Свойства твёрдых кристаллов. Уникальные свойства кристаллов

💖 Нравится? Поделись с друзьями ссылкой

Твердые тела разделяют на аморфные тела и кристаллы. Отличие вторых от первых состоит в том, что атомы кристаллов располагаются согласно некоторому закону, образуя тем самым трехмерную периодическую укладку, что называется – кристаллическая решетка.

Примечательно, что название кристаллов происходит от греческих слов «застывать» и «холод», и во времена Гомера этим словом называли горный хрусталь, который тогда считался «застывшим льдом». Сперва данным термином называли лишь ограненные прозрачные образования. Но позже, кристаллами стали звать также непрозрачные и не ограненные тела природного происхождения.

Кристаллическая структура и решетка

Идеальный кристалл представляется в виде периодически повторяющихся одинаковых структур – так называемых элементарных ячеек кристалла. В общем случае, форма такой ячейки – косоугольный параллелепипед.

Следует различать такие понятия как кристаллическая решетка и кристаллическая структура. Первая – это математическая абстракция, изображающая регулярное расположение неких точек в пространстве. В то время как кристаллическая структура – это реальный физический объект, кристалл, в котором с каждой точкой кристаллической решетки связана определенная группа атомов или молекул.

Кристаллическая структура граната — ромб и додекаэдр

Основным фактором, определяющим электромагнитные и механические свойства кристалла, является строение элементарной ячейки и атомов (молекул), связанных с ней.

Анизотропия кристаллов

Главное свойство кристаллов, отличающее их от аморфных тел – это анизотропия. Это означает, что свойства кристалла различны, в зависимости от направления. Так, например, неупругая (необратимая) деформация осуществляется лишь по определенным плоскостям кристалла, и в определенном направлении. В связи с анизотропией кристаллы по-разному реагируют на деформацию в зависимости от ее направления.

Однако, существуют кристаллы, которые не обладают анизотропией.

Виды кристаллов

Кристаллы разделяют на монокристаллы и поликристаллы. Монокристаллами называют вещества, кристаллическая структура которых распространяется на все тело. Такие тела являются однородными и имеют непрерывную кристаллическую решетку. Обычно, такой кристалл обладает ярко выраженной огранкой. Примерами природного монокристалла являются монокристаллы каменной соли, алмаза и топаза, а также кварца.

Немало веществ имеют кристаллическую структуру, хотя обычно не имеют характерной для кристаллов формы. К таким веществам относятся, например, металлы. Исследования показывают, что такие вещества состоят из большого количества очень маленьких монокристаллов — кристаллических зерен или кристаллитов. Вещество, состоящее из множества таких разноориентированных монокристаллов, называется поликристаллическим. Поликристаллы зачастую не имеют огранки, а их свойства зависят от среднего размера кристаллических зерен, их взаимного расположения, а также строения межзеренных границу. К поликристаллам относятся такие вещества как металлы и сплавы, керамики и минералы, а также другие.

Тема Симметрия твердых тел

1 Кристаллические и аморфные тела.

2 Элементы симметрии и их взаимодействия

3 Симметрия кристаллических многогранников и кристаллических решеток.

4 Принципы построения кристаллографических классов

Лабораторная работа № 2

Изучение структуры моделей кристаллов

Приборы и принадлежности: карточки с указанием химических элементов, имеющих кристаллическую структуру;

Цель работы: изучить кристаллические и аморфные тела, элементы симметрии кристаллических решеток, принципы построения кристаллографических классов, вычислить период кристаллической решетки для предложенных химических элементов.

Основные понятия по теме

Кристаллы – твердые тела, обладающие трехмерной периодической атомной структурой. При равновесных условиях образования имеют естественную форму правильных симметричных многогранников. Кристаллы – равновесное состояние твердых тел.

Каждому химическому веществу, находящемуся при данных термодинамических условиях (температура, давление) в кристаллическом состоянии, соответствует определенная атомно-кристаллическая структура.

Кристалл, выросший в неравновесных условиях и не имеющий правильной огранки или потерявший ее в результате обработки, сохраняет основной признак кристаллического состояния – решетчатую атомную структуру (кристаллическую решетку) и все определяемые ею свойства.

Кристаллические и аморфные твердые тела

Твердые тела чрезвычайно разнообразны по структуре своего строения, характеру сил связи частиц (атомов, ионов, молекул), физическим свойствам. Практическая потребность в тщательном изучении физических свойств твердых тел привела к тому, что примерно половина всех физиков на Земле занимается исследование твердых тел, созданием новых материалов с наперед заданными свойствами и разработкой их практического применения. Известно, что при переходе веществ из жидкого состояния в твердое возможны два различных вида затвердевания.

Кристаллизация вещества

В жидкости, охлажденной до определенной температуры, появляются кристаллики (области упорядоченно расположенных частиц) – центры кристаллизации, которые при дальнейшем отводе тепла от вещества растут за счет присоединения к ним частиц из жидкой фазы и охватывают весь объем вещества.

Затвердение вследствие быстрого повышения вязкости жидкости с понижением температуры.

Твердые тела, образующиеся при таком процессе затвердения, относятся к аморфным телам. Среди них различают вещества, у которых кристаллизация совсем не наблюдается (сургуч, воск, смола), и вещества, способные кристаллизоваться, например, стекло. Однако, вследствие того, что вязкость у них быстро растет с понижением температуры, затрудняется перемещение молекул, необходимое для формирования и роста кристаллов, и вещество успевает затвердеть до наступления кристаллизации. Такие вещества называются стеклообразными. Процесс кристаллизации этих веществ, протекает очень медленно в твердом состоянии, причем более легко, при высокой температуре. Известное явление "расстекловывания" или "затухания" стекла обусловлено образованием внутри стекла мелких кристалликов, на границах которых происходит отражение и рассеяние света, вследствие чего стекло становится непрозрачным. Похожая картина имеет место при "засахаривании" прозрачного сахарного леденца.

Аморфные тела можно рассматривать как жидкости с очень большим коэффициентом вязкости. Известно, что у аморфных тел можно наблюдать слабо выраженное свойство текучести. Если наполнить воронку кусками воска или сургуча, то через некоторое время, разное для различных температур, куски аморфного тела будут постепенно расплываться, принимая форму воронки и вытекать из нее в виде стержня. Даже у стекла обнаружено свойство текучести. Измерения толщины оконных стекол в старых зданиях показали, что за несколько веков стекло успело стечь сверху вниз. Толщина нижней части стекла оказалась немного большей верхней.

Строго говоря, твердыми телами следует назвать только кристаллические тела. Аморфные тела по некоторым свойствам, а главное по строению, аналогичны жидкостям: их можно рассматривать как сильно переохлажденные жидкости, имеющие очень большую вязкость.

Известно, что в отличие от дальнего порядка в кристаллах (упорядоченное расположение частиц сохраняется по всему объёму каждого кристаллического зерна), в жидкостях и аморфных телах наблюдается ближний порядок в расположении частиц. Это значит, что по отношению к любой частице, расположение ближайших соседних частиц является упорядоченным, хотя и выражено не так чётко, как в кристалле, но при ударении от данной частицы, расположение по отношению к ней других частиц, становится все менее упорядоченным и на расстоянии 3-х – 4 - х эффективных диаметров молекулы, порядок в расположении частиц полностью исчезает.

Сравнительные характеристики различных состояний вещества приведены в таблице 2.1.

Кристаллическая решетка

Для удобства описания правильной внутренней структуры твердых тел обычно пользуются понятием пространственной или кристаллической решетки. Она представляет собой пространственную сетку, в узлах которой располагаются частицы – ионы, атомы, молекулы, образующие кристалл.

На рисунке 2.1 изображена пространственная кристаллическая решетка. Жирными линиями выделен наименьший параллелепипед, параллельным перемещением которого вдоль трех координатных осей, совпадающих с направлением ребер параллелепипеда, может быть построен весь кристалл. Этот параллелепипед называется основной или элементарной ячейкой решётки. Атомы расположены в данном случае в вершинах параллелепипеда.

Для однозначной характеристики элементарной ячейки задается 6 величин: три ребра a, b, c и три угла между ребрами параллелепипеда a, b, g. Эти величины называются параметрами решетки. Параметры a, b, c – это межатомные расстояния в кристаллической решётке. Их численные значения порядка 10 -10 м.

Простейшим типом решёток являются кубические с параметрами a=b=c и a = b = g= 90 0 .

Индексы Миллера

Для символического обозначения узлов, направлений и плоскостей в кристалле используются так называемые индексы Миллера.

Индексы узлов

Положение любого узла в решётке относительно выбранного начала координат определяется тремя координатами X, Y, Z (рисунок 2.2).

Через параметры решетки эти координаты можно выразить следующим образом X= ma, Y= nb, Z= pc, где a, b, c – параметры решётки, m, n, p – целые числа.


Таким образом, если за единицу длин вдоль оси решетки взять не метр, а параметры решётки a, b, c (осевые единицы длины), то координатами узла будут числа m, n, p. Эти числа называются индексами узла и обозначаются .

Для узлов, лежащих в области отрицательных направлений координат, ставиться над соответствующим индексом знак минус. Например .

Индексы направления

Для задания направления в кристалле выбирается прямая, (рисунок 2.2) проходящая через начало координат. Её ориентация однозначно определяется индексом m n p первого узла, через который она проходит. Следовательно, индексы направления определяются тремя наименьшими целыми числами, характеризующими положение ближайшего от начала координат узла, лежащего на данном направлении. Индексы направления записывают следующим образом .

Рисунок 2.3 Основные направления в кубической решетке.

Семейство эквивалентных направлений обозначается ломаными скобками .

Например, семейство эквивалентных направлений включает направления

На рисунке 2.3 представлены основные направления в кубической решетке.

Индексы плоскости

Положение любой в пространстве определяется заданием трех отрезков ОА, ОВ, ОС (рисунок 2.4), которые она отсекает на осях выбранной системы координат. В осевых единицах длины отрезков будут: ; ; .


Три числа m n p вполне определяют положение плоскости S. Для получения Миллеровских индексов с этими числами нужно сделать некоторые преобразования.

Составим отношение обратных величин осевых отрезков и выразим его через отношение трех наименьших чисел h, k, l так, чтобы выполнялось равенство .

Числа h, k, l являются индексами плоскости. Для нахождения индексов плоскости отношение приводят к общему наименьшему знаменателю и знаменатель отбрасывают. Числители дробей и дают индексы плоскости. Поясним это на примере: m = 1, n = 2, p = 3. Тогда . Таким образом, для рассматриваемого случая h = 6, k = 3, l = 2. Миллеровские индексы плоскостей заключаются в круглые скобки (6 3 2). Отрезки m n p могут быть и дробными, но индексы Миллера и в этом случае выражаются целыми числами.

Пусть m =1, n = , p = , то .

При параллельной ориентации плоскости относительно какой-нибудь оси координат, индекс, соответствующий этой оси, равен нулю.

Если отрезок, отсекаемый на оси, имеет отрицательное значение, то соответствующий индекс плоскости тоже будет иметь отрицательный знак. Пусть h = - 6 , k = 3, l = 2, то такая плоскость в Миллеровских индексах плоскостей запишется .

Необходимо отметить, что индексы плоскости (h, k, l) задают ориентацию не какой-то конкретной плоскости, а семейства параллельных плоскостей, то есть, по существу, определяют кристаллографическую ориентацию плоскости.


На рисунке 2.5 изображены основные плоскости в кубической решетке.

Некоторые плоскости, отличающиеся по индексам Миллера, являются

эквивалентными в физическом и кристаллографическом смысле. В кубической решетке одним из примеров эквивалентности являются грани куба . Физическая эквивалентность состоит в том, что все эти плоскости обладают одинаковой структурой в расположении узлов решетки, а следовательно, и одинаковыми физическими свойствами. Кристаллографическая эквивалентность их в том, что эти плоскости совмещаются друг с другом при повороте вокруг одной из осей координат на угол, кратный .Семейство эквивалентных плоскостей задается фигурными скобками. Например символом обозначается все семейство граней куба.

Трехкомпонентная символика Миллера применяется для всех систем решеток, кроме гексагональной. В гексагональной решетке (рисунок 2.7 №8) узлы расположены в вершинах правильных шестигранных призм и в центрах их шестиугольных оснований. Ориентация плоскостей в кристаллах гексагональной системы описывается с помощью четырех осей координат х 1 , х 2 , х 3 , z, так называемыми индексами Миллера – Браве . Оси х 1 , х 2 , х 3 расходятся из начала координат под углом 120 0 . Ось z перпендикулярна к ним. Обозначение направлений по четырёхкомпонентной символике затруднительно и применяется редко, поэтому направления в гексагональной решётке задаются по трехкомпонентной символике Миллера.

Основные свойства кристаллов

Одним из основных свойств кристаллов является анизотропия. Под этим термином понимается изменение физических свойств в зависимости от направления в кристалле. Так кристалл может иметь для разных направлений различную прочность, твердость, теплопроводность, удельное сопротивление, показатель преломления и т.д. Анизотропия проявляется и в поверхностных свойствах кристаллов. Коэффициент поверхностного натяжения для разнородных граней кристалла имеет различную величину. При росте кристалла из расплава или раствора это является причиной различия скоростей роста разных граней. Анизотропия скоростей роста обуславливает правильную форму растущего кристалла. Анизотропия поверхностных свойств также имеет место в различии адсорбционной способности скоростей растворения, химической активности разных граней одного и того же кристалла. Анизотропия физических свойств является следствием упорядоченной структуры кристаллической решетки. В такой структуре плотность упаковки атомами плоскостей различна. Рисунок 2.6 поясняет сказанное.

Расположив плоскости в порядке убывания плотности заселения их атомами, получим следующий ряд: (0 1 0) (1 0 0) (1 1 0) (1 2 0) (3 2 0) . В наиболее плотно заполненных плоскостях атомы прочнее связаны друг с другом, так как расстояние между ними наименьшее. С другой стороны, наиболее плотно заполненные плоскости, будучи удаленными друг от друга на относительно большие расстояния, чем малозаселённые плоскости, будут слабее связаны друг с другом.

На основании изложенного можно сказать, что наш условный кристалл легче всего расколоть по плоскости (0 1 0), чем по другим плоскостям. В этом и проявляется анизотропия механической прочности. Другие физические свойства кристалла (тепловые, электрические, магнитные, оптические) также могут быть различными по разным направлениям. Важнейшим свойством кристаллов, кристаллических решёток и их элементарных ячеек является симметрия по отношению к определённым направлениям (осям) и плоскостям.

Симметрия кристаллов

Таблица 2.1

Кристаллическая система Соотношение ребер элементарной ячейки Соотношение углов в элементарной ячейке
Триклинная
Моноклинная
Ромбическая
Тетрагональная
Кубическая
Тригональная (робоэдрическая)
Гексагональная

В силу периодичности расположения частиц в кристалле он обладает симметрией. Это свойство заключается в том, что в результате некоторых мысленных операций система частиц кристалла совмещается сама с собой, переходит в положение не отличаемое от исходного. Каждой операции можно поставить в соответствие элемент симметрии. Для кристаллов существует четыре элемента симметрии. Это – ось симметрии, плоскость симметрии, центр симметрии и зеркально-поворотная ось симметрии.

В 1867 году русский кристаллограф А.В. Гадолин показал, что может существовать 32 возможные комбинации элементов симметрии. Каждая из таких возможных комбинаций элементов симметрии называется классом симметрии. Опытом было подтверждено, что в природе существуют кристаллы, относящиеся к одному из 32 классов симметрии. В кристаллографии указанные 32 класса симметрии в зависимости от соотношения параметров а, в, с, a, b, g объединяют в 7 систем(сингоний), которые носят следующие названия: Триклинная, моноклинная, ромбическая, тригональная, гексагональная, тетрагональная и кубическая системы. В таблице 2.1 приведены соотношения параметров для указанных систем.

Как показал французский кристаллограф Браве всего существует 14 типов решеток, принадлежащих различным кристаллическим системам.

Если узлы кристаллической решетки расположены только в вершинах параллелепипеда, представляющего собой элементарную ячейку, то такая решетка называется примитивной или простой (рисунок2.7№№ 1, 2, 4, 9, 10, 12), если, кроме того, имеются узлы в центре оснований параллелепипеда, то такая решетка называется базоцентрированной (рисунок2.7№№ 3, 5), если есть узел в месте пересечения пространственных диагоналей, то решетка называется объемоцентрированной (рисунок2.7№№ 6, 11, 13), а если имеются узлы в центре всех боковых граней – гранецентрированной (рисунок2.7 №№ 7, 14). Решетки, элементарные ячейки которых содержат дополнительные узлы внутри объема параллелепипеда или на его гранях, называются сложными.

Решетка Браве представляет собой совокупность одинаковых и одинаково расположенных частиц (атомов, ионов), которые могут быть совмещены друг с другом путем параллельного переноса. Не следует полагать, что одна решетка Браве может исчерпать собой все атомы (ионы) данного кристалла. Сложную структуру кристаллов можно представить как совокупность нескольких реше ток Браве, вдвинутых одна в другую. Например, кристаллическая решетка повареной соли NaCl (рисунок 2.8) состоит из двух кубических гранецентрированных решеток Браве, образованных ионами Na – и Cl + , смещенных относительно друг друга на половину ребра куба.

Вычисление периода решетки.

Зная химический состав кристалла и его пространственную структуру, можно вычислить период решетки этого кристалла. Задача сводиться к тому, чтобы установить число молекул (атомов, ионов) в элементарной ячейке, выразить ее объем через период решетки и, зная плотность кристалла, произвести соответствующий расчет. Важно отметить, что для многих типов кристаллической решетки большинство атомов принадлежит не одной элементарной ячейке, а входит одновременно в состав нескольких соседних элементарных ячеек.

Для примера определим период решетки хлористого натрия, решетка которого показана на рисунке 2.8.

Период решетки равен расстоянию между ближайшими одноименными ионами. Это соответствует ребру куба. Найдем число ионов натрия и хлора в элементарном кубе, объем которого равен d 3 , d – период решетки. По вершинам куба расположено 8 ионов натрия, но каждый из них является одновременно вершиной восьми смежных элементарных кубов, следовательно, данному объему принадлежит лишь часть иона, расположенного в вершине куба. Всего таких ионов натрия весемь, которые в совокупности составляют ион натрия. Шесть ионов натрия расположены в центрах граней куба, но каждый из них принадлежит рассматриваемому кубу только наполовину. В совокупности они составляют иона натрия. Таким образом, рассматриваемому элементарному кубу принадлежит четыре иона натрия.

Один ион хлора расположен на пересечении пространственных диагоналей куба. Он целиком принадлежит нашему элементарному кубу. Двенадцать ионов хлора размещены по серединам ребер куба. Каждый из них принадлежит объему d 3 на одну четверть, так как ребро куба одновременно является общим для четырех смежных элементарных ячеек. Таких ионов хлора рассматриваемому кубу принадлежит 12, которые в совокупности составляют иона хлора. Всего в элементарном объеме d 3 содержится 4 иона натрия и 4 иона хлора, то есть 4 молекулы хлористого натрия (n = 4).

Если 4 молекулы хлористого натрия занимают объем d 3 , то на один моль кристалла придется объем , где А – число Авогадро, n – число молекул в элементарной ячейке.

С другой стороны , где - масса моля, - плотность кристалла. Тогда откуда

(2.1)

При определении числа атомов в одной параллелепипедной элементарной ячейке (подсчет содержания) нужно руководствоваться правилом:

q если центр атомной сферы совпадает с одной из вершин элементарной ячейки, то от такого атома данной ячейке принадлежит , так как в любой вершине параллелепипеда одновременно сходятся восемь смежных параллелепипедов, к которым в равной мере относится вершинный атом (рисунок 2.9);

q от атома, расположенного на ребре ячейки принадлежит данной ячейке , так как ребро является общим для четырех параллелепипедов (рисунок 2.9);

q от атома, лежащего на грани ячейки, принадлежит данной ячейке , так как грань ячейки общая для двух параллелепипедов (рисунок 2.9);

q атом, расположенный внутри ячейки, принадлежит ей целиком (рисунок 2.9).

При использовании указанного правила форма параллелепипедной ячейки безразлична. Сформулированной правилом может быть распространено на ячейки любых систем.

Ход работы

У полученных моделей реальных кристаллов

1 Выделить элементарную ячейку.

2 Определить тип решетки Браве.

3 Произвести "подсчет содержания" для данных элементарных ячеек.

4 Определить период решетки.


Кристаллы - твердые тела, имеющие многогранную форму, а слагающие их частицы (атомы, молекулы, ионы) расположены закономерно. Поверхность кристаллов ограничена плоскостями, которые носят название граней. Места соединения граней называются рёбрами, точки пересечения которых называются вершинами или углами.

Грани, рёбра и вершины кристаллов связаны зависимостью: число граней + число вершин = число рёбер + 2. В большинстве случаев кристаллические вещества не имеют ясно огранённой формы, хотя и обладают закономерным внутренним кристаллическим строением.

Установлено, что кристаллы построены из материальных частиц - ионов, атомов или молекул, геометрически правильно расположенных в пространстве.

Основные свойства кристаллических веществ следующие:

1. Анизотропность (т.е. неравносвойственность).

Анизотропными называются такие вещества, которые имеют одинаковые свойства в параллельных направлениях, и неодинаковые - в непараллельных.

Различные физические свойства кристаллов, такие, как теплопроводность, твердость, упругость, распространение света и др., изменяются с изменением направления. В противоположность анизотропным, изотропные тела имеют одинаковые свойства во всех направлениях.

2. Способность самоограняться.

Этой специфической особенностью обладают только кристаллические вещества. При свободном росте кристаллы ограничиваются плоскими гранями и прямыми рёбрами, принимая многогранную форму.

3. Симметрия.

Симметрией называется закономерная повторяемость в расположении предметов или их частей на плоскости или в пространстве. Все кристаллы являются телами симметричными.

Структура кристалла, т.е. расположение в нём отдельных частиц, является симметричной. Следовательно, и сам кристалл будет обладать плоскостями и осями симметрии.

Материальные частицы (атомы, ионы, молекулы) в кристаллическом веществе размещаются не хаотично, а в определённом строгом порядке. Они расположены параллельными рядами, причём расстояния между материальными частицами этих рядов одинаковы. Эта закономерность в строении кристаллов выражается геометрически в виде пространственной решётки, являющейся как бы скелетом вещества.

Представить пространственную решётку можно как бесконечно большое число одинаковых по форме и размеру параллелепипедов, сдвинутых относительно другого и сложенных так, что они выполняют пространство без промежутков.

Вершины параллелепипедов, в которых находятся атомы, ионы или молекулы, называются узлами пространственной решётки, а прямые линии, проведённые через них, - рядами. Любая плоскость, которая проходит через три узла пространственной решётки (не лежащих на одной прямой), называется плоской сеткой. Элементарный параллелепипед, в вершинах которого находятся узлы решётки, носит название ячейки данной пространственной решётки.

Таким образом, кристаллическое вещество имеет строго закономерное (ретикулярное) строение. На приведенном ниже рисунке можно увидеть кристаллические решетки: а) - Алмаза, б) - графита.

Все важнейшие свойства кристаллических веществ являются следствием их внутреннего закономерного строения. Так, например, анизотропность кристаллов можно легко уяснить, если вести измерение каких-либо свойств в различных направлениях. Особенно чётко анизотропия выявляется в оптических свойствах кристаллов, на чём основан один из важнейших методов их изучения, применяемый в минералогии и петрографии.

Способность кристаллов самоограняться также является естественным следствием их внутреннего строения. Грани кристаллов соответствуют плоским сеткам, рёбра - рядам, а вершины углов - узлам пространственной решётки.

Пространственная решётка имеет бесконечное множество плоских сеток, рядов и узлов. Но реальным граням могут соответствовать лишь те плоские сетки решётки, которые имеют наибольшую ретикулярную плотность, т.е. на которых на единицу площади будет приходиться наибольшее число составляющих её частиц (атомов, ионов). Таких плоских сеток сравнительно немного, отсюда и кристаллы имеют вполне определённое число граней.

Лицей современных технологий управления

Реферат по физике

Кристаллы и их свойства

Выполнил:

Проверил:

Введение

Кристаллические тела являются одой из разновидностей минералов.

Кристаллическими называют твердые тела, физические свойства которых не одинаковы в различных направлениях, но совпадают в параллельных направлениях.

Семейство кристаллических тел состоит из двух групп - монокристаллов и поликристаллов. Первые иногда обладают геометрически правильной внешней формой, а вторые, подобно аморфным телам, не имеют присущей данному веществу определенной формы. Но в отличие от аморфных тел структура поликристаллов неоднородна, зерниста. Они представляют собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристаллов - кристаллитов. Поликристаллическую структуру чугуна, например, можно обнаружить, если рассмотреть с помощью лупы образец на изломе.

По размерам кристаллы бывают различными. Многие из них можно увидеть только в микроскоп. Но встречаются гигантские кристаллы массой в несколько тонн.

Строение кристаллов

Разнообразие кристаллов по форме очень велико. Кристаллы могут иметь от четырех до нескольких сотен граней. Но при этом они обладают замечательным свойством - какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определенными углами. Углы между соответственными гранями всегда одинаковы. Кристаллы каменной соли, например, могут иметь форму куба, параллелепипеда, призмы или тела более сложной формы, но всегда их грани пересекаются под прямыми углами. Грани кварца имеют форму неправильных шестиугольников, но углы между гранями всегда одни и те же - 120°.

Закон постоянства углов, открытый в 1669 г. датчанином Николаем Стено, является важнейшим законом науки о кристаллах - кристаллографии.

Измерение углов между гранями кристаллов имеет очень большое практическое значение, так как по результатам этих измерений во многих случаях может быть достоверно определена природа минерала. Простейшим прибором для измерения углов кристаллов является прикладной гониометр. Применение прикладного гониометра возможно только для исследования крупных кристаллов, невелика и точность измерений, выполненных с его помощью. Различить, например, кристаллы кальцита и селитры, сход­ные по форме и имеющие углы между соответственными гранями, равные 101° 55" первого и 102°41,5" у второго, с помощью прикладного гониометра очень трудно. Поэтому в лабораторных условиях измерений углов между гранями кристалла обычно выполняют с помощью более сложных и точных приборов.

Кристаллы правильной геометрической формы встречаются в природе редко. Совместное действие таких неблагоприятных факторов, как колебания температуры, тесное окружение соседними твердыми телами, не позволяют растущему кристаллу приобрести характерную для него форму. Кроме того, значительная часть кристаллов, имевших в далеком прошлом совершенную огранку, успела утратить ее под действием воды, ветра, трения о другие твердые тела. Так, многие округлые прозрачные зерна, которые можно найти в прибрежном песке, являются кристаллами кварца, лишившимися граней в результате длительного трения друг о друга.

Существует несколько способов, позволяющих узнать, является ли твердое тело кристаллом. Самый простой из них, но очень малопригодный для использования, был открыт в результате случайного наблюдения в конце XVIII в. Французский ученый Ренне Гаюи нечаянно уронил один из кристаллов своей коллекции. Рассмотрев осколки кристалла, он заметил, что многие из них представляют собой уменьшенные копии исходного образца.

Замечательное свойство многих кристаллов давать при дроблении осколки, подобные по форме исходному кристаллу, позволило Гаюи высказать гипотезу, что все кристаллы состоят из плотно уложенных рядами маленьких, невидимых в микроскоп, частиц, имеющих присущую данному веществу правильную геометрическую форму. Многообразие геометрических форм Гаюи объяснил не только различной формой «кирпичиков», из которых они состоят, но и различными способами их укладки.

Гипотеза Гаюи правильно отразила сущность явления - упорядоченное и плотное расположение структурных элементов кристаллов, но она не ответила на целый ряд важнейших вопросов. Существует ли предел сохранению формы? Если существует, то что представляет собой самый маленький «кирпичик»? Имеют ли атомы и молекулы вещества форму многогранников?

Еще в XVIII в. английский ученый Роберт Гук и голландский ученый Христиан Гюйгенс обратили внимание на возможность построения правильных многогранников из плотно укладываемых шаров. Они предположили, что кристаллы построены из шарообразных частиц - атомов или молекул. Внешние формы кристаллов согласно этой гипотезе являются следствием особенностей плотной упаковки атомов или молекул. Независимо от них к такому же выводу пришел в 1748 г. великий русский ученый М. В. Ломоносов.

При плотнейшей укладке шаров в один плоский слой каждый шар оказывается окруженным шестью другими шарами, центры которых образуют правильный шестиугольник. Если укладку второго слоя вести по лункам между шарами первого слоя, то второй слой окажется таким же, как и первый, только смещенным относительно него в пространстве.

Укладка третьего слоя шаров может быть осуществлена двумя способами (рис.1). В первом способе шары третьего слоя укладываются в лунки, находящиеся точно над шарами первого слоя, и третий слой оказывается точной копией первого. При последующем повторении укладки слоев этим способом получается структура, называемая гексагональной плотноупакованной структурой. Во втором способе шары третьего слоя укладываются в лунки, не находящиеся точно над шарами первого слоя. При этом способе упаковки получается структура, называемая кубической плотноупакованной структурой. Обе упаковки дают степень заполнения объема 74%. Никакой другой способ расположения шаров в пространстве при отсутствии их деформации большей степени заполнения объема не дает.

При укладке шаров ряд за рядом способом гексагональной плотной упаковки можно получить правильную шестигранную призму, второй способ упаковки ведет к возможности построения куба из шаров.

Если при построении кристаллов из атомов или молекул действует принцип плотной упаковки, то, казалось бы, в природе должны встречаться кристаллы только в виде шестигранных призм и кубов. Кристаллы такой формы действительно очень распространены. Гексагональный плотной упаковке атомов соответствует, например, форма кристаллов цинка, магния, кадмия. Кубической плотной упаковке соответствует форма кристаллов меди, алюминия, серебра, золота и ряда других металлов.

Но этими двумя формами многообразие мира кристаллов вовсе не ограничивается.

Существование форм кристаллов, не соответствующих принципу плотнейшей упаковки равновеликих шаров, может иметь разные причины.

Во-первых, кристалл может быть построен с соблюдением принципа плотной упаковки, но из атомов разных размеров или из молекул, имеющих форму, сильно отличающуюся от шарообразной (рис.2). Атомы кислорода и водорода имеют шарообразную форму. При соединении одного атома кислорода и двух атомов водорода происходит взаимное проникновение их электронных оболочек. Поэтому молекула воды имеет форму, значительно отличающуюся от шарообразной. При затвердевании воды плотная упаковка ее молекул не может осуществляться тем же способом, что и упаковка равновеликих шаров.

Во - вторых, отличие упаковки атомов или молекул от плотнейшей может быть объяснено существованием более сильных связей между ними по определенным направлениям. В случае атомных кристаллов направленность связей определяется структурой внешних электронных оболочек атомов, в молекулярных кристаллах - строением молекул.

Разобраться в устройстве кристаллов, пользуясь только объемными моделями их строения, довольно трудно. В связи с этим часто применяется способ изображения строения кристаллов с помощью пространственной кристаллической решетки. Она представляет собой пространственную сетку, узлы которой совпадают с положением центров атомов (молекул) в кристалле. Такие модели просматриваются насквозь, но по ним нельзя ничего узнать о форме и размерах частиц, слагающих кристаллы.

В основе кристаллической решетки лежит элементарная ячейка - фигура наименьшего размера, последовательным переносом которой можно построить весь кристалл. Для однозначной характеристики ячейки нужно задать размеры ее ребер а, в и с и величину углов a, b и g между ними. Длину одного из ребер называют постоянной кристаллической решетки, а всю совокупность шести величин, задающих ячейку, - параметрами ячейки.

На рисунке 3 показано, как можно застроить все пространство путем сложения элементарных ячеек.

Важно обратить внимание на то, что большинство атомов, а для многих типов кристаллической решетки и каждый атом принадлежит не одной элементарной ячейке, а входит одновременно в состав нескольких соседних элементарных ячеек. Рассмотрим, к примеру, элементарную ячейку кристалла каменной соли.

За элементарную ячейку кристалла каменной соли, из которой, переносом в пространстве можно построить весь кристалл, должна быть принята часть кристалла, представленная на рисунке. При этом нужно учесть, что от ионов, находящихся в вершинах ячейки, ей принадлежит лишь одна восьмая каждого из них; от ионов, лежащих на ребрах ячейки, ей принадлежит по одной четвертой каждого; от ионов, лежащих на гранях, на долю каждой из двух соседних элементарных ячеек приходится по половине иона.

Подсчитаем число ионов натрия и число ионов хлора, входящих в состав одной элементарной ячейки каменной соли. Ячейке целиком принадлежит один ион хлора, расположенный в центре ячейки, и по одной четверти каждого из 12 ионов, расположенных на ребрах ячейки. Всего ионов хлора в одной ячейке 1+12*1/4=4. Ионов натрия в элементарной ячейке-шесть половинок на гра­нях и восемь восьмушек в вершинах, всего 6*1/2+8*1/8=4.

Кристаллы одни из самых красивых и загадочных творений природы. Трудно сейчас назвать тот далекий год на заре развития человечества, когда внимательный взгляд одного из наших предков выделил среди земных пород небольшие блестящие камни, похожие на сложные геометрические фигуры, которые вскоре стали служить драгоценными украшениями.

Пройдет несколько тысячелетий, и люди осознают, что вместе с красотой природных самоцветов в их жизнь вошли кристаллы

Кристаллы встречаются нам повсюду. Мы ходим по кристаллам, строим из кристаллов, обрабатываем кристаллы, выращиваем кристаллы в лаборатории, создаем приборы, широко применяем кристаллы в науке и технике, лечимся кристаллами, находим их в живых организмах, проникаем в тайны строения кристаллов.

Кристаллы, залегающие в земле бесконечно разнообразны. Размеры природных многогранников достигают подчас человеческого роста и более. Встречаются кристаллы-лепестки тоньше бумаги и кристаллы пласты в несколько метров толщиной. Бывают кристаллы маленькие, узкие, острые, как иголки, и бывают громадные, как колонны. В некоторых местностях Испании такие кристаллические колонны ставят для ворот. В музее Горного института С. Петербурга хранится кристалл горного хрусталя (кварца) высотой более метра и весом больше тонны. Многие кристаллы идеально чисты и прозрачны как вода

Кристаллы льда и снега

Кристаллы замерзающей воды, то есть лёд и снег, известны всем. Эти кристаллы почти полгода покрывают необозримые пространства Земли, лежат на вершинах гор и сползают с них ледниками, плавают айсбергами в океанах. Ледяной покров реки, массив ледника или айсберга – это, конечно, не один большой кристалл. Плотная масса льда обычно поликристаллическая, то есть состоит из множества отдельных кристаллов; их не всегда различишь, потому, что они мелкие и все срослись вместе. Иногда эти кристаллы можно различить в тающем льду. Каждый отдельный кристаллик льда, каждая снежинка, хрупка и мала. Часто говорят, что снег падает, как пух. Но даже это сравнение, можно сказать, слишком «тяжело»: снежинка легче, чем пушинка. Десяток тысяч снежинок составляют вес одной копейки. Но, соединяясь в огромных количествах вместе, снежные кристаллы могут остановить поезд, образовывая снежные завалы.

Кристаллики льда могут в несколько минут погубить самолет. Обледенение - страшный враг самолетов – тоже результат роста кристаллов.

Здесь мы имеем дело с ростом кристаллов из переохлажденных паров. В верхних слоях атмосферы, водяные пары или капли воды, могут долго храниться в переохлажденном состоянии. Переохлаждение в облаках доходит до -30. Но как только в эти переохлажденные облака врывается летящий самолет, тот час, же начинается бурная кристаллизация. Мгновенно самолет оказывается облепленным грудой, быстро растущих кристаллов.

Драгоценные камни

С самых ранних времен человеческой культуры люди ценили красоту драгоценных камней. Алмаз, рубин, сапфир и изумруд – самые дорогие и излюбленные камни. За ними следует александрит, топаз, горный хрусталь, аметист, гранит, аквамарин, хризолит. Высоко ценятся небесно – голубая бирюза, нежный жемчуг и переливчатый опал.

Драгоценным камням издавна приписывали целебные и разные сверхъестественные свойства, связывали с ними многочисленные легенды.

Драгоценные камни служили мерой богатств князей и императоров.

В музеях Московского Кремля можно любоваться богатой коллекцией драгоценных камней, некогда принадлежащих царской семье и небольшой кучке богачей. Известно, что шляпа князя Потемкина – Таврического так была усеяна бриллиантами и из-за этого так тяжела, что владелец не мог носить ее на голове, адъютант нес шляпу в руках за князем.

В числе сокровищ алмазного фонда России хранится один из величайших и красивейших в мире алмазов «Шах».

Алмаз был прислан персидским шахом русскому царю НиколаюI в качестве выкупа за убийство русского посла Александра Сергеевича Грибоедова, автора комедии «Горе от ума».

Наша родина богата самоцветами, чем – либо другая страна мира.

Кристаллы во Вселенной

Нет ни одного места на Земле, где не было бы кристаллов. На других планетах, на далеких звездах все время непрерывно возникают, растут и разрушаются кристаллы.

В космических пришельцах – метеоритах встречаются кристаллы, известные на Земле, и на Земле не встречающиеся. В громадном метеорите, упавшем в феврале 1947 года на Дальнем Востоке, найдены кристаллы никелистого железа длиной в несколько сантиметров, между тем как в земных условиях природные кристаллы этого минерала столь малы, что разглядеть их можно только в микроскоп.

2. Строение и свойства кристаллов

2. 1 Что такое кристаллы, формы кристаллов

Кристаллы образуются при довольно низкой температуре, когда тепловое движение настолько замедленно, что не разрушает определенной структуры. Характерной особенностью твердого состояния вещества является постоянство его формы. Это значит что, составляющие его частицы (атомы, ионы, молекулы) жестко связаны между собой и их тепловое движение происходит как колебание около неподвижных точек, определяющих равновесное расстояние между частицами. Относительное положение точек равновесия во всем веществе должно обеспечивать минимум энергии всей системы, что реализуется при их определенном упорядоченном расположении в пространстве, то есть в кристалле.

Кристаллом, по определению Г. В Вульфа, называется тело, ограниченное в силу своих внутренних свойств плоскими поверхностями – гранями.

В зависимости от относительных размеров частиц, образующих кристалл, и типа химической связи между ними кристаллы имеют различную форму, определенную способом соединения частиц.

В соответствии с геометрической формой кристаллов существуют следующие кристаллические системы:

1. кубическая (многие металлы, алмаз, NaCl, KCl).

2. Гексагональная (H2O, SiO2, NaNO3),

3. Тетрагональное (S).

4. Ромбическая (S, KNO3, K2SO4).

5. Моноклинная (S, KClO3, Na2SO4*10H2O).

6. Триклинная (K2C2O7, CuSO4*5 H2O).

2. 2 Физические свойства кристаллов

Для кристалла данного класса можно указать симметрию его свойств. Так кубические кристаллы изотропны в отношении прохождения света, электро и теплопроводности, теплого расширения, но они анизотропные в отношении упругих, электрических свойств. Наиболее анизотропные кристаллы низких сингоний.

Все свойства кристаллов связаны между собой и обусловлены атомно – кристаллической структурой, силами связи между атомами и энергетическим спектров электронов. Некоторые свойства, например: электрические, магнитные и оптические существенно зависят от распределения электронов по уровням энергии. Многие свойства кристаллов решающим образом зависят не только от симметрии, но и от количества дефектов (прочность, пластичность, окраска и другие свойства).

Изотропия (от греческого isos-равный, одинаковый и tropos-поворот, направление) независимость свойств среды от направления.

Анизотропия (от греческого anisos-неравный и tropos-направление) зависимость свойств вещества от направления.

Кристаллы заселены множеством различных дефектов. Дефекты как бы оживляют кристалл. Благодаря наличию дефектов, кристалл обнаруживает «память» о событиях, участником которых он стал ил когда был, дефекты помогают кристаллу «приспосабливаться» к окружающей среде. Дефекты качественно меняют свойства кристаллов. Даже очень малых количествах, дефекты сильно влияют на те физические свойства, которые совсем или почти отсутствуют в идеальном кристалле, являясь, как правило, «энергетически выгодными», дефекты создают вокруг себя области повышенной физико-химической активности.

3. Выращивание кристаллов

Выращивание кристаллов увлекательное занятие и, пожалуй, самое простое, доступное и недорогое для начинающих химиков, максимально безопасно с точки зрения ТБ. Тщательная подготовка к выполнению оттачивает навыки в умении аккуратно обращаться с веществами и правильно организовывать план своей работы.

Рост кристаллов можно разделить на две группы.

3. 1 Естественное образование кристаллов в природе

Образование кристаллов в природе (естественный рост кристаллов).

Более 95% всех горных пород, из которых сложена земная кора, образовались при кристаллизации магмы. Магма представляет собой смесь многих веществ. У всех этих веществ разные температуры кристаллизации. Поэтому при отстывании магма разделяется на части: первым в магме возникают и начинают расти кристаллы того вещества, у которого температура кристаллизации самая высокая.

Кристаллы образуются и в соляных озерах. Летом вода озер быстро испаряется и из нее начинают выпадать кристаллы солей. Одно лишь озеро Баскунчак в Астраханской степи могло бы обеспечит солью многие государства на 400 лет.

Некоторые животные организмы представляют собой «фабрики» кристаллов. Кораллы образуют целые острова, сложенные из микроскопических кристаллов углекислой извести.

Драгоценный камень жемчуг тоже построен из кристаллов, которые вырабатывает моллюск жемчужница.

Желчные камни в печени, камни в почках и мочевом пузыре, вызывающие серьезные болезни человека, представляют собой кристаллы.

3. 2 Искусственное выращивание кристаллов

Искусственный рост кристаллов (выращивание кристаллов в лабораториях, заводах).

Выращивание кристаллов – это физико-химический процесс.

Растворимость веществ в разных растворителях можно отнести к физическим явлениям, так как происходит разрушение кристаллической решетки, теплота при этом поглощается (экзотермический процесс).

Происходит и химический процесс – гидролиз (реакция солей с водой).

При выборе вещества важно учитывать следующие факты:

1. Вещество не должно быть токсичным

2. Вещество должно быть стабильным и достаточно химически чистым

3. Способность вещества растворяться в доступном растворителе

4. Образующиеся кристаллы должны быть стабильны

Существует несколько методик выращивания кристаллов.

1. Приготовление пересыщенных растворов с дальнейшей кристаллизацией в открытом сосуде (самая распространенная методика) или закрытом. Закрытый – промышленный метод, для его осуществления используется огромный стеклянный сосуд с термостатом, имитирующим водяную баню. В сосуде находится раствор с готовой затравкой, и каждые 2 дня температура понижается на 0,1С, этот способ позволяет получать технологически правильные и чистые монокрсталлы. Но это требует высоких затрат электроэнергии и дорогое оборудование.

2. Испарение насыщенного раствора открытым способом, когда постепенное испарение растворитель, например, из неплотно закрытого сосуда с раствором соли, может само собой породит кристаллы. Закрытый способ подразумевает выдерживание насыщенного раствора в эксикаторе над сильным осушителем (оксид фосфора (V) или концентрированная серная кислота).

II. Практическая часть.

1. Выращивание кристаллов из насыщенных растворов

Основой выращивания кристаллов является насыщенный раствор.

Приборы и материалы: стакан на 500мл, фильтровальная бумага, кипяченая вода, ложка, воронка, соли CuSO4 * 5H2O, K2CrO4 (хромат калия), K2Cr2O4 (дихромат калия), алюминокалиевые квасцы, NiSO4(сульфат никеля), NaCl(хлорид натрия), C12H22O11(сахар).

Для приготовления раствора соли берем чистый, хорошо вымытый стакан на 500мл. наливаем в него горячую (t=50-60C) кипяченую воду 300мл. в стакан засыпаем вещество небольшими порциями, перемешиваем, добиваясь полного растворения. Когда раствор «насытится», то есть вещество будет оставаться на дне, добавить еще вещества и оставить раствор при комнатной температуре на сутки. Чтобы в раствор не попала пыль накрываем стакан фильтровальной бумагой. Раствор должен получиться прозрачным, на дне стакана выпасть избыток вещества в виде кристаллов.

Готовый раствор слить с осадка кристаллов и поместить в термостойкую колбу. Туда же поместить немного химически чистого вещества (выпавшие кристаллы). Нагреваем колбу на водяной бане до полного растворения. Полученный раствор еще греем 5 минут при t=60-70С, переливаем в чистый стакан, обворачиваем полотенцем, оставляем остывать. Через сутки на дне стакана образуются небольшие кристаллы.

2. Создание презентации «Кристаллы»

Полученные кристаллы фотографируем, используя возможности интернета готовим презентацию и коллекцию «Кристаллы».

Изготовление картины с использованием кристаллов

Кристаллы всегда славились своей красотой, потому их используют в качестве украшений. Ими украшают одежду, посуду, оружие. Кристаллы можно использовать для создания картин. Мною нарисован пейзаж «Закат». В качестве материала для изготовления пейзажа использованы выращенные кристаллы.

Заключение

В данной работе была рассказана лишь малая часть того, что известно о кристаллах в настоящее время, однако и эта информация показала, насколько неординарны и загадочны кристаллы по своей сущности.

В облаках, на вершинах гор, в песчаных пустынях, морях и океанах, в научных лабораториях, к клетках растений, в живых и мертвых организмах – везде встретим мы кристаллы.

Но может кристаллизация вещества совершается только на нашей планете? Нет, мы знаем теперь, что на других планетах и далеких звездах все время непрерывно возникают, растут разрушаются кристаллы. Метеориты, космические посланцы, тоже состоят из кристаллов, причем иногда в их состав входят кристаллические вещества, на Земле не встречающиеся.

Кристаллы везде. Люди привыкли использовать кристаллы, делать из них украшения, любоваться ими. Теперь, когда изучены методы искусственного выращивания кристаллов, область их применения расширилась, и, возможно, будущее новейших технологий принадлежит кристаллам и кристаллическим агрегатам.



Рассказать друзьям