По происхождению углеводы подразделяются на. Общие свойства углеводов

💖 Нравится? Поделись с друзьями ссылкой

Реферат

«Физиологическое значение углеводов и их общая характеристика»

Выполнил(а): студентка II курса

Факультет: Агротехнологий, земельных ресурсов

и пищевых производств

Направление: ТП и ООП

ресторанный бизнес

Хастаева Ольга Андреевна

Ульяновск, 2015

1. Введение…………………………………………………………………………3

2. Классификация углеводов……………………………………………………...3

2.1. Моносахариды…………………………………………………………..4

2.2. Дисахариды……………………………………………………………...4

2.3. Олигосахариды………………………………………………………….5

2.4. Полисахариды…………………………………………………………...5

3. Пространственная изомерия……………………………………………………8

4. Биологическая роль……………………………………………………………..8

5. Биосинтез………………………………………………………………………..9

6. Важнейшие источники………………………………………………………...10

7. Физиологическое значение углеводов………………………………………..11

8. Список использованной литературы………………………………………….13

Введение

Структурная формула лактозы - содержащегося в молоке дисахарида

Углеводы - органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой C x (H 2 O) y , формально являясь соединениями углерода и воды.

Сахара - другое название низкомолекулярных углеводов (моносахаридов, дисахаридов и полисахаридов).

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.

Углеводы - весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2-3 % массы животных.

Классификация углеводов

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц - олигосахариды, а более десяти - полисахариды. Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.



Моносахариды

Распространённый в природе моносахарид - бета-D-глюкоза.

Моносахари́ды (от греческого monos - единственный, sacchar - сахар) - простейшие углеводы, не гидролизующиеся с образованием более простых углеводов - обычно представляют собой бесцветные, легко растворимые в воде, плохо - в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения, одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза . При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза . В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы , тетрозы , пентозы ,гексозы , гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы. Моносахариды - стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (C 6 H 12 O 6) - структурная единица многих дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридоя.

Дисахариды

Мальтоза (солодовый сахар) - природный дисахарид, состоящий из двух остатков глюкозы.

Дисахариды (от di - два, sacchar - сахар) - сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединены друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных.

Олигосахариды

Рафиноза - природный трисахарид, состоящий из остатков D-галактозы, D-глюкозы и D-фруктозы.

Олигосахариды (от греч. ὀλίγος - немногий) - углеводы, молекулы которых синтезированы из 2 - 10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных - гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза - невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы - в больших количествах содержится в сахарной свёкле и во многих других растениях.

Полисахариды

Полисахариды - общее название класса сложных высокомолекулярных углеводов , молекулы которых состоят из десятков, сотен или тысяч мономеров - моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков.

Гомополисахариды (гликаны ), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны ) происхождения.

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахмал (C 6 H 10 O 5) n - смесь двух гомополисахаридов: линейного - амилозы и разветвлённого - амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде. Молекулярная масса 10 5 -10 7 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10-30 %, амилопектина - 70-90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20-30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации - декстрины (C 6 H 10 O 5) p , а при полном гидролизе -глюкоза.

Гликоген (C 6 H 10 O 5) n - полисахарид, построенный из остатков альфа-D-глюкозы - главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 10 5 -10 8 Дальтон и выше. В организмах животных является структурным и функциональным аналогом полисахарида растений - крахмала . Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован - сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100-120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) - наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном - D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу.

Хити́н - структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих - насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозидными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой.

Пекти́новые вещества́ - полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот способны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид».

Мурами́н (лат. múrus - стенка) - полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе.

Декстраны - полисахариды бактериального происхождения - синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»:Полиглюкин и другие).

Углеводы — обширный класс органических соединений. В клетках живых организмов углеводы являются источниками и аккумуляторами энергии, в растениях (на их долю приходится до 90 % сухого вещества) и некоторых животных (до 20 % сухого вещества) выполняют роль опорного (скелетного) материала, входят в состав многих важнейших природных соединений, выступают в качестве регуляторов ряда важнейших биохимических реакций. В соединении с белками и липидами углеводы образуют сложные высокомолекулярные комплексы, представляющие основу субклеточных структур, а следовательно, основу живой материи. Они входят в состав природных биополимеров — нуклеиновых кислот, участвующих в передаче наследственной информации.

Углеводы образуются в растениях в ходе фотосинтеза, благодаря ассимиляции хлорофиллом, под действием солнечных лучей, углекислого газа, содержащегося в воздухе, а образующийся при этом кислород выделяется в атмосферу. Углеводы являются первыми органическими веществами в кругообороте углерода в природе.

Все углеводы делят на две группы: простые и сложные. Простыми углеводами (моносахариды, монозы) называют углеводы, которые не способны гидролизоваться с образованием более простых соединений.

Сложные углеводы (полисахариды, полиозы) — углеводы, способные гидролизоваться на более простые. У них число атомов углерода не равно числу атомов кислорода. Сложные углеводы очень разнообразны по составу, молекулярной массе, а следовательно, и по свойствам. Их делят на две группы: низкомолекулярные (сахароподобные или олигосахариды) от греч. oligos — малый, немногочисленный и высокомолекулярные (несахароподобные полисахариды). Последние — соединения с большой молекулярной массой, в состав которых могут входить остатки сотен тысяч простых углеводов.

Молекулы простых углеводов — моноз — построены из неразветвленных углеродных цепей, содержащих различное число атомов углерода. В состав растений и животных входят главным образом монозы с 5 и 6 углеродными атомами — пентозы и гексозы. У атомов углерода расположены гидроксильные группы, а один из них окислен до альдегидной (альдозы) или кетонной (кетозы) группы.

В водных растворах, в том числе в клетке, монозы из ациклческих (альдегидо-кетоно) форм переходят в циклические (фуранозные, пиранозные) и обратно. Этот процесс получил, название динамической изомерии — таутомерии.

Циклы, которые входят в состав молекул моноз, могут быть построены из 5 атомов (из них 4 атома углерода и один кислорода) — они получили название фуранозных, или из 6 атомов (5 атомов углерода и один кислорода), их называют пиранозными.

В молекулах моносахаридов имеются углеродные атомы, связанные с четырьмя различными заместителями. Они получили название асимметрических и обозначены в формулах глюкозы и фруктозы звездочками. Наличие в молекулах моноз асимметричных углеродных атомов приводит к появлению оптических изомеров, обладающих способностью вращать плоскополяризованный луч света. Направление вращения обозначают знаком «+» (правое вращение) и «-» (левое вращение). Важной характеристикой моноз является удельное вращение. Угол вращения плоскости поляризации свежеприготовленного раствора моносахарида вследствие указанных ранее таутомерных превращений при стоянии изменяется, пока не достигнет некоторой постоянной величины. Изменение угла вращения растворов Сахаров при стоянии получило название мутаротации. Например, для глюкозы это изменение происходит от +106 до +52,5°; обычно это изображают так: +106 ° -»- +52,5 °.

В растениях чаще содержится D-форма моноз.

Наличие спиртовых, альдегидных или кетонных групп, а также появление в циклических формах моноз группы ОН с особыми свойствами (гликозидный, полуацетальный гидроксил) определяет химическое поведение этих соединений, а следовательно, и превращения их в технологических процессах. Моносахариды — сильные восстановители — осаждают серебро из аммиачных растворов оксида серебра (знакома всем из школьного курса химии реакция «серебряного зеркала» и оксид меди Cu20 при взаимодействии с раствором Фелинг (Фелингова жидкость), который приготавливают смешиванием равных объемов водного раствора сульфата меди и щелочного раствора натрий-калиевой соли винной кислоты. Последняя реакция используется для определения содержания восстанавливающих Сахаров (метод Бертрана) по количеству выпавшего осадок оксида меди СигО.

Фурфурол — один из компонентов, который входит в состав веществ, создающих аромат хлеба.

Большое значение в пищевой технологии имеет взаимодействие моноз и других восстанавливающих Сахаров (в реакции могут участвовать и другие соединения, имеющие карбонильную группу, — альдегиды, кетоны и т. д.) с соединениями, содержащими аминогруппу — NH2: первичными аминами, аминокислотами, пептидами, белками.

Особое место в превращениях моносахаридов занимают два процесса: дыхание и брожение.

Дыхание — это экзотермический процесс ферментативной окисления моноз до воды и углекислого газа.

На каждый моль израсходованной глюкозы (180 г) выделяется 2870 кДж (672 ккал) энергии. Дыхание наряду с фотосинтезом является важнейшим источником энергии для живых организмов.

Различают аэробное (кислородное) дыхание — дыхание при достаточном количестве воздуха (схема этого процесса был; нами только что рассмотрена) и анаэробное (бескислородное дыхание, являющееся в сущности спиртовым брожением:

При этом на 1 моль израсходованной глюкозы выделяется 118,0 кДж (28,2 ккал) энергии.

Спиртовое брожение, протекающее под влиянием микроорганизмов, играет исключительную роль в производстве спирта вина, хлебобулочных изделий. Наряду с главными продуктами спиртом и диоксидом углерода — при спиртовом брожении мона образуются разнообразные побочные продукты (глицерин, янтарная кислота, уксусная кислота, изоамиловый и изопропиловый спирты и др.), существенно влияющие на вкус и аромат пищевых продуктов. Кроме спиртового брожения существует молочнокислое брожение моноз:

Это основной процесс при получении простокваши, кефира и других молочнокислых продуктов, квашении капусты.

Брожение моноз может приводить к образованию масляной кислоты (маслянокислое брожение).

Моносахариды — твердые кристаллические вещества, они гигроскопичны, хорошо растворяются в воде, образуя сиропы, трудно растворимы в спирте. Большинство из них имеют сладкий вкус. Рассмотрим наиболее важные моносахариды.

Гексозы. Главными представителями этой группы моноз являются глюкоза и фруктоза.

Глюкоза (виноградный сахар, декстроза) широко распространена в природе: содержится в зеленых частях растений, в виноградном соке, семенах и фруктах, ягодах, меде. Входит в состав важнейших полисахаридов: сахарозы, крахмала, клетчатки, многих гликозидов. Получают глюкозу гидролизом крахмала и клетчатки. Сбраживается дрожжами.

Фруктоза (фруктовый сахар, левулеза) в свободном состоянии содержится в зеленых частях растений, нектаре цветов, семенах, меде. Входит в состав сахарозы, образует высокомолекулярный полисахарид инсулин. Сбраживается дрожжами. Получают из сахарозы, инсулина, трансформацией других моноз методами биотехнологии.

Глюкоза и фруктоза играют большую роль в пищевой промышленности, являясь важным компонентом продуктов питания и исходным материалом при брожении.

Пентозы. В природе широко распространены L (+)-арабиноза, рибоза, ксилоза, главным образом в качестве структурных компонентов сложных полисахаридов: пентозанов, гемицеллюлоз, пектиновых веществ, а также нуклеиновых кислот и других природных

Горький и жгучий вкус, который характерен и из-за которого ценятся горчица и хрен, обусловлен образованием при гидролизе эфирногорчичного масла. Содержание калиевой соли синигрина в горчице и хрене достигается 3-3,5 %.

В косточках персика, абрикосов, слив, вишен, яблок, груш, в листьях лавровишни, семенах горького миндаля содержится гликозид амигдалин. Он представляет собой сочетание дисахарида гентиобиозы и агликона, включающего остаток синильной кислоты и бензальдегида.

L (+)-арабиноза, не сбраживается дрожжами. Содержится в свекле.

Рибоза — важный структурный компонент рибонуклеиновых кислот.

D (+)-ксилоза — структурный компонент содержащихся в соломе, отрубях, древесине полисахаридов ксилозанов. Получаемую при гидролизе ксилозу используют в качестве подслащивающего вещества для больных диабетом.

Гликозиды. В природе, главным образом в растениях, распространены производные Сахаров, получившие название гликозидов. Молекула гликозида состоит из двух частей: сахара, он обычно представлен моносахаридом, и агликона («не-сахара»).

В качестве агликона в построении молекул гликозидов могут принимать участие остатки спиртов, ароматических соединений, стероидов и т. д. Многие из гликозидов имеют горький вкус и специфический запах, с чем и связана их роль в пищевой промышленности, некоторые из них обладают токсическим действием, об этом следует помнить.

Гликозид синигрин — содержится в семенах черной и сарептской горчицы, корнях хрена, в рапсе, придавая им горький вкус и специфический запах. Под влиянием содержащихся в семенах горчицы ферментов этот гликозид гидролизуется.

При кислотном или ферментативном гидролизе образуются две молекулы глюкозы, синильная кислота и бензальдегид. Содержащаяся в амигдалине синильная кислота может вызвать отравление.

Гликозид ванилина содержится в стручках ванили (до 2 % на сухое вещество), при его ферментативном гидролизе образуются глюкоза и ванилин:

Ванилин — ценное душистое вещество, применяемое в пищевой и парфюмерной промышленности.

В картофеле, баклажанах содержатся гликозиды салонины, которые могут придавать картофелю горький, неприятный вкус, особенно, если плохо удаляются наружные его слои.

Полисахариды (сложные углеводы). Молекулы полисахаридов построены из различного числа остатков моноз, которые образуются при гидролизе сложных углеводов. В зависимости от этого их делят на низкомолекулярные и высокомолекулярные полисахариды. Из первых особое значение имеют дисахариды, молекулы которых построены из двух одинаковых или разных остатков моноз. Одна из молекул моноз всегда участвует в построении молекулы дисахарида своим полуацетальным гидроксилом, другая — полуацетальным или одним из спиртовых гидроксилов. Если в образовании молекулы дисахарида монозы участвуют своими полуацетальными гидроксилами, образуется не-восстанавливающий дисахарид, во втором — восстанавливающий. Это одна из главных характеристик дисахаридов. Важнейшая реакция дисахаридов — гидролиз.

Более подробно рассмотрим строение и свойства мальтозы, сахарозы, лактозы, которые широко распространены в природе — которые играют важную роль в пищевой технологии.

Мальтоза (солодовый сахар). Молекула мальтозы состоит из двух остатков глюкозы. Она является восстанавливающим дисахаридом:

Мальтоза довольно широко распространена в природе, она содержится в проросшем зерне и особенно в больших количествах в солоде и солодовых экстрактах. Отсюда и ее название (от лат. maltum — солод). Образуется при неполном гидролизе крахмала разбавленными кислотами или амилолитическимн ферментами, является одним из основных компонентов крахмальной патоки, широко используемой в пищевой промышленности. При гидролизе мальтозы образуются две молекулы глюкозы.

Этот процесс играет большую роль в пищевой технологи, например при брожении теста как источник сбраживаемых сахаров.

Сахароза (тростниковый сахар, свекловичный сахар). При ее гидролизе образуются глюкоза и фруктоза.

Следовательно, молекула сахарозы состоит из остатков глюкозы и фруктозы. В построении молекулы сахарозы глюкоза и фруктоза участвуют своими полуацетальными гидроксилами. Сахароза — невосстанавливающий сахар.

Сахароза — наиболее известный и широко применяемый в питании и пищевой промышленности сахар. Содержится в листьях, стеблях, семенах, плодах, клубнях растений. В сахарной свекле от 15 до 22 % сахарозы, сахарном тростнике -12-15 %, это основные источники ее получения, отсюда же возникли и ее названия — тростниковый или свекловичный сахар.

В картофеле 0,6 % сахарозы, луке — 6,5, моркови — 3,5, свекле — 8,6, дыне — 5.9, абрикосах и персиках — 6,0, апельсинах — 3,5, винограде — 0,5 %. Ее много в кленовом и пальмовом соке, кукурузе — 1,4-1,8 %.

Сахароза кристаллизуется без воды в виде больших моноклинических кристаллов. Удельное вращение водного ее раствора -(-66,5°. Гидролиз сахарозы сопровождается образованием глюкозы и фруктозы. Фруктоза обладает более сильным левым вращением (-92°), чем глюкоза правым (+ 52,5°), поэтому при гидролизе сахарозы угол вращения изменяется. Гидролиз сахарозы получил название инверсии (обращение), а смесь образующихся разных количеств глюкозы и фруктозы — инвертным сахаром. Сахароза сбраживается дрожжами (после гидролиза), а при нагревании выше температуры плавления (160-186 °С) карамелизуется, т. е. превращается в смесь сложных продуктов: карамелана и других, теряя при этом воду. Эти продукты под названием «колер» используют при производстве напитков и в коньячном производстве для окраски готовых продуктов.

Лактоза (молочный сахар). Молекула лактозы состоит из остатков галактозы и глюкозы и обладает восстанавливающими свойствами.

Лактозу получают из молочной сыворотки отхода при производстве масла и сыра. В коровьем молоке содержится 46 % лактозы. Отсюда и возникло ее название (от лат. lactum молоко). Водные растворы лактозы мутаротируют, их удельное вращение после завершения этого процесса +52,2 °. Лактоза гигроскопична. Не участвует в спиртовом брожении, но под влиянием молочнокислых дрожжей гидролизуется с последующим сбраживанием образовавшихся продуктов в молочную кислоту.

Высокомолекулярные несахароподобные полисахариды построены из большого числа (до 6-10 тыс.) остатков моноз. Они делятся на гомополисахариды, построенные из молекул моносахаридов только одного вида (крахмал, гликоген, клетчатка) гетерополисахариды, состоящие из остатков различных моносахаридов.

Крахмал (CeHioOs), — резервный полисахарид, главный компонент зерна, картофеля и многих видов пищевого сырья. Наиболее важный по своей пищевой ценности и использованию в пищевой промышленности несахароподобный полисахарид.

Содержание крахмала в пищевом сырье определяется культурой, сортом, условиями произрастания, спелостью. В клетках крахмал образует зерна (гранулы, рис. 8) размером от 2 до 180 мкм. Особенно крупные зерна у крахмала картофеля. Форма зерен зависит от культуры, они могут быть простыми (пшеница, рожь) или сложными, состоящими их более мелких зерен. От особенностей строения и размеров крахмальных зерен и, естественно, от состава крахмала зависят его физико-химические свойства. Крахмал — смесь полимеров двух типов, построенных из остатков глюкопиранозы: амилозы и амилопектина. Их содержание в крахмале зависит от культуры и колеблется от 18 до 25 % амилазы и 75-82 % амилопектина.

Амилоза — линейный полимер, построенный из остатков глюкопиранозы, связь 1-4а. Ее молекула содержит от 1000 до 6000 остатков глюкозы. Молекулярная масса 16 000-1000 000. Амилоза имеет спиралевидное строение. Внутри ее образуется канал диаметром 0,5 нм, куда могут входить молекулы других соединений, например иода, который окрашивает ее в синий цвет.

Амилопектин — полимер, содержащий от 5000 до 6000 остатков глюкозы. Молекулярная масса до 106. Связи между остатками a-D-глюкопиранозы 1-4a, 1-6а, 1-За. Неразветвленные участки состоят из 25-30 остатков глюкозы. Молекула амилопектина имеет сферическую форму. Амилопектин образует с иодом фиолетовую окраску с красноватым оттенком. В составе крахмала содержится до 0,6 % высокомолекулярных жирных кислот и 0,2-0,7 % минеральных веществ.

В ходе технологической обработки под действием влаги и тепла крахмал, крахмалсодержащее сырье способны адсорбировать влагу, набухать, клейстеризоваться, подвергаться деструкции. Интенсивность этих процессов зависит от вида крахмала, режимов обработки, характера катализатора.

Крахмальные зерна при обычной температуре не растворяются в воде, при повышении температуры набухают, образуя вязкий коллоидный раствор. При его охлаждении образуется устойчивый гель (всем нам хорошо знакомый крахмальный клейстер). Этот процесс получил название клейстеризации крахмала. Крахмалы различного происхождения клейстеризуются при различных температурах (55-80 °С). Способность крахмала набуханию и клейстеризации связана с содержанием амилозной фракции. Под действием ферментов или кислот при нагревании крахмал присоединяет воду и гидролизуется. Глубина гидролиза зависит от условий его проведения и вида катализатора (кислота, ферменты).

В последние годы все более широкое применение в пищевой промышленности находят модифицированные крахмалы, свойства которых в результате разнообразных видов воздействия (физического, химического, биологического) отличаются от свойств обычных крахмалов. Модификация крахмала позволяет существенно изменить его свойства (гидрофильность, способность к клейстеризации, студнеобразование), а следовательно, и направление его использования. Модифицированные крахмалы нашли применение в хлебопекарной и кондитерской промышленности, в том числе для получения безбелковых продуктов питания.

Клетчатка — самый распространенный высокомолекулярный полимер. Это основной компонент и опорный материал клеточных стенок растений. Содержание клетчатки в волосках семян хлопчатника 98 %, древесине — 40-50, зернах пшеницы — 3, ржи и кукурузе — 2,2, сое — 3,8, подсолнечнике с плодовой оболочкой — до 15 %. Молекулы клетчатки с помощью водородных связей объединены в мицеллы (пучки), состоящие из параллельных цепей. Клетчатка нерастворима в воде и при обычных условиях не гидролизуется кислотами. При повышенных температурах при гидролизе образуется в качестве конечного продукта D-глюкоза. В ходе гидролиза постепенно идет деполимеризация крахмала и образование декстринов, затем мальтозы, а при полном гидролизе глюкозы. Деструкция крахмала, которая начинается с набухания и разрушения крахмальных зерен и сопровождается его деполимеризацией (частичной или более глубокой) до образования в качестве конечного продукта глюкозы, происходит при получении многих пищевых продуктов — патоки, глюкозы, хлебобулочных изделий, спирта и т. д.

Гликоген (животный крахмал) состоит из остатков глюкозы. Важный энергетический запасной материал животных (в печени до 10 %, мышцах 0,3-1 % гликогена) присутствует в некоторых растениях, например в зернах кукурузы. По своему строению напоминает амилопектин, но более разветвлен и его молекула имеет более компактную упаковку. Она построена из остатков a-D-глюкопиранозы, связи между ними 1-4а (до 90%), 1-6а (до 10%) и 1-За (до 1 %).

Продукты гидролиза, содержащие клетчатку отходов, которые образуются при переработке древесины, широко используют для получения кормовых дрожжей, этилового спирта и других продуктов.

Ферменты желудочно-кишечного тракта человека не расщепляют целлюлозу, которую относят к балластным веществам. Роль их в питании будет рассмотрена дальше. В настоящее время под действием ферментного комплекса целлюлаз уже в промышленных условиях получают продукты гидролиза клетчатки, в том числе глюкозу. Учитывая, что возобновляемые запасы целлюлозосодержащего сырья практически безграничны, ферментативный гидролиз клетчатки является очень перспективным путем получения глюкозы.

Гемицеллюлозы — это группа высокомолекулярных полисахаридов, образующих совместно с целлюлозой клеточные стенки растительных тканей. Присутствуют главным образом в периферийных оболочечных частях зерна, соломе, кукурузных початках, подсолнечной лузге. Содержание их зависит от сырья и достигает 40% (кукурузные початки). В зерне пшеницы и ржи до 10 % гемицеллюлоз. В их состав входят пентозаны, образующие при гидролизе пентозы (арабинозу ксилозу), гексозаны, гидролг зующиеся до гексоз (манноз, галактоза, глюкоза, фруктоза и группа смешанных полисахаридов, гидролизующихся до пентоз, гексоз и уроновых кислот. Гемицеллюлозы обычно имеют разветвленное строение; порядок расположения моноз внутри полимерной цепи неодинаков. Связь их Друг с другом осуществляется с участием полуацетального гидроксила и гидроксильных групп у 2, 3, 4, 6-го углеродных атомов. Они растворяются в щелочных растворах. Кислотный гидролиз гемицеллюлозы протекает значительно легче, чем целлюлозы. В гемицеллюлозы иногда включают группу агара (смесь сульфированных полисахаридов — агарозы и агаропектина) — полисахарида, присутствующего в водорослях и применяемого в кондитерской промышленности. Гемицеллюлозы широко применяют для получения разнообразных технических, медицинских, кормовых и пищевых продуктов, среди которых необходимо выделить агар и агарозу, ксилит. Гемицеллюлозы относят к группе пищевых волокон, необходимых для нормального пищеварения.

Пектиновые вещества — это группа высокомолекулярных полисахаридов, входящих в состав клеточных стенок и межклеточных образований растений совместно с целлюлозой, гемицеллюлозой, лигнином. Содержится в клеточном соке. Наибольшее количество пектиновых веществ находится в плодах и корнеплодах. Получают их из яблочных выжимок, свеклы, корзинок подсолнечника. Различают нерастворимые пектины (протопектины), которые входят в состав первичной клеточной стенки и межклеточного вещества, и растворимые, содержащиеся в клеточном соке. Молекулярная масса пектина изменяется от 20 ООО до 50 000. Основным структурным компонентом его является галактуроновая кислота, из молекул которой строится главная цепь, а в состав боковых цепей входят 1-арабиноза, D-галактоза и рамноза. Часть кислотных групп этерифицирована метиловым спиртом, часть существует в виде солей. При созревании и хранении плодов нерастворимые формы пектина переходят в растворимые, с этим связано размягчение плодов при созревании и хранении. Переход нерастворимых форм в растворимые происходит при тепловой обработке растительного сырья, осветлении плодово-ягодных соков. Пектиновые вещества способны образовывать гели в присутствии кислоты и сахара при соблюдении определениях соотношений. На этом основано их использование в качестве студнеобразующего вещества в кондитерской и консервной промышленностн для производства мармелада, пастилы, желе и джемов, а также в хлебопечении, сыроделии.

В самом общем смысле к этому классу можно отнести сахара и производные от них вещества, которые получаются при гидролизе. Углеводы являются неотъемлемой составляющей всех органических соединений. Обо всем разнообразии проявления этих веществ может рассказать классификация углеводов.

Биология

Клеткам живых организмов углеводы нужны в качестве аккумуляторов и источников энергии. В сухом веществе растений содержится до 90 % углеводов. Представители фауны также имеют в составе своих клеток углеводы - до 20% от общей массы сухого вещества. Классификация углеводов стандартизирует эти высокомолекулярные соединения и представляет их в наглядном виде. Понимание структуры углеводов, внутреннего строения этих соединений - ключ к постижению основ всего живого, к пониманию самой тайны жизни. Важной частью процесса познания этих веществ является классификация углеводов.

Схема

Все известные углеводы подразделяют на три большие группы:

Моносахариды;

Дисахариды;

Полисахариды.

Все три группы имеют различные физико-химические характеристики. Классификация и строение углеводов базируется именно на этих трех китах.

Моносахариды

Целлюлоза же не растворяется в воде даже при высокой температуре. Она не растворяется в спиртах, устойчива к воздействию щелочей и слабых окислителей. Гидролиз целлюлозы возможен лишь при растворении ее в концентрированных минеральных кислотах, например в серной. При нагревании такого раствора целлюлоза расщепляется, образуя вязкий раствор. Конечным продуктом данной реакции являются моносахариды.

Значение углеводов

Классификация и строение углеводов изучается многими смежными науками. Значение этих органических веществ в медицине, химической, пищевой, обрабатывающей промышленности достаточно высоко. Можно надеяться, что вышеприведенная классификация углеводов с примерами даст общее представление о природе этих веществ и об их важнейшей роли в хозяйственной деятельности человека.

Классификация углеводов.

Углеводы


Моносахариды Дисахариды Полисахариды

Глюкоза Сахароза Целлюлоза

Фруктоза Мальтоза Крахмал

Рибоза Лактоза Гликоген

Дезоксирибоза

I . Моносахариды – простые углеводы, с формулой ( O) n .

В зависимости от количества атомов углерода в молекуле моносахариды называются триозами (3 атома), тетрозами (4 атома); пентозами (5 атомов) – рибоза, дезоксирибоза; и гексозами (6 атомов С) – глюкоза, фруктоза, галактоза.

Глюкоза содержится в крови (0,1-0,12%) и служит основным источником энергии для клеток и тканей организма. Рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ.

II. Дисахариды (олигосахариды) – сахара, образующиеся в результате объединения двух моносахаридов (гексоз), с потерей молекулы воды.

Наиболее важными из этой группы являются: сахароза (свекловичный сахар) и мальтоза (солодовый сахар) у растений, и лактоза – у животных (молочный сахар).

К дисахаридам относится пищевой сахар, получаемый из тростника свеклы. Он состоит из1 молекулы глюкозы и 1 молекулы фруктозы.

Моносахариды и дисахариды хорошо растворимы в воде, обладают сладким вкусом.

III. Полисахариды – сложные углеводы, образованные многими моносахаридами.

Общая формула ()n. Наибольшее биологическое значение имеют: крахмал, гликоген, целлюлоза, хитин. Полисахариды биополимеры, нерастворимы в воде, не имеют сладкого вкуса.

Кроме полисахаридов, состоящих из гексоз, существуют значительно более сложные длинные молекулы, содержащие аминный N (например: глюкозамин), который может быть ацетилирован (ацетилглюкозамин) или замещен на остатки серной или фосфорной кислоты.

Эти сложные полисахариды представляют следующие соединения:

ü нейтральные полисахариды , содержащие только ацетилглюкозамин. Пример: хитин – опорное вещество насекомых и ракообразных.

ü кислые мукополисахариды , содержащие в молекулах остатки серной и др. кислот. Пример: гепарин.

ü мукопротеиды (мукоиды) и гликопротеиды, представляют собой комплексы ацетилглюкозамина и др. углеводов с белками. Пример: вещества входящие в состав слюны и секрета слизистой желудка, также к гликопротеидам относятся яичный и сывороточный альбумины.

Свойства и функции углеводов:

1. Строительная (структурная) –

ü входят в состав оболочек растительных клеток (целлюлоза образует стенки растительных клеток) и формируют опорный скелет растений;

ü хитин – главный структурный компонент наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов.

2. Энергетическая функция (запасающая) –

ü углеводы являются основным источником энергии в клетках. При окислении 1 г глюкозы выделяет 17,6 кДж энергии;

ü крахмал является основным запасным веществом у растений, гликоген – у животных; служат энергетическим резервом.

Липиды.

Липиды – это сложные эфиры, образующиеся в результате реакции конденсации между жирными кислотами и каким-нибудь спиртом.

Реакция конденсации – это реакция, при которой происходит соединение двух веществ с выделением молекулы воды.

Липиды иногда называют жирами и жироподобные органические соединения, которые наряду с белками и углеводами обязательно присутствуют в клетках. Все они являются гидрофобными соединениями, т.е. нерастворимые в воде, но растворимы в неполярных органических растворителях (хлороформ, бензол, эфир, бензин, ацетон и др.)

Поступление липидов в клетку:

ü у растений синтезируются в каналах ЭПС.

ü у животных поступают с пищей, расщепляются и вновь синтезируются в собственные жиры.

Рис. Строение простого липида

Жир содержится в молоке всех млекопитающих животных, у некоторых до 40% (у самки дельфина). У некоторых растений большое количество жира находится в семенах и плодах (подсолнечник, грецкий орех).

Рис. Строение олеиновой кислоты

Липиды не являются полимерами , т.к. они не состоят из повторяющихся звеньев (мономеров).

Компоненты липидов.

Жирные кислоты называют «жирными» потому, что некоторые члены этого ряда входят в состав жиров. Общая формула имеет вид R-СООН, где R – атом водорода или радикал типа – СН 3 , –С 2 Н 5 и др.

Длинная цепь из атомов углерода и водорода составляет гидрофобный углеводородный хвост .

Иногда в жирных кислотах имеется одна или несколько двойных связей (С = С). В этом случае жирные кислоты называются ненасыщенными . Если двойных связей нет, кислоты называются насыщенными .

Ненасыщенные жирные кислоты плавятся при низких температурах. Олеиновая кислота – основной компонент оливкового масла – при обычных температурах бывает жидкой (Т пл = 13,4 о С), тогда как пальмитиновая и стеариновая кислоты (Т пл = 63,1 о С и Т пл = 69,6 о С) при таких температурах остаются твердыми.

Спирты. Большая часть липидов представляет собой триглицериды. В их состав входит спирт глицерол.

Кроме жира, в клетках присутствуют вещества, обладающие, как и жиры, гидрофобными свойствами. Это – липоиды.

Липоиды (греч. «липос» - жир, «эйдос» - вид) – жироподобные вещества, у которых 1 молекула жирной кислоты заменена на .

Классификация липидов

Эфиры жирных кислот и глицерина Стероиды

(входит спирт холестерол)

Простые Сложные

Триглицериды Воска Фосфолипиды

Гликолипиды

Триглицериды – самые распространённые из липидов, встречающихся в природе. Их принято делить на жиры и масла, в зависимости от того, остаются ли они твердыми при комнатной температуре (жиры) или находятся в жидком состояние (масла). Температура плавления липида тем ниже, чем выше в нем доля ненасыщенных жирных кислот.

В организме животных, живущих в холодном климате, например у рыб арктических морей, обычно содержится больше ненасыщенных триацилглицералов, чем у обитателей южных широт. Поэтому тело их остается гибким и при понижении температуры среды.

Воска – сложные эфиры жирных кислот и многоатомных спиртов. Кожные железы животных способны вырабатывать воска, предохраняющие шерсть и перья от намокания. Пчелы строят соты из воска. У растений воска образуют защитный слой на поверхности плодов и листьев.

Фосфолипиды – соединения глицерина, жирных кислот и остатка фосфорной кислоты.


Рис. Строение фосфолипида.

Фосфатная голова – гидрофильна. Хвост не растворим в воде.

Гликолипиды – соединения липидов и углеводов. Гликолипиды и фосфолипиды входят в состав мембран.

Стероиды не содержат жирных кислот, и имеют в своем составе спирт холестерол.

К этой группе липидов (стеролы)относятся желчные кислоты, гормоны коры надпочечников (адренокортикотропные гормоны), половые гормоны, витамин D. Предшественником в синтезе этих веществ является холестерин. Как структурный компонент он входит в состав всех мембран.

К стеролам близки терпены, представителями которых являются гибереллины (ростовые вещества растений), каротиноиды (пигменты*), ментол и камфора (эфирные масла растений).

*Пигменты – разнообразные по химической структуре органические вещества, способные избирательно поглощать свет определенной длины волны.

ü Красящая: придают окраску клеткам тканей и органов (антоцианы у растений, меланин у животных).

ü Защита от ультрафиолета (каротиноиды у растений, меланин у животных).

ü Участие в фотосинтезе (хлорофилл и фикобиллины).

ü Транспорт и депонирование кислорода (гемоглобин крови и миоглобин мышц).

ü Участие в зрительном поцессе (родопсин и йодопсин).

Свойства и функции липидов:

1. Энергетическая функция. Липиды обеспечивают 25-30% всей энергии, необходимой организму. При расщеплении 1г. жиров до и освобождается 38,9 кДж энергии.

2. Запасающая функция. Запасными питательными веществами могут быть капли жира вне клетки. Накапливаясь в клетках жировой ткани животных, в семенах и плодах растений, жиры служат запасным источником энергии.

Пример: животные, впадающие в спячку, и растения накапливающие жиры и масла и расходуют их в процессе жизнедеятельности.

3. Строительная функция (структурная) – липиды образуют бимолекулярный слой служащий основой наружной клеточной мембраны, из них 75-95% фосфлипиды; гликолипиды входят в состав клеток мозга и нервных клеток.

4. Функция термоизоляции. Жиры плохо проводят тепло. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, которая у китов образует слой толщиной до 1 м.

5. Защитная функция: термо- и гидроизоляция, защита от ударов. Пример: воск предохраняет перья и шерсть животных от смачивания.

6. Регуляторная функция (гормональная)

ü связана с тем, что многие жиры – компоненты витаминов (А, Д, Е и К) следовательно часть липидов принимают участие в обмене веществ.

ü Стероидные гормоны регулируют ряд процессов обмена веществ и размножения.

7. Функция источника воды.

ü При окислении 100 г жира образуется ≈105 г воды. Эта метаболическая вода очень важна для обитателей пустыни, в частности для верблюда, способного обходится без воды 10-12 дней; жир запасаемый в его горбе, используется для этой цели.

ü Необходимую для жизнедеятельности воду медведи, сурки и др. животные в спячке также получают в результате окисления жира.

Белки.

Белки – сложные органические соединения (биополимеры), состоящие из С, Н, О и N (иногда и S), мономерами которых являются аминокислоты.

Белки высокомолекулярны.

Молекулярная масса (Mm) = от 5 тыс. до 1 млн. дальтон и более. Так например: Mm этилового спирта = 46 Д; Mm одного из белков яйца = 36000 Д; Mm одного из белков мышц = 1500000 Д. Глобулин молока имеет Mm 42000 Д. Его формула –

Поступление белков в клетку:

ü у растений синтезируется на рибосомах из аминокислот которые образуются в клетках, из и карбоксильной группы, соединенных с различными радикалами.

ü у животных поступают с пищей, расщепляются до аминокислот, которые идут на синтез собственных белков.

В образовании белков участвуют 20 различных аминокислот.

Аминокислоты – низкомолекулярные органические соединения, в состав которых входят 1 или 2 аминогруппы (- ) и 1 или 2 карбоксильные группы (-COOH), обладающие щелочными (основными) и кислотными свойствами соответственно. Этим объясняются амфотерные свойства аминокислот, благодаря чему в клетках они играют роль буферных соединений.

Классификация аминокислот:

1) Моноаминомонокарбоновые: Глицин (Гли), Аланин (Ала), Валин (Вал), Лейцин (Лей), Изолейцин (Иле).

2) Моноаминодикарбоновые: Глютаминовая кислота (Глу), Аспаролиновая кислота (Асп)

3) Диаминомонокарбоновые: Аргинин (Арг), Лизин (Лиз), Оксилизин (Оли).

4) Гидроксилсодержащие: Треонин (Тре), Серин (Сер).

6) Ароматические: Фенилаланин (Фен), Пирозин (Пер).

7) Гетероциклические: Триптофан (Три), Пролин (Про), Оксипролин (Опр), Гистидин (Гис).

Поступление аминокислот в клетку:

ü у растений все необходимые аминокислоты синтезируются из , воды и аммиака.

ü у животных и человека утрачена способность синтезировать ряд протеиногенных аминокислот, которые стали для них незаменимыми – они должны поступать с пищей и кормом. [в классификации отмечены курсивом]. Заменимые аминокислоты – синтезируются в организме человека и животных в процессе биосинтеза.

Общая формула аминокислоты :

- CH - COOH

Все аминокислоты различаются только радикалами.

В настоящее время известно более 150 природных аминокислот с известными строением и функциями. Пример: γ-аминомасляная кислота обеспечивает процессы торможения в нервной системе. Многие аминокислоты являются предшественниками витаминов, а/б, гормонов и др. биологически-активных соединений.

Большинство аминокислот находятся в организме в свободном виде и только 20 из них входят в состав белков. Эти аминокислоты называются белковые или протеиногенные (образующие протеины). Им присуще свойство – способность при участии ферментов соединятся по аминным и карбоксильным группам и образовывать полипептидные цепи.

Углеводы, или сахара, - это органические соединения, которые содержат в молекуле одновременно карбонильную (альдегидную или кетонную) и несколько гидроксильных (спиртовых) групп . Другими словами, углеводы - это альдегидоспирты (полиоксиальдегиды) или кетоноспирты (полиоксикетоны). Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями. Углеводы играют чрезвычайно важную роль в живой природе, и являются самыми распространенными веществами в растительном мире, составляя до 80 % сухой массы растений. Важное значение углеводы имеют и для промышленности, поскольку они в составе древесины широко используются в строительстве, производстве бумаги, мебели и других товаров.

Основные функции :

  • Энергетическая. При распаде углеводов высвобождаемая энергия рассеивается в виде тепла или накапливается в молекулах АТФ. Углеводы обеспечивают около 50 – 60 % суточного энергопотребления организма, а при мышечной деятельности на выносливость - до 70 %.
  • Пластическая. Углеводы (рибоза, дезоксирибоза) используются для построения АТФ, АДФ и других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов. Отдельные углеводы являются структурными компонентами клеточных мембранУглеводы накапливаются (запасаются) в скелетных мышцах, печени и других тканях в виде гликогена.
  • Специфическая. Отдельные углеводы участвуют в обеспечении специфичности групп крови, исполняют роль антикоагулянтов (вызывающие свертывание), являясь рецепторами цепочки гормонов или фармакологических веществ, оказывая противоопухолевое действие.
  • Защитная . Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, которые покрывают поверхность сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий и вирусов, а также от механических повреждений.
  • Регуляторная . Клетчатка пищи не поддается процессу расщепления в кишечнике, однако активирует перистальтику кишечного тракта, ферменты, использующиеся в пищеварительном тракте, улучшая пищеварение и усвоение питательных веществ.

Классификация углеводов . Все углеводы можно разделить на две большие группы:

  • простые углеводы (моносахариды, или монозы),
  • сложные углеводы (полисахариды, или полиозы).

Простые углеводы не подвергаются гидролизу с образованием других, еще более простых углеводов. При разрушении молекул моносахаридов можно получить молекулы лишь других классов химических соединений. В зависимости от числа атомов углерода в молекуле, различают тетрозы (четыре атома), пентозы (пять атомов), гексозы (шесть атомов), и т.д. Если моносахариды содержат альдегидную группу, то они относятся к классу альдоз (альдегидоспиртов), если кетонную - к классу кетоз (кетоноспиртов).

Сложные углеводы, или полисахариды , при гидролизе распадаются на молекулы простых углеводов. Сложные углеводы, в свою очередь, делятся на:

  • олигосахариды,
  • полисахариды.

Олигосахариды - это низкомолекулярные сложные углеводы, растворимые в воде и сладкие на вкус. Полисахариды - это высокомолекулярные углеводы, образованные более чем из 20 остатков моносахаридов, нерастворимые в воде и не сладкие на вкус.

В зависимости от состава , сложные углеводы можно разделить на две группы:

  • гомополисахариды, состоящие из остатков одного и того же моносахарида;
  • гетерополисахариды, состоящие из остатков различных моносахаридов.

Моносахариды. Общая формула моносахаридов - СпН2пОп. Названия моносахаридов образуют из греческого числительного, соответствующего числу углеродных атомов в данной молекуле, и окончания -оза. Чаще всего в живой природе встречаются моносахариды с пятью и шестью углеродными атомами - пентозы и гексозы. В зависимости от характера карбонильной группы, входящей в состав моносахаридов (альдегидная или кетонная), моносахариды делятся на:

  • альдозы (альдегидоспирты),
  • кетозы (кетоноспирты).

Из гексоз наиболее широко распространены глюкоза (виноградный сахар) и фруктоза (фруктовый сахар). Глюкоза - это представитель альдоз, а фруктоза - кетоз. Глюкоза и фруктоза являются изомерами , т.е. они имеют один и тот же атомарный состав и их молекулярная формула одинакова (С6Н12О6). Однако пространственное строение их молекул различается:
СН2ОН-СНОН-СНОН-СНОН-СНОН-СНО Глюкоза (альдогексоза)

СН2ОН-СНОН-СНОН-СНОН-СО-СН2ОН Фруктоза (кетогексоза).

Э.Фишер разработал пространственные формулы , названные его именем. В этих формулах углеродные атомы нумеруют с того конца цепи, к которому ближе карбонильная группа. В частности, в альдозах первый номер присваивается углероду альдегидной группы.
Однако моносахариды существуют не только в виде открытых форм, но и в виде циклов. Эти две формы - цепная и циклическая - являются таутомерными и способны самопроизвольно переходить одна в другую в водных растворах. Представители моносахаридов:

  • D-рибоза - компонент РНК и коферментов нуклеотидной природы.
  • D-глюкоза (виноградный сахар) - кристаллическое белое вещество, хорошо растворимое в воде, температура плавления равна 146°С. Полимеры глюкозы, прежде всего
  • D-галактоза - кристаллическое вещество, составная часть молочного сахара, важнейший компонент пищевого рациона. Достаточно хорошо растворяется в воде, сладкое на вкус, температура плавления равна 165°С. Наряду с D-маннозой, этот моносахарид входит в состав многих гликолипидов и гликопротеинов.
  • D-манноза - кристаллическое вещество, сладкое на вкус, хорошо растворимое в воде, температура плавления равна 132°С. Встречается в природе в виде полисахаридов - маннанов, из которых может быть получено гидролизом.
  • D-фруктоза (фруктовый сахар) - кристаллическое вещество, температура плавления равна 132°С. Хорошо растворима в воде, сладкая на вкус, сладость превосходит сладость сахарозы в два раза. В свободной форме содержится во фруктовых соках (фруктовый сахар) и меде. В связанной форме фруктоза присутствует в сахарозе и растительных полисахаридах (например, в инулине).

При окислении альдоз образуется три класса кислот: альдоновые, альдаровые и альдуроновые.

Наиболее важными полисахаридами являются следующие:

  • Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками β-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы. Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.
  • Крахмал и гликоген. Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.
  • Хитин образован молекулами β-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.


Рассказать друзьям