении).

Внутренняя

Сетчатка – мозговая ткань, которая позволяет реализовать функцию зрения. Она выглядит как тонкая оболочка, прилегающая по всей поверхности к сосудистой оболочке.

Глаз имеет две камеры, заполненные прозрачной жидкостью:

  • переднюю;
  • заднюю.

В итоге можно выделить факторы, которые обеспечивают выполнение всех функций зрительного анализатора:

  • достаточное количество света;
  • фокусировка картинки на сетчатке;
  • аккомодационный рефлекс.

Глазодвигательные мышцы

Они являются частью вспомогательной системы органа зрения и зрительного анализатора. Как отмечалось, есть две косые и четыре прямые мышцы.

  • нижняя;
  • верхняя.
  • нижняя;
  • латеральная;
  • верхняя;
  • медиальная.

Прозрачные среды внутри глаз

Они необходимы, чтобы пропускать лучи света к сетчатке, а также их преломлять в роговице. Дальше лучи попадают в переднюю камеру. Затем преломление осуществляется хрусталиком – линзой, меняющей силу преломления.

Можно выделить два основных нарушения зрения:

  • дальнозоркость;
  • близорукость.

Первое нарушение образуется при снижении выпуклости хрусталика, близорукость – наоборот. В хрусталике нет нервов, сосудов: развитие воспалительных процессов исключено.

Бинокулярное зрение

Чтобы получить одну картинку, сформированную двумя глазами, картинка фокусируется в одной точке. Такие линии зрения расходятся при взгляде на удаленные объекты, сходятся – близкие.

Еще благодаря бинокулярному зрению можно определить нахождение объектов в пространстве по отношению друг к другу, оценивать их удаленность, прочее.

Гигиена зрения

Мы рассмотрели строение зрительного анализатора, а также определенным образом разобрались, как ведется работа зрительного анализатора. А напоследок стоит узнать, как же правильно следить за гигиеной органов зрения, чтобы обеспечить их эффективную и бесперебойную работу.

  • необходимо защищать глаза от механического воздействия;
  • читать книги, журналы и прочую текстовую информацию необходимо с хорошим освещением, держать объект чтения на должном расстоянии – около 35 см;
  • желательно, чтобы свет падал слева;
  • чтение на коротком расстоянии способствует развитию близорукости, поскольку хрусталику длительное время приходится пребывать в выпуклом состоянии;
  • нельзя допускать воздействия излишне яркого освещения, которое способно разрушить световоспринимающие клетки;
  • не стоит читать в транспорте или лежа, поскольку в этом случае постоянно меняется фокусное расстояние, снижается эластичность хрусталика, ослабевает ресничная мышца;
  • нехватка витамина А может спровоцировать снижение остроты зрения;
  • частые прогулки на свежем воздухе – хорошая профилактика многих заболеваний глаз.

Подведение итогов

Следовательно, можно отметить, что зрительный анализатор представляет собой непростой, но весьма важный инструмент для обеспечения качественной жизни человека. Не зря изучение органов зрения переросло в отдельную дисциплину – офтальмологию.

Кроме определенной функции, глаза играют еще и эстетическую роль, украшая человеческое лицо. Поэтому зрительный анализатор – очень важный элемент организма, очень важно соблюдать гигиену органов зрения, периодически приходить на осмотр к врачу и правильно питаться, вести здоровый образ жизни.

Рассматривая предмет, находящийся прямо перед глазами, мы видим его отчетливо. Это происходит потому, что лучи света попадают на желтое пятно. Если же изображение предмета, находящегося на небольшом рас стоянии (около 12 см), попадает на слепое пятно, то мы его не видим, так как там нет светочувствительных рецепторов.

Зрачок, хрусталик и стекловидное тело служат для проведения и фокусировки световых лучей. Глазодвигательные мышцы изменяют положение глазного яблока таким образом, чтобы изображение предмета проецировалось именно на сетчатку, а не впереди или позади ее.

Зрение имеет большое значение в жизни человека. С помощью зрения человек познает окружающий мир, письменную речь обогащающую его мыслями и опытом других людей.

Зрительный анализатор контролирует двигательную и трудовую деятельность человека, помогает ориентироваться в окружающем пространстве. С помощью зрения артист балета оценивает расстояние и направление движения, взаимное расположение партнеров в дуэтном танце и массовых сценах. Зрительно он «держит точку» при вращении.

При дефектах зрения — близорукости и дальнозоркости — затрудняется разучивание новых движений и снижается техника выполнения уже заученных движений, Поэтому необходимо следить за правильной позой во время чтения и письма, не читать лежа или в движущемся транспорте, так как это может вызвать близорукость.

«Анатомия и физиология человека», М.С.Миловзорова

Периферической частью зрительного анализатора является сетчатка. Проводящая часть — это зрительный нерв, центральная — зрительная зона коры полушарий. Анализ освещенности, цвета, формы и деталей строения предмета начинается в сетчатке. В определении расстояния до предмета и между предметами, направления движения и изменения движеня предметов вместе со зрительным участвует и двигательный анализатор. Вся эта информация передается в…

Во внутреннем ухе, кроме улитки, находится вестибулярный аппарат — орган равновесия. Он состоит из преддверия и трех полукружных каналов. Полукружные каналы располагаются в трех взаимно перпендикулярных плоскостях и сообщаются с преддверием. В нем имеются две полости с волосковыми чувствительными клетками. Это и есть рецепторы. Над рецепторными клетками находится студенистая масса, в которой имеются отолиты — кристаллики…

Его периферический отдел находится в коже. Это болевые, осязательные и температурные рецепторы. Болевых рецепторов около миллиона. Возбуждаясь, они создают ощущение боли, что вызывает защитную реакцию организма. Осязательные рецепторы вызывают ощущение давления и соприкосновения. Эти рецепторы играют существенную роль в познании окружающего мира. С помощью осязания мы определяем не только, гладкая или шероховатая поверхность у предметов,…

Вкусовой анализатор Вкусовые ощущения способствуют поддержанию постоянства химического состава организма человека. От вкуса, как и от запаха, зависит, будет съедена пища или нет. Периферический отдел вкусового анализатора находится на поверхности языка. Здесь расположены вкусовые сосочки, содержащие рецепторы, анализирующие вкусовые раздражители. Вкусовые рецепторы возбуждаются только растворимыми в воде химическими веществами. Нерастворимые в воде вещества не создают…

Двигательный анализатор является древнейшим. В процессе исторического развития животного мира нервные и мышечные клетки образовались почти одновременно. Впоследствии у животных развились нервная и мышечная системы, функционально связанные друг с другом. Строение двигательного анализатора Периферической частью двигательного анализатора служат внутренние рецепторы органов движения — мышц, суставов и сухожилий. Они получают раздражения во время движения этих органов и, посылая импульсы в кору…

Вот типичный больной с таким поражением.

Он внимательно рассматривает предложенное ему изображение очков. Он смущен и не знает, что означает это изображение. Он начинает гадать: «Кружок... и еще кружок... и палка... перекладина... наверное, это велосипед?» Он рассматривает изображение петуха с красивыми разноцветными перьями хвоста и, не воспринимая фазу целого образа, говорит: «Наверное, это пожар - вот языки пламени...».

В случаях массивных поражений вторичных отделов затылочной коры явления оптической агнозии могут принимать грубый характер.

В случаях ограниченных поражений этой области они выступают в более стертых формах и проявляются лишь при рассматривании сложных картин или в опытах, где зрительное восприятие осуществляется в усложненных условиях (например, в условиях дефицита времени). Такие больные могут принять телефон с вращающимся диском за часы, а коричневый диван - за чемодан и т. п. Они перестают узнавать контурные или силуэтные изображения, затрудняются, если изображения предъявляются им в «зашумленных» условиях, например когда контурные фигуры перечеркнуты ломаными линиями (рис. 56) или когда они составлены из отдельных элементов и включены в сложное оптическое поле (рис. 57). Особенно отчетливо все эти дефекты зрительного восприятия выступают, когда опыты с восприятием проводятся в условиях дефицита времени - 0,25-0,50 с (с помощью тахистоскопа).

Естественно, что больной с оптической агнозией оказывается не в состоянии не только воспринимать целые зрительные структуры, но и изображать их . Если ему дается задача нарисовать какой-нибудь предмет, легко обнаружить, что образ этого предмета у него распался и что он может изобразить (или, вернее, обозначить) лишь его отдельные части, давая графическое перечисление деталей там, где нормальный человек рисует изображение.

Основные принципы строения зрительного анализатора.

Можно выделить несколько общих принципов строения всех анализаторных систем :

а) принцип параллельной многоканальной переработки информации, в соответствии с которым информация о разных параметрах сигнала одновременно передается по различным каналам анализаторной системы;

б) принцип анализа информации с помощью нейронов-детекторов, направленного на выделение как относительно элементарных, так и сложных, комплексных характеристик сигнала, что обеспечивается разными рецептивными полями;

в) принцип последовательного усложнения переработки информации от уровня к уровню, в соответствии с которым каждый из них осуществляет свои собственные анализаторные функции;



г) принцип топического («точка в точку» ) представительства периферических рецепторов в первичном поле анализаторной системы;

д) принцип целостной интегративной репрезентации сигнала в ЦНС во взаимосвязи с другими сигналами, что достигается благодаря существованию общей модели (схемы) сигналов данной модальности (по типу «сферической модели цветового зрения»). На рис. 17 и 18, А, Б, В, Г (цветная вклейка) показана мозговая организация основных анализаторных систем: зрительной, слуховой, обонятельной и кожно-кинестетической. Представлены разные уровни анализаторных систем - от рецепторов до первичных зон коры больших полушарий.

Человек, как и все приматы, относится к «зрительным» млекопитающим; основную информацию о внешнем мире он получает через зрительные каналы. Поэтому роль зрительного анализатора для психических функций человека трудно переоценить.

Зрительный анализатор, как и все анализаторные системы, организован по иерархическому принципу. Основными уровнями зрительной системы каждого полушария являются: сетчатка глаза (периферический уровень); зрительный нерв (II пара); область пересечения зрительных нервов (хиазма); зрительный канатик (место выхода зрительного пути из области хиазмы); наружное или латеральное коленчатое тело (НКТ или ЛКТ); подушка зрительного бугра, где заканчиваются некоторые волокна зрительного пути; путь от наружного коленчатого тела к коре (зрительное сияние) и первичное 17-е поле коры мозга (рис. 19, А, Б, Вт

рис. 20; цветная вклейка). Работа зрительной системы обеспечивается II, III, IV и VI парами черепно-мозговых нервов.

Поражение каждого из перечисленных уровней, или звеньев, зрительной системы характеризуется особыми зрительными симптомами, особыми нарушениями зрительных функций.



Первый уровень зрительной системы - сетчатка глаза - представляет собой очень сложный орган, который называют «куском мозга, вынесенным наружу».

Рецепторный строй сетчатки содержит два типа рецепторов:

· ¦ колбочки (аппарат дневного, фотопического зрения);

· ¦ палочки (аппарат сумеречного, скотопического зрения).

Когда свет достигает глаза, возникающая в этих элементах фотопическая реакция преобразуется в импульсы, передающиеся через различные уровни зрительной системы в первичную зрительную кору (17-е поле). Количество колбочек и палочек неравномерно распределено в разных областях сетчатки; колбочек значительно больше в центральной части сетчатки (fovea) - зоне максимально ясного зрения. Эта зона несколько сдвинута в сторону от места выхода зрительного нерва - области, которая называется слепым пятном (papilla n. optici).

Человек относится к числу так называемых фронтальных млекопитающих, т. е. животных, у которых глаза расположены во фронтальной плоскости. Вследствие этого зрительные поля обоих глаз (т. е. та часть зрительной среды, которая воспринимается каждой сетчаткой отдельно) перекрываются. Это перекрытие зрительных полей является очень важным эволюционным приобретением, позволившим человеку выполнять точные манипуляции руками под контролем зрения, а также обеспечившим точность и глубину видения (бинокулярное зрение). Благодаря бинокулярному зрению появилась возможность совмещать образы объекта, возникающие в сетчатках обоих глаз, что резко улучшило восприятие глубины изображения, его пространственных признаков.

Зона перекрытия зрительных полей обоих глаз составляет приблизительно 120°. Зона монокулярного видения составляет около 30° для каждого глаза; эту зону мы видим только одним глазом, если фиксировать центральную точку общего для двух глаз поля зрения.

Зрительная информация, воспринимаемая двумя глазами или только одним глазом (левым или правым), Зрительная информация, воспринимаемая двумя глазами или только одним глазом (левым или правым), проецируется на разные отделы сетчатки и, следовательно, поступает в разные звенья зрительной системы.

В целом, участки сетчатки, расположенные к носу от средней линии (нозальные отделы), участвуют в механизмах бинокулярного зрения, а участки, расположенные в височных отделах (темпоральные отделы), - в монокулярном зрении.

Кроме того, важно помнить, что сетчатка организована и по верхненижнему принципу: ее верхние и нижние отделы представлены на разных уровнях зрительной системы по-разному. Знания об этих особенностях строения сетчатки позволяют диагностировать ее заболевания (рис. 21; цветная вклейка).

Второй уровень работы зрительной системы - зрительные нервы (II пара). Они очень коротки и расположены сзади глазных яблок в передней черепной ямке, на базальной поверхности больших полушарий головного мозга. Разные волокна зрительных нервов несут зрительную информацию от разных отделов сетчаток. Волокна от внутренних участков сетчаток проходят во внутренней части зрительного нерва, от наружных участков - в наружной, от верхних участков - в верхней, а от нижних - в нижней.

Область хиазмы составляет третье звено зрительной системы . Как известно, у человека в зоне хиазмы происходит неполный перекрест зрительных путей. Волокна от нозальных половин сетчаток поступают в противоположное (контралатеральное) полушарие, а волокна от темпоральных половин - в ипсилатеральное. Благодаря неполному перекресту зрительных путей зрительная информация от каждого глаза поступает в оба полушария. Важно помнить, что волокна, идущие от верхних отделов сетчаток обоих глаз, образуют верхнюю половину хиазмы, а идущие от нижних отделов - нижнюю; волокна от fovea также подвергаются частичному перекресту и расположены в центре хиазмы.

Четвертый уровень зрительной системы - наружное или латеральное коленчатое тело (НКТ или ЛКТ). Это часть зрительного бугра, важнейшее из таламических ядер, представляет собой крупное образование, состоящее из нервных клеток, где сосредоточен второй нейрон зрительного пути (первый нейрон находится в сетчатке). Таким образом, зрительная информация без какой-либо переработки поступает непосредственно из сетчатки в НКТ. У человека 80 % зрительных путей, идущих от сетчатки, заканчиваются в НКТ, остальные 20 % идут в другие образования (подушку зрительного бугра, переднее двухолмие, стволовую часть мозга), что указывает на высокий уровень кортикализации зрительных функций. НКТ, как и сетчатка, характеризуется топическим строением, т. е. различным областям сетчатки соответствуют различные группы нервных клеток в НКТ. Кроме того, в разных участках НКТ представлены области зрительного поля, которые воспринимаются одним глазом (зоны монокулярного видения), и области, которые воспринимаются двумя глазами (зоны бинокулярного видения), а также область области, которые воспринимаются двумя глазами (зоны бинокулярного видения), а также область центрального видения.

Как уже было сказано выше, помимо НКТ существуют и другие инстанции, куда поступает зрительная информация, - это подушка зрительного бугра, переднее двухолмие и стволовая часть мозга. При их поражении никаких нарушений зрительных функций как таковых не возникает, что указывает на иное их назначение. Переднее двухолмие, как известно, регулирует целый ряд двигательных рефлексов (типа старт-рефлексов), в том числе и тех, которые «запускаются» зрительной информацией. По-видимому, сходные функции выполняет и подушка зрительного бугра, связанная с большим количеством инстанций, в частности - с областью базальных ядер. Стволовые структуры мозга участвуют в регуляции общей неспецифической активации мозга через коллатерали, идущие от зрительных путей. Таким образом, зрительная информация, идущая в стволовую часть мозга, является одним из источников, поддерживающих активность неспецифической системы (см. гл. 3).

Пятый уровень зрительной системы - зрительное сияние (пучок Грациоле) - довольно протяженный участок мозга, находящийся в глубине теменной и затылочной долей. Это широкий, занимающий большое пространство веер волокон, несущих зрительную информацию от разных участков сетчатки в разные области 17-го поля коры.

Последняя инстанция - первичное 17-е поле коры больших полушарий, расположено главным образом на медиальной поверхности мозга в виде треугольника, который направлен острием вглубь мозга. Это значительная по протяженности площадь коры больших полушарий по сравнению с первичными корковыми полями других анализаторов, что отражает роль зрения в жизни человека. Важнейшим анатомическим признаком 17-го поля является хорошее развитие IV слоя коры, куда приходят зрительные афферентные импульсы; IV слой связан с V слоем, откуда «запускаются» местные двигательные рефлексы, что характеризует «первичный нейронный комплекс коры» (Г. И. Поляков, 1965). 17-е поле организовано по топическому принципу, т. е. разные области сетчатки представлены в его разных участках. Это поле имеет две координаты: верхне-нижнюю и передне-заднюю. Верхняя часть 17-го поля связана с верхней частью сетчатки, т. е. с нижними полями зрения; в нижнюю часть 17-го поля поступают импульсы от нижних участков сетчатки, т. е. от верхних полей зрения. В задней части 17-го поля представлено бинокулярное зрение в передней части - периферическое монокулярное зрение.

Зрительная сенсорная система вместе со слуховой играют особую роль в познавательной деятельности человека.

Через зрительный анализатор человек получает до 90% информации об окружающем мире. С деятельностью зрительного анализатора связаны следующие функции: светочувствительность, определение формы предметов, их величины, расстояния предметов от глаза, восприятие движения, цветовое зрение и бинокулярное зрение.

Строение и функции органа зрения. Орган зрения состоит из глазного яблока (глаза) и вспомогательных органов глаза, которые расположены в глазнице. Глазное яблоко имеет шаровидную форму.

Оно состоит из трех оболочек и ядра. Наружная оболочка - фиброзная, средняя - сосудистая, внутренняя - светочувствительная, сетчатая (сетчатка). Ядро глазного яблока включает хрусталик, стекловидное тело и жидкую среду - водянистую влагу.

Фиброзная оболочка - толстая, плотная, у нее выделяют два отдела: передний и задний. Передний отдел занимает 1/5 поверхности глазного яблока. Он образован прозрачной, выпуклой кпереди роговицей. Роговица лишена кровеносных сосудов и обладает высокими светопреломляющими свойствами. Задний отдел фиброзной оболочки - белочная оболочка, напоминает по цвету белок вареного куриного яйца.

Образована белочная оболочка плотной волокнистой соединительной тканью. Сосудистая оболочка расположена под белочной и состоит из трех различных по строению и функциям частей: собственно сосудистой оболочки, ресничного тела и радужной оболочки. Собственно сосудистая оболочка занимает большую заднюю часть глаза.

Она тонкая, богата кровеносными сосудами, содержит пигментные клетки, придающие ей темно-коричневый цвет.

Ресничное тело находится кпереди от собственно сосудистой оболочки и имеет вид валика. От переднего края ресничного тела к хрусталику отходят выросты - ресничные отростки и тонкие волокна (ресничный поясок), прикрепляющийся к капсуле хрусталика по его экватору. Большая часть ресничного тела состоит из ресничной мышцы. При своем сокращении эта мышца изменяет натяжение волокон ресничного пояска и этим регулирует кривизну хрусталика, изменяя его преломляющую силу.

Радужная оболочка, или радужка, находится между роговицей спереди и хрусталиком сзади. Она имеет вид фронтально расположенного диска с отверстием (зрачком) посередине. Своим наружным краем радужка переходит в ресничное тело. Внутренний, свободный край радужки ограничивает отверстие зрачка. В соединительнотканной основе радужки находятся сосуды, гладкие мышечные и пигментные клетки.

От количества и глубины залегания пигмента зависит цвет глаз - карий, черный (при наличии большого количества пигмента), голубой, зеленоватый (если пигмента мало). Пучки гладких мышечных клеток имеют двоякое направление и образуют мышцу, расширяющую зрачок, и мышцу, суживающую зрачок. Эти мышцы регулируют поступление света в глаз.

Сетчатая оболочка, или сетчатка, прилежит изнутри к сосудистой оболочке. В сетчатке различают две части: заднюю зрительную и переднюю ресничную и радужковую. В задней зрительной части находятся светочувствительные клетки - фоторецепторы. Передняя часть сетчатки (слепая) прилежит к ресничному телу и радужке. Светочувствительных клеток она не содержит. Зрительная часть сетчатки имеет сложное строение. Она состоит из двух листков: внутреннего - светочувствительного и наружного - пигментного. Клетки пигментного слоя участвуют в поглощении света, попадающего в глаз и прошедшего через светочувствительный листок сетчатки. Внутренний листок сетчатки представляет собой три слоя нервных клеток: наружный, прилежащий к пигментному слою, - фоторецепторный, средний - ассоциативный, внутренний - ганглиозный.

Фоторецепторный слой сетчатки состоит из нейросенсорных палочек и колбочковидных клеток, наружные сегменты которых (дендриты) имеют форму палочек или колбочек. Дископодобные структуры палочковидных и колбочковидных нейроцитов (палочек и колбочек) содержат молекулы фотопигментов: в палочках - чувствительные к черно-белому свету, в колбочках - чувствительные к красному, зеленому и синему свету. Количество колбочек в сетчатке глаза человека достигает 6-7 млн., а количество палочек - в 20 раз больше. Палочки воспринимают информацию о форме и освещенности предметов, а колбочки - информацию о цвете.

Центральные отростки (аксоны) нейросенсорных клеток (палочек и колбочек) передают зрительные импульсы биополярным клеткам второго клеточного слоя сетчатки, которые имеют контакт с ганглиозными нейроцитами третьего (ганглиозного) слоя сетчатки.

Ганглиозный слой состоит из крупных нейроцитов, аксоны которых образуют зрительный нерв. В задней части сетчатки выделяются два участка - слепое и желтое пятна. Слепое пятно является местом выхода из глазного яблока зрительного нерва. Здесь сетчатка не содержит светочувствительных элементов. Желтое пятно находится в области заднего полюса глаза. Это самое чувствительное к свету место сетчатки.

Середина его углубления получила название центральной ямки. Линию, соединяющую середину переднего полюса глаза с центральной ямкой, называют оптической осью глаза.

Для лучшего видения глаз при помощи глазодвигательных мышц устанавливается так, чтобы рассматриваемый предмет и центральная ямка находились на одной оси. Как уже отмечалось, ядро глазного яблока включает хрусталик, стекловидное тело и водянистую влагу. Хрусталик представляет собой прозрачную двояковыпуклую линзу диаметром около 9 мм. Располагается хрусталик позади радужки. Между хрусталиком сзади и радужкой спереди находится задняя камера глаза, содержащая прозрачную жидкость - водянистую влагу. Позади хрусталика находится стекловидное тело. Вещество хрусталика бесцветное, прозрачное, плотное. Сосудов и нервов хрусталик не имеет. Хрусталик покрыт прозрачной капсулой, которая при помощи ресничного пояска соединяется с ресничным телом. При сокращении или расслаблении ресничной мышцы натяжение волокон пояска ослабевает или возрастает, что приводит к изменению кривизны хрусталика и его преломляющей силы. нервный физиологический зрение

Стекловидное тело заполняет всю полость глазного яблока между сетчаткой сзади и хрусталиком спереди.

Оно состоит из прозрачного студнеподобного вещества и не имеет кровеносных сосудов. Водянистая влага выделяется кровеносными сосудами ресничных отростков. Она заполняет заднюю и переднюю камеры глаза, сообщающиеся через отверстие в радужке, - зрачок. Оттекает водянистая влага из задней камеры в переднюю, а из передней камеры в вены на границе роговицы и белочной оболочки глаза.



Рассказать друзьям