Эволюция центральной нервной системы. Развитие цнс в фило - и онтогенезе

💖 Нравится? Поделись с друзьями ссылкой

Нервная система имеет эктодермальное происхождение, т. е. развивается из внешнего зачаточного листка толщиной в одно­клеточный слой вследствие образования и деления медуллярной трубки. В эволюции нервной системы схематично можно выде­лить такие этапы.

1. Сетевидная, диффузная, или асинаптическая, нервная система. Возникает она у пресноводной гидры, имеет форму сетки, которая образуется соединением отростчатых клеток и равномерно распределяется по всему телу, сгущаясь вокруг ро­товых придатков. Клетки, которые входят в состав этой сетки, существенно отличаются от нервных клеток высших животных: они маленькие по размеру, не имеют характерного для нервной клетки ядра и хроматофильной субстанции. Эта нервная систе­ма проводит возбуждения диффузно, по всем направлениям, обеспечивая глобальные рефлекторные реакции. На дальней­ших этапах развития многоклеточных животных она теряет зна­чение единой формы нервной системы, но в организме человека сохраняется в виде мейснеровского и ауэрбаховского сплетений пищеварительного тракта.

2. Ганглиозная нервная система (в червеобразных) синаптическая, проводит возбуждение в одном направлении и обе­спечивает дифференцированные приспособительные реакции. Этому отвечает высшая степень эволюции нервной системы: развиваются специальные органы движения и рецепторные ор­ганы, в сетке возникают группы нервных клеток, в телах которых содержится хроматофильная субстанция. Она имеет свойство распадаться во время возбуждения клеток и восстанавливаться в состоянии покоя. Клетки с хроматофильной субстанцией распо­лагаются группами или узлами ганглиями, поэтому получили название ганглиозных. Итак, на втором этапе развития нервная система из сетевидной превратилась в ганглиозно-сетевидную. У человека этот тип строения нервной системы сохранился в виде паравертебральных стволов и периферических узлов (ганглиев), которые имеют вегетативные функции.

3. Трубчатая нервная система (в позвоночных) отличается от нервной си­стемы червеобразных тем, что в позвоночных возникли скелетные моторные аппараты с поперечно-полосатыми мышцами. Это обусловило развитие цен­тральной нервной системы, отдельные части и структуры которой формиру­ются в процессе эволюции постепенно и в определенной последовательности. Сначала из каудальной, недифференцированной части медуллярной трубки образуется сегментарный аппарат спинного мозга, а из передней части мозго­вой трубки вследствие кефализации (от греч. kephale - голова) формируются основные отделы головного мозга. В онтогенезе человека они последователь­но развиваются по известной схеме: сначала формируются три первичных мозговых пузыря: передний (prosencephalon), средний (mesencephalon) и ромбовидный, или задний (rhombencephalon). В дальнейшем из переднего мозгового пузыря образуются конечный (telencephalon) и промежуточный (diencephalon) пузыри. Ромбовидный мозговой пузырь также фрагментируется на два: задний (metencephalon) и продолговатый (myelencephalon). Таким образом, стадия трех пузырей сменяется стадией образования пяти пузырей, из которых формируются разные отделы центральной нервной системы: из telencephalon большие полушария мозга, diencephalon промежуточный мозг, mesencephalon - средний мозг, metencephalon - мост мозга и мозжечок, myelencephalon - продолговатый мозг.

Эволюция нервной системы позвоночных обусловила развитие новой системы, способной образовывать временные соединения функционирую­щих элементов, которые обеспечиваются расчленением центральных нерв­ных аппаратов на отдельные функциональные единицы нейроны. Следо­вательно, с возникновением скелетной моторики в позвоночных развилась нейронная цереброспинальная нервная система, которой подчинены более древние образования, что сохранились. Дальнейшее развитие централь­ной нервной системы обусловило возникновение особых функциональных взаимосвязей между головным и спинным мозгом, которые построены по принципу субординации, или соподчинения. Суть принципа субординации состоит в том, что эволюционно новые нервные образования не только ре­гулируют функции более древних, низших нервных структур, а и соподчи­няют их себе путем торможения или возбуждения. Причем субординация существует не только между новыми и древними функциями, между голов­ным и спинным мозгом, но и наблюдается между корой и подкоркой, между подкоркой и стволовой частью мозга и в определенной степени даже между шейным и поясничным утолщениями спинного мозга. С появлением новых функций нервной системы древние не исчезают. При выпадении новых функций появляются древние формы реакции, обусловленные функцио­нированием более древних структур. Примером может служить появление субкортикальных или стопных патологических рефлексов при поражении коры большого мозга.

Таким образом, в процессе эволюции нервной системы можно выделить несколько основных этапов, которые являются основными в ее морфологи­ческом и функциональном развитии. Из морфологических этапов следует назвать централизацию нервной системы, кефализацию, кортикализацию в хордовых, появление симметричных полушарий - у высших позвоночных. В функциональном отношении эти процессы связаны с принципом субор­динации и возрастающей специализацией центров и корковых структур. Функциональной эволюции соответствует эволюция морфологическая. При этом филогенетически более молодые структуры мозга являются более ранимыми и в меньшей степени обладают способностью к восстановлению.

Нервная система имеет нейронный тип строения, т. е. состоит из нерв­ных клеток - нейронов, которые развиваются из нейробластов.

Нейрон является основной морфологической, генетической и функцио­нальной единицей нервной системы. Он имеет тело (перикарион) и большое количество отростков, среди которых различают аксон и дендриты. Аксон, или нейрит, - это длинный отросток, который проводит нервный импульс в направлении от тела клетки и заканчивается терминальным разветвлением. Он всегда в клетке лишь один. Дендриты - это большое количество коротких древообразных разветвленных отростков. Они передают нервные импульсы по направлению к телу клетки. Тело нейрона состоит из цитоплазмы и ядра с одним или несколькими ядрышками. Специальными компонентами нерв­ных клеток являются хроматофильная субстанция и нейрофибриллы. Хроматофильная субстанция имеет вид разных по размерам комочков и зерен, содержится в теле и дендритах нейронов и никогда не выявляется в аксонах и начальных сегментах последних. Она является показателем функциональ­ного состояния нейрона: исчезает в случае истощения нервной клетки и вос­станавливается в период покоя. Нейрофибриллы имеют вид тонких нитей, которые размещаются в теле клетки и ее отростках. Цитоплазма нервной клетки содержит также пластинчатый комплекс (сетчатый аппарат Гольджи), митохондрии и другие органоиды. Сосредоточение тел нервных кле­ток формируют нервные центры, или так называемое серое вещество.

Нервные волокна - это отростки нейронов. В границах центральной нерв­ной системы они образуют проводящие пути - белое вещество мозга. Нервные волокна состоят из осевого цилиндра, который является отростком нейрона, и оболочки, образованной клетками олигодендроглии (нейролемоцитами, шванновскими клетками). В зависимости от строения оболочки, нервные во­локна делятся на миелиновые и безмиелиновые. Миелиновые нервные волокна входят в состав головного и спинного мозга, а также периферических нервов. Они состоят из осевого цилиндра, миелиновой оболочки, нейролемы (шванновской оболочки) и базальной мембраны. Мембрана аксона служит для про­ведения электрического импульса и в участке аксональных окончании выде­ляет медиатор, а мембрана дендритов - реагирует на медиатор. Кроме того, она обеспечивает распознавание других клеток в процессе эмбрионального развития. Поэтому каждая клетка отыскивает определенное ей место в сети нейронов. Миелиновые оболочки нервных волокон не сплошные, а прерыва­ются промежутками сужений - узлами (узловые перехваты Ранвье). Ионы могут проникать в аксон только в области перехватов Ранвье и в участке на­чального сегмента. Безмиелиновые нервные волокна типичны для автономной (вегетативной) нервной системы. Они имеют простое строение: состоят из осевого цилиндра, нейролеммы и базальной мембраны. Скорость передачи нервного импульса миелиновыми нервными волокнами значительно выше (до 40-60 м/с), чем немиелиновыми (1-2 м/с).

Основными функциями нейрона являются восприятие и переработка ин­формации, проведение ее к другим клеткам. Нейроны выполняют также тро­фическую функцию, влияя на обмен веществ в аксонах и дендритах. Различа­ют следующие виды нейронов: афферентные, или чувствительные, которые воспринимают раздражение и трансформируют его в нервный импульс; ассо­циативные, промежуточные, или интернейроны, которые передают нервный импульс между нейронами; эфферентные, или моторные, которые обеспечи­вают передачу нервного импульса на рабочую структуру. Эта классификация нейронов основывается на положении нервной клетки в составе рефлектор­ной дуги. Нервное возбуждение по ней передается лишь в одном направле­нии. Это правило получило название физиологической, или динамической, поляризации нейронов. Что касается изолированного нейрона, то он способен проводить импульс в любом направлении. Нейроны коры большого мозга по морфологическим признакам делятся на пирамидные и непирамидные.

Нервные клетки контактируют между собой через синапсы специали­зированные структуры, где нервный импульс переходит из нейрона на ней­рон. Большей частью синапсы образуются между аксонами одной клетки и дендритами другой. Различают также другие типы синаптических контактов: аксосоматические, аксоаксональные, дендродентритные. Итак, любая часть нейрона может образовывать синапс с разными частями другого нейрона. Типичный нейрон может иметь от 1000 до 10 000 синапсов и получать ин­формацию от 1000 других нейронов. В составе синапса различают две части -пресинаптическую и постсинаптическую, между которыми находится синаптическая щель. Пресинаптическая часть образована терминальной веточкой аксона той нервной клетки, которая передает импульс. Большей частью она имеет вид небольшой пуговицы и покрыта пресинаптической мембраной. В пресинаптических окончаниях находятся везикулы, или пузырьки, которые содержат так называемые медиаторы. Медиаторами, или нейротрансмит-терами, являются разные биологически активные вещества. В частности, медиатором холинергических синапсов является ацетилхолин, адренергических - норадреналин и адреналин. Постсинаптическая мембрана содержит особый белок рецептор медиатора. На высвобождение нейромедиатора влияют механизмы нейромодуляции. Эту функцию выполняют нейропептиды и нейрогормоны. Синапс обеспечивает односторонность проведения нервного импульса. По функциональным особенностям различают два вида синапсов - возбуждающие, которые способствуют генерации импульсов (де­поляризация), и тормозные, которые могут тормозить действие сигналов (ги­перполяризация). Нервным клеткам присущ низкий уровень возбуждения.

Испанский нейрогистолог Рамон-и-Кахаль (1852-1934) и итальянский гистолог Камилло Гольджи (1844-1926) за разработку учения о нейроне как о морфологической единице нервной системы были удостоены Нобелевской премии в области медицины и физиологии (1906 г.). Суть разработанной ими нейронной доктрины заключается в следующем.

1. Нейрон является анатомической единицей нервной системы; он состо­ит из тела нервной клетки (перикарион), ядра нейрона и аксона / дендритов. Тело нейрона и его отростки покрыты цитоплазматической частично про­ницаемой мембраной, которая выполняет барьерную функцию.

2. Каждый нейрон является генетической единицей, развивается из не­зависимой эмбриональной клетки-нейробласта; генетический код нейрона точно определяет его структуру, метаболизм, связи, которые генетически запрограммированы.

3. Нейрон является функциональной единицей, способной воспринимать стимул, генерировать его и передавать нервный импульс. Нейрон функцио­нирует как единица лишь в коммуникационном звене; в изолированном со­стоянии нейрон не функционирует. Нервный импульс передается на другую клетку через терминальную структуру - синапс, с помощью нейротранс-миттера, который может тормозить (гиперполяризация) или возбуждать (деполяризация) последующие нейроны на линии. Нейрон генерирует или не генерирует нервный импульс в соответствии с законом «все или ничего».

4. Каждый нейрон проводит нервный импульс лишь в одном направле­нии: от дендрита к телу нейрона, аксону, синаптическому соединению (ди­намическая поляризация нейронов).

5. Нейрон является патологической единицей, т. е. реагирует на повреж­дение как единица; при сильных повреждениях нейрон гибнет как клеточная единица. Процесс дегенерации аксона или миелиновой оболочки дистальнее места повреждения называется валлеровской дегенерацией (перерождением).

6. Каждый нейрон является регенеративной единицей: у человека реге­нерируют нейроны периферической нервной системы; проводящие пути в пределах центральной нервной системы эффективно не регенерируют.

Таким образом, в соответствии с нейронной доктриной нейрон является анатомической, генетической, функциональной, поляризованной, патологи­ческой и регенеративной единицей нервной системы.

Кроме нейронов, которые образовывают паренхиму нервной ткани, важ­ным классом клеток центральной нервной системы являются глиальные клетки (астроциты, олигодендроциты и микроглиоциты), количество ко­торых в 10-15 раз превышает количество нейронов и которые формируют нейроглию. Ее функции: опорная, разграничительная, трофическая, секре­торная, защитная. Глиальные клетки принимают участие в высшей нервной (психической) деятельности. При их участии осуществляется синтез медиа­торов центральной нервной системы. Нейроглия играет важную роль так­же в синаптической передаче. Она обеспечивает структурную и метаболи­ческую защиту для сетки нейронов. Итак, между нейронами и глиальными клетками существуют разнообразные морфофункциональные связи.

Перинатальное поражение нервной системы - именно такой диагноз все чаще ставится новорожденным малышам. За этими словами скрывается довольно большая группа различных поражений головного и спинного мозга, возникающих при вынашивании и рождении младенца, а также в первые дни его жизни.

Периоды заболевания
В течение данного заболевания, несмотря на многообразие вызывающих его причин, принято выделять три периода: острый (1-й месяц жизни), восстановительный, который подразделяется на ранний (со 2-го по 3-й месяцы жизни) и поздний (с 4 месяцев до 1 года у доношенных, до 2 лет - у недоношенных), и исход заболевания. В каждом из этих периодов перинатальные повреждения имеют различные клинические проявления - синдромы, причем у одного ребенка может одновременно присутствовать несколько из них. Выраженность каждого синдрома и их сочетание позволяют определить тяжесть повреждения нервной системы, назначить правильное лечение и прогнозировать дальнейшее развитие заболевания.

Синдромы острого периода
К синдромам острого периода относятся коматозный, судорожный, гипертензионно-гидроцефальный синдромы, а также угнетение ЦНС и повышенная нервно-рефлекторная возбудимость.
При легких повреждениях ЦНС у новорожденных чаще всего отмечается синдром повышенной нервно-рефлекторной возбудимости, который проявляется вздрагиванием, повышением (гипертонусом) или понижением (гипотонией) мышечного тонуса, усилением рефлексов, тремором (дрожанием) подбородка и конечностей, беспокойным поверхностным сном, частым беспричинным плачем.
При поражении ЦНС средней степени тяжести в первые дни жизни возникает угнетение ЦНС в виде снижения двигательной активности и мышечного тонуса, ослабления рефлексов новорожденных, в том числе сосания и глотания. К концу 1-го месяца жизни угнетение ЦНС постепенно исчезает, а у некоторых детей сменяется повышенным возбуждением. При средней степени поражения ЦНС наблюдаются нарушения в работе внутренних органов и систем (вегетативно-висцеральный синдром). Из-за несовершенства регуляции тонуса сосудов появляется неравномерная окраска (мраморность) кожи. Кроме того, присутствуют нарушения ритма дыхания и сердечных сокращений и дисфункции желудочно-кишечного тракта в виде неустойчивого стула, запоров, частых срыгиваний, метеоризма.
Нередко у детей в остром периоде заболевания появляются признаки гипертензионно-гидроцефального синдрома, который характеризуется избыточным скоплением жидкости в пространствах головного мозга, содержащих спинномозговую жидкость, что приводит к повышению внутричерепного давления. Основными симптомами, которые могут заметить не только врачи, но и родители, являются быстрые темпы прироста окружности головы ребенка (более 1 см за неделю), значительный размер и выбухание большого родничка, расхождение черепных швов, беспокойство, частые срыгивания, необычные движения глаз (нистагм).
Резкое угнетение деятельности ЦНС и других органов и систем присуще крайне тяжелому состоянию новорожденного с развитием коматозного синдрома (отсутствия сознания и координирующей функции головного мозга). Такое состояние требует неотложной помощи в условиях реанимации.

Синдромы восстановительного периода
В восстановительном периоде родителей должны насторожить бедность мимики, позднее появление улыбки, сниженный интерес к игрушкам и предметам окружающей среды, а также слабый монотонный крик, задержка появления гуления и лепета. Возможно, все это является следствием поражений ЦНС, при которых, наряду с прочими, возникают синдромы двигательных нарушений и задержки психомоторного развития.

Исходы заболевания
К годовалому возрасту у большинства детей проявления перинатальных поражений ЦНС постепенно исчезают. К частым последствиям перинатальных поражений относят:
. задержку психического, моторного или речевого развития;
. цереброастенический синдром (перепады настроения, двигательное беспокойство, тревожный сон, метеозависимость);
. синдром гиперактивности с дефицитом внимания: агрессивность, импульсивность, трудности концентрации и поддержания внимания, нарушения обучения и памяти.
Наиболее неблагоприятными исходами являются эпилепсия, гидроцефалия, детский церебральный паралич, свидетельствующие о тяжелых перинатальных повреждениях ЦНС.

Причины нарушения в работе ЦНС
Специалисты выделяют четыре группы перинатальных поражений ЦНС:
1) гипоксические, при которых основным повреждающим фактором является гипоксия (недостаток кислорода);
2) травматические, возникающие в результате механического повреждения тканей головного и спинного мозга в родах в первые минуты и часы жизни ребенка;
3) дисметаболические и токсико-метаболические, основным повреждающим фактором которых являются нарушения обмена веществ в организме ребенка, а также повреждения в результате употребления беременной токсических веществ (лекарств, алкоголя, наркотиков, курения);
4) поражения ЦНС при инфекционных заболеваниях перинатального периода, когда основное повреждающее воздействие оказывает инфекционный агент (вирусы, бактерии и другие микроорганизмы).

Помощь детям с поражениями ЦНС
Младенцам с повреждением ЦНС лечение и реабилитация необходимы в самые ранние сроки, поскольку в первые месяцы жизни ребенка многие из нарушений обратимы без серьезных последствий. Именно в этот период восстановительные способности детского организма особенно велики: еще возможно дозревание нервных клеток мозга взамен погибших после гипоксии, образование между ними новых связей, которые станут отвечать за нормальное развитие малыша.
Первую помощь крохам оказывают еще в родильном доме. Этот этап включает в себя восстановление и поддержание работы жизненно важных органов (сердца, легких, почек), нормализацию обменных процессов, лечение синдромов повреждения ЦНС (угнетения или возбуждения, судорог, отека мозга, повышенного внутричерепного давления). Основу лечения составляют медикаментозная и интенсивная терапия.
На фоне лечения состояние ребенка постепенно улучшается, однако многие симптомы поражения ЦНС могут сохраняться, что требует перевода в отделение патологии новорожденных и недоношенных детей либо в неврологическое отделение детской больницы. На втором этапе лечения назначают препараты, направленные на ликвидацию причины заболевания (инфекций, токсических веществ) и воздействующие на механизм развития болезни, а также лекарства, стимулирующие созревание мозговой ткани, снижающие мышечный тонус, улучшающие питание нервных клеток, мозговое кровообращение и микроциркуляцию.
Помимо медикаментозной терапии при улучшении состояния назначают курс массажа с постепенным добавлением упражнений лечебной гимнастики, сеансы электрофореза и другие методы реабилитации (доношенным младенцам - с конца 3-й недели жизни, недоношенным - чуть позднее).
После окончания курса лечения большинство детей выписываются домой с рекомендациями дальнейшего наблюдения в условиях детской поликлиники (третий этап реабилитации). Врач-педиатр совместно с невропатологом, а по необходимости - и с другими узкими специалистами (окулистом, отоларингологом, ортопедом, психологом, физиотерапевтом) составляет индивидуальный план ведения ребенка на первом году жизни. В этот период чаще всего применяются немедикаментозные методы реабилитации: массаж, лечебная гимнастика, электрофорез, импульсные токи, иглорефлексотерапия, тепловые процедуры, бальнеолечение (лечебные ванны), плавание, а также психолого-педагогическая коррекция, направленная на развитие моторики, речи и психики младенца.

Родителям, малыш которых появился на свет с признаками нарушения ЦНС, не стоит отчаиваться. Да, придется приложить гораздо больше усилий, чем другим мамам и папам, однако в итоге они себя оправдают, и наградой за этот труд станет счастливая улыбка маленького человечка.

Развитие центральной нервной системы и нервной регуляции функций.

Центральной нервной системе (ЦНС) принадлежит веду­щая роль в организации адаптационных процессов, протекаю­щих в ходе индивидуального развития. Поэтому динамика морфо-функциональных преобразований в этой системе ска­чивается на характере деятельности всех систем организма.

Количество нейронов ЦНС достигает максимального ко­личества у 24-недельного плода и остается постоянным до по­жилого возраста. Дифференцированные нейроны уже не спо­собны к делению, и постоянство их численности играет основ­ную роль в накоплении и хранении информации. Глиальные клетки продолжают оставаться незрелыми и после рождения, что обусловливает дефицит их защитной и опорной функций для ткани мозга, замедленные обменные процессы в мозге, его низкую электрическую активность и высокую проницаемость гемато-энцефалического барьера.

К моменту рождения мозг плода характеризуется низкой чувствительностью к гипоксии, низким уровнем обменных процессов (метаболизма) и преобладанием в этот период ана­эробного механизма получения энергии. В связи с медленным синтезом тормозных медиаторов в ЦНС плода и новорожден­ного легко возникает генерализованное возбуждение даже при небольшой силе раздражения. По мере созревания мозга активность тормозных процессов нарастает. На ранних стадиях внутриутробного развития нервный контроль функций осуществляется преимущественно спинным мозгом. В начале плодного периода (восьмая-десятая неде­ли развития) появляется контроль продолговатого мозга над спинным. С 13-14 недели появляются признаки мезенцефального контроля нижележащих отделов ЦНС. Корригирующие влияния коры на другие структуры ЦНС, механизмы, необхо­димые для выживания после рождения, выявляются в конце плодного периода. К этому времени определяются основные типы безусловных рефлексов: ориентировочный, защитный (избегание), хватательный и пищевой. Последний, в виде со­сательных и глотательных движений, наиболее выражен.

Развитию ЦНС ребенка в значительной мере способству­ют гормоны щитовидной железы. Снижение выработки тиреоидных гормонов в фатальном или раннем постнатальном пе­риодах приводит к кретинизму в связи с уменьшением числа и размеров нейронов и их отростков, нарушением метаболизма в мозге белка и нуклеиновых кислот, а также передачи возбуж­дения в синапсах.

В сравнении со взрослыми дети имеют более высокую воз­будимость нервных клеток, меньшую специализацию нервных центров. В раннем детстве многие нервные волокна еще не имеют миелиновой оболочки, обеспечивающей изолированное проведение нервных импульсов. Вследствие этого процесс воз­буждения легко переходит с одного волокна на другие, сосед­ние. Миелинизация большинства нервных волокон у большин­ства детей заканчивается к трехлетнему возрасту, но у некото­рых продолжается до 5-7 лет. С плохой «изоляцией» нервных волокон во многом связана высокая иррадиация нервных про­цессов, а это влечет за собой несовершенство координации реф­лекторных реакций, обилие ненужных движений и неэконо­мичное вегетативное обеспечение. Процессы миелинизации нор­мально протекают под влиянием тиреоидных и стероидных гормонов. По мере развития, «созревания» нейронов и меж­нейронных связей, координация нервных процессов улучшает­ся и достигает совершенства к 18-20 годам.

Возрастные изменения функций ЦНС обусловлены и дру­гими морфологическими особенностями развития. Несмотря на то, что спинной мозг новорожденного является наиболее зрелой частью ЦНС, его окончательное развитие завершается одновременно с прекращением роста. За это время его масса увеличивается в 8 раз.

Основные части головного мозга выделяются уже к треть­ему месяцу эмбрионального периода, а к пятому месяцу эмбрио­генеза успевают сформироваться основные борозды больших полушарий. Наиболее интенсивно головной мозг человека раз­вивается в первые 2 года после рождения. Затем темпы его раз­вития немного снижаются, но продолжают оставаться высоки­ми до 6-7 лет, когда масса мозга ребенка достигает 80% массы мозга взрослого.

Головной мозг развивается гетерохронно. Быстрее всего идет созревание стволовых, подкорковых и корковых структур, регулирующих вегетативные функции организма. Эти отделы по своему развитию уже в 2-4 года похожи на мозг взрослого человека . Окончательное формирование стволовой части и промежуточного мозга завершается только в 13-16 лет. Пар­ная деятельность полушарий головного мозга в онтогенезе ме­няется от неустойчивой симметрии к неустойчивой асиммет­рии и, наконец, к устойчивой функциональной асимметрии. Клеточное строение, форма и размещение борозд и извилин проекционных зон коры приобретают сходство со взрослым мозгом к 7 годам. В лобных отделах это достигается только к 12 годам. Созревание больших полушарий полностью заверша­ется только к 20-22 годам.

В возрасте 40 лет начинаются процессы дегенерации в ЦНС. Возможна демиелинизация в задних корешках и прово­дящих путях спинного мозга. С возрастом падает скорость рас­пространения возбуждения по нервам, замедляется синаптическое проведение, снижается лабильность нервных клеток. Ослабляются тормозные процессы на разных уровнях нервной системы. Неравномерные, разнонаправленные изменения в от­дельных ядрах гипоталамуса приводят к нарушению координа­ции его функций, изменениям в характере вегетативных реф­лексов и в связи с этим к снижению надежности гомеостатического регулирования. У пожилых людей снижается реактив­ность нервной системы, ограничиваются возможности адапта­ции организма к нагрузкам, хотя у отдельных лиц и в 80 лет функциональное состояние ЦНС и уровень адаптационных процессов могут сохраняться такими же, как и в среднем зре­лом возрасте. На фоне общих изменений в вегетативной не­рвной системе наиболее заметно ослабление парасимпатиче­ских влияний.

Нервная система координирует и регулирует деятельность всех органов и систем, обеспечивая функционирование организма как единого целого; осуществляет адаптацию организма к изменениям окружающей обстановки, поддерживает постоянство его внутренней среды.

Топографически нервную систему человека подразделяют на центральную и периферическую. К центральной нервной системе относят спинной и головной мозг. Периферическую нервную систему составляют спинномозговые и черепные нервы, их корешки, ветви, нервные окончания, сплетения и узлы, лежащие во всех отделах тела человека. Согласно анатомо-функциональной классификации, нервную систему условно подразделяют на соматическую и вегетативную. Соматическая нервная система обеспечивает иннервацию тела – кожи, скелетных мышц. Вегетативная нервная система регулирует обменные процессы во всех органах и тканях, а также рост и размножение, иннервирует все внутренние органы, железы, гладкую мускулатуру органов, сердце.

Нервная система развивается из эктодермы, через стадии нервной полоски и мозгового желобка с последующим образованием нервной трубки. Из ее каудальной части развивается спинной мозг, из ростральной части формируется сначала 3-х, а затем 5-ти мозговых пузырей, из которых в дальнейшем развиваются конечный, промежуточный, средний, задний и продолговатый мозг. Такая дифференцировка центральной нервной системы происходит на третьей-четвертой неделе эмбрионального развития.

В дальнейшем объем головного мозга увеличивается более интенсивно, чем спинного, и к моменту рождения составляет в среднем 400 г. Причем у девочек масса головного мозга несколько ниже, чем у мальчиков. Количество нейронов к моменту рождения соответствует уровню взрослого человека, но количество ветвлений аксонов, дендритов и синаптических контактов значительно возрастает после рождения.

Наиболее интенсивно масса головного мозга увеличивается первые 2 года после рождения. Затем темпы его развития немного снижаются, но продолжают оставаться высокими до 6-7 лет. Окончательное созревание головного мозга заканчивается к 17-20 годам. К этому возрасту, его масса у мужчин в среднем составляет 1400 г, а у женщин – 1250 г. Развитие головного мозга идет гетерохронно. Прежде всего, созревают те нервные структуры, от которых зависит нормальная жизнедеятельность организма на данном возрастном этапе. Функциональной полноценности достигают, прежде всего, стволовые, подкорковые и корковые структуры, регулирующие вегетативные функции организма. Эти отделы приближаются по своему развитию к мозгу взрослого человека уже в возрасте 2-4 лет.

Спинной мозг. В течение первых трех месяцев внутриутробной жизни спинной мозг занимает позвоночный канал на всю его длину. В дальнейшем позвоночник растет быстрее, чем спинной мозг. Поэтому нижний конец спинного мозга поднимается в позвоночном канале. У новорожденного ребенка нижний конец спинного мозга находится на уровне III поясничного позвонка, у взрослого человека – на уровне II поясничного позвонка.

Спинной мозг новорожденного имеет длину 14 см. К 2 годам длина спинного мозга достигает 20 см, а к 10 годам, по сравнению с периодом новорожденности, удваивается. Быстрее всего растут грудные сегменты спинного мозга. Масса спинного мозга у новорожденного составляет около 5,5 г, у детей 1-го года – около 10 г. К 3 годам масса спинного мозга превышает 13 г, к 7 годам равна примерно 19 г. У новорожденного центральный канал шире, чем у взрослого. Уменьшение его просвета происходит главным образом в течение 1-2 годов, а также в более поздние возрастные периоды, когда наблюдается увеличение массы серого и белого вещества. Объем белого вещества спинного мозга возрастает быстро, особенно за счет собственных пучков сегментарного аппарата, формирование которого происходит в более ранние сроки по сравнению со сроками формирования проводящих путей.

Продолговатый мозг. К моменту рождения он вполне развит как в анатомическом, так и функциональном отношении. Его масса достигает 8 г у новорожденного. Продолговатый мозг занимает более горизонтальное, чем у взрослых, положение и отличается степенью миелинизации ядер и путей, размерами клеток и их расположением. По мере развития плода размеры нервных клеток продолговатого мозга увеличиваются, а размеры ядра с ростом клетки относительно уменьшаются. Нервные клетки новорожденного имеют длинные отростки, в их цитоплазме содержится тигроидное вещество. Ядра продолговатого мозга формируются рано. С их развитием связано становление в онтогенезе регуляторных механизмов дыхания, сердечно-сосудистой, пищеварительной и др. систем.

Мозжечок. В эмбриональном периоде развития сначала формируется древняя часть мозжечка – червь, а затем – его полушария. На 4-5-м месяце внутриутробного развития разрастаются поверхностные отделы мозжечка, образуются борозды и извилины. Наиболее интенсивно мозжечок растет в первый год жизни, особенно с 5-го по 11-й месяц, когда ребенок учится сидеть и ходить. У годовалого ребенка масса мозжечка увеличивается в 4 раза и в среднем составляет 95 г. После этого наступает период медленного роста мозжечка, к 3 годам размеры мозжечка приближаются к его размерам у взрослого. У 15-летнего ребенка масса мозжечка – 150 г. Кроме того, быстрое развитие мозжечка происходит и в период полового созревания.

Серое и белое вещество мозжечка развивается неодинаково. У ребенка рост серого вещества осуществляется относительно медленнее, чем белого. Так, от периода новорожденности до 7 лет количество серого вещества увеличивается приблизительно в 2 раза, а белого – почти в 5 раз. Из ядер мозжечка раньше других формируется зубчатое ядро. Начиная от периода внутриутробного развития и до первых лет жизни детей, ядерные образования выражены лучше, чем нервные волокна.

Клеточное строение коры мозжечка у новорожденного значительно отличается от взрослого. Ее клетки во всех слоях отличаются по форме, размерам и количеству отростков. У новорожденного еще не полностью сформированы клетки Пуркинье, в них не развито тигроидное вещество, ядро почти полностью занимает клетку, ядрышко имеет неправильную форму, дендриты клеток слаборазвиты. Формирование этих клеток идет бурно после рождения и заканчивается к 3-5 неделям жизни. Клеточные слои коры мозжечка у новорожденного значительно тоньше, чем у взрослого. К концу 2-го года жизни их размеры достигают нижней границы величины у взрослого. Полное формирование клеточных структур мозжечка осуществляется к 7-8 годам.

Мост. У новорожденного расположен выше, чем у взрослого, а к 5 годам располагается на том же уровне, что и у зрелого организма. Развитие моста связано с формированием ножек мозжечка и установлением связей мозжечка с другими отделами центральной нервной системы. Внутреннее строение моста у ребенка не имеет отличительных особенностей по сравнению с взрослым человеком. Ядра расположенных в нем нервов к периоду рождения уже сформированы.

Средний мозг. Его форма и строение почти не отличаются от взрослого. Ядро глазодвигательного нерва хорошо развито. Хорошо развито красное ядро, его крупноклеточная часть, обеспечивающая передачу импульсов из мозжечка к мотонейронам спинного мозга, развивается раньше, чем мелкоклеточная, через которую передается возбуждение от мозжечка к подкорковым образованиям мозга и к коре больших полушарий.

У новорожденного черная субстанция представляет собой хорошо выраженное образование, клетки которого дифференцированы. Но значительная часть клеток черной субстанции не имеет характерного пигмента (меланина), который появляется с 6 месяцев жизни и максимального развития достигает к 16 годам. Развитие пигментации находится в прямой связи с совершенствованием функций черной субстанции.

Промежуточный мозг. Отдельные формации промежуточного мозга имеют свои темпы развития. Закладка зрительного бугра осуществляется к 2 месяцам внутриутробного развития. На 3-м месяце разграничивается таламус и гипоталамус. На 4-5-м месяце между ядрами таламуса проявляются светлые прослойки развивающихся нервных волокон. В это время клетки еще слабо дифференцированы. В 6 месяцев становятся хорошо видными клетки ретикулярной формации зрительного бугра. Другие ядра зрительного бугра начинают формироваться с 6 месяцев внутриутробной жизни, к 9 месяцам они хорошо выражены. С возрастом происходит их дальнейшая дифференциация. Усиленный рост зрительного бугра осуществляется в 4-летнем возрасте, а размеров взрослого он достигает к 13 годам жизни.

В эмбриональном периоде развития закладывается подбугорная область, но в первые месяцы внутриутробного развития ядра гипоталамуса не дифференцированы. Только на 4-5-м месяце происходит накопление клеточных элементов будущих ядер, на 8-м месяце они хорошо выражены.

Ядра гипоталамуса созревают в разное время, в основном к 2-3 годам. К моменту рождения структуры серого бугра еще полностью не дифференцированы, что приводит к несовершенству теплорегуляции у новорожденных и детей первого года жизни. Дифференциация клеточных элементов серого бугра заканчивается позднее всего – к 13-17 годам.

Кора больших полушарий. До 4-го месяца развития плода поверхность больших полушарий гладкая и на ней отмечается лишь вдавливание будущей боковой борозды, которая окончательно формируется только ко времени рождения. Наружный корковый слой растет быстрее внутреннего, что приводит к образованию складок и борозд. К 5 месяцам внутриутробного развития образуются основные борозды: боковая, центральная, мозолистая, теменно-затылочная и шпорная. Вторичные борозды появляются после 6 месяцев. К моменту рождения первичные и вторичные борозды хорошо выражены, и кора больших полушарий имеет такой же тип строения, как и у взрослого. Но развитие формы и величины борозд и извилин, формирование мелких новых борозд и извилин продолжается и после рождения.

К моменту рождения кора больших полушарий имеет такое же количество нервных клеток (14-16 млрд.), как и у взрослого. Но нервные клетки новорожденного незрелы по строению, имеют простую веретенообразную форму и очень небольшое количество отростков. Серое вещество коры больших полушарий плохо дифференцировано от белого. Кора больших полушарий относительно тоньше, корковые слои слабо дифференцированы, а корковые центры недостаточно сформированы. После рождения кора больших полушарий развивается быстро. Соотношение серого и белого вещества к 4 месяцам приближается к соотношению у взрослого.

К 9 месяцам становятся более отчетливыми первые три слоя коры, а к году общая структура мозга приближается к зрелому состоянию. Расположение слоев коры, дифференцирование нервных клеток в основном завершается к 3 годам. В младшем школьном возрасте и в период полового созревания продолжающееся развитие головного мозга характеризуется увеличением количества ассоциативных волокон и образованием новых нервных связей. В этот период масса мозга увеличивается незначительно.

В развитии коры больших полушарий сохраняется общий принцип: сначала формируются филогенетически более старые структуры, а затем более молодые. На 5-м месяце, раньше других появляются ядра, регулирующие двигательную активность. На 6-м месяце появляется ядро кожного и зрительного анализатора. Позже других развиваются филогенетически новые области: лобная и нижнетеменная (на 7-м месяце), затем височно-теменная и теменно-затылочная. Причем филогенетически более молодые отделы коры больших полушарий с возрастом относительно увеличиваются, а более старые, наоборот, уменьшаются.

Центральная нервная система вместе с периферическими отделами дистантных анализаторов развивается из наружного зародышевого листка – эктодермы. Закладка нервной трубки происходит на 4-й неделе эмбрионального развития, впоследствии из нее формируются мозговые пузыри и спинной мозг. Наиболее интенсивное образование структур центральной нервной системы происходит на 15-25 день беременности (Табл.10-2).

Структурное оформление отделов мозга тесно связано с происходящими в них процессами дифференцировки нервных элементов и установлением между ними морфологических и функциональных связей, а также с развитием периферических нервных аппаратов (рецепторов, афферентных и эфферентных путей и др.). К концу эмбрионального периода развития у плода обнаруживаются первые проявления нервной деятельности, которые выражаются в элементарных формах двигательной активности.

Функциональное созревание ЦНС, происходит в этот период в каудо-краниальном направлении, т.е. от спинного мозга к коре головного мозга. В связи с этим функции организма плода регулируются преимущественно структурами спинного мозга.

К 7-10 неделе внутриутробного периода функциональный контроль над более зрелым спинным мозгом начинает осуществлять продолговатый мозг. С 13-14 недели появляются признаки контроля нижележащих отделов ЦНС со стороны среднего мозга.

Мозговые пузыри образуют полушария головного мозга, до 4-х месячного возраста внутриутробного развития их поверхность гладкая, затем появляются первичные борозды сенсорных полей коры, на 6-м месяце – вторичные, а третичные продолжают формироваться и после рождения. В ответ на стимуляцию коры больших полушарий плода, вплоть до 7-ми месяцев его развития, никаких реакций не возникает. Следовательно, на этом этапе кора больших полушарий не определяет поведение плода.

На протяжении эмбрионального и фетального периодов онтогенеза происходит постепенное усложнение строения и дифференцировки нейронов и глиальных клеток.

Таблица 10-2.

Развитие мозга в антенатальном периоде

возраст, нед

длина, мм

Особенности развития мозга

Намечается нервная бороздка

Хорошо выраженная нервная бороздка быстро закрывается; нервный гребень имеет вид сплошной ленты

Нервная трубка замкнута; образовались 3 первичных мозговых пузыря; формируются нервы и ганглии; закончилось образова­ние эпендимного, мантийного и краевого слоя

Формируются 5 мозговых пузырей; намечаются полушария большого мозга; нервы и ганглии выражены отчетливее (обособляется кора надпочечника)

Образуются 3 первичных изгиба нервной трубки; нервные сплетения сформированы; виден эпифиз (шишковидное тело); симпатические узлы образуют сегментарные скопления; наме­чаются мозговые оболочки

Полушария мозга достигают большого размера; хорошо выра­жены полосатое тело и зрительный бугор; воронка и карман Ратке смыкаются; появляются сосудистые сплетения (мозговое вещество надпочечника начинает проникать в кору)

В коре мозга появляются типичные нервные клетки; заметны обонятельные доли; отчетливо выражены твердая, мягкая и паутинная оболочки мозга; возникают хромаффинные тельца

Формируется дефинитивная внутренняя структура спинного мозга

Появляются общие структурные черты головного мозга; в спинном мозге видны шейное и поясничное утолщение; форми­руются конский хвост и концевая нить спинного мозга, начи­нается дифференцировка клеток нейроглии

Полушария покрывают большую часть мозгового ствола; ста­новятся различимыми доли головного мозга; появляются бу­горки четверохолмия; более выраженным становится мозжечок

Завершается формирование комиссур мозга (20 нед); начинается миелинизация спинного мозга (20 нед); появляются типичные слои коры головного мозга (25 нед); быстро развиваются бо­розды и извилины головного мозга (28-30 нед); происходит миелинизация головного мозга (36-40 нед)

Неокортекс уже у плода 7-8 месячного возраста разделен на слои, но наибольшие темпы роста и дифференцировки клеточных элементов коры отмечаются в последние 2 месяца беременности и в первые месяцы после рождения. Пирамидная система, обеспечивающая произвольные движения, созревает позже, чем экстрапирамидная система, контролирующая непроизвольные движения. Показателем степени зрелости нервных структур является уровень миелинизации ее проводников. Миелинизация в мозге эмбриона начинается на 4-м месяце внутриутробной жизни с передних корешков спинного мозга, подготавливая моторную активность; затем миелинизируются задние корешки, проводящие пути спинного мозга, афференты акустической и лабиринтной систем. В головном мозге процесс миелинизации проводниковых структур продолжается в первые 2 года жизни ребенка, сохраняясь у подростков и даже взрослых людей.

Наиболее рано (7,5 недель) у плода появляется хорошо выраженный локальный рефлекс на раздражение губ. Рефлексогенная зона сосательного рефлекса к 24 неделе внутриутробного развития значительно расширяется и вызывается со всей поверхности лица, кисти, предплечья. В постнатальном онтогенезе она уменьшается до зоны поверхности губ.

Рефлексы на тактильную стимуляцию кожи верхних конечностей появляются у плода к 11 неделе. Наиболее четко кожный рефлекс в этот период вызывается с ладонной поверхности и выглядит в виде изолированных движений пальцев. К 11 неделям эти движения пальцев сопровождаются сгибанием запястья, предплечья, пронацией руки. К 15-й неделе стимуляция ладони приводит к сгибанию и фиксированию в этом положении пальцев, ранее генерализованная реакция исчезает. К 23-й неделе хватательный рефлекс усиливается, становится строго локальным. К 25-й неделе все сухожильные рефлексы руки становятся отчетливыми.

Рефлексы при стимулировании нижних конечностей появляются к 10-11-й неделям развития плода. Первым появляется флексорный рефлекс пальцев ног на раздражение подошвы. К 12-13 неделям флексорный рефлекс на это же раздражение сменяется веерообразным разведением пальцев. После 13-ти недель это же движение на раздражение подошвы сопровождается движениями стопы, голени, бедра. В более старшем возрасте (22-23 недели) раздражение подошвы вызывает преимущественно флексию пальцев стопы.

К 18-й неделе появляется рефлекс сгибания туловища при раздражении нижней части живота. К 20-24-й неделе появляются рефлексы мышц брюшной стенки. К 23-й неделе у плода раздражением различных участков кожной поверхности можно вызвать дыхательные движения. К 25-й неделе плод может самостоятельно дышать, однако дыхательные движения, обеспечивающие выживание плода, устанавливаются только после 27 недель его развития.

Таким образом, рефлексы кожного, двигательного и вестибулярного анализаторов проявляются уже на ранних этапах внутриутробного развития. В поздние сроки внутриутробного развития плод способен реагировать мимическими движениями на вкусовые и запаховые раздражения.

В течение 3-х последних месяцев внутриутробного развития у плода созревают рефлексы, необходимые для выживания новорожденного ребенка: начинает реализовываться корковая регуляция ориентировочных, защитных и др. рефлексов, у новорожденного уже имеются защитные и пищевые рефлексы; рефлексы с мышц и кожи становятся более локализованными и целенаправленными. У плода и новорожденного, в связи с малым количеством тормозных медиаторов, в ЦНС легко возникает генерализованное возбуждение даже при очень небольших силах раздражения. Сила тормозных процессов по мере созревания мозга нарастает.

Стадия генерализации ответных реакций и распространения возбуждения по структурам мозга сохраняется вплоть до рождения и некоторое время после него, но она не препятствует развитию сложных жизненно важных рефлексов. Например, к 21-24 неделе хорошо развит сосательный и хватательный рефлекс.

У плода уже на 4-м месяце его развития хорошо развита проприоцептивная мышечная система, четко вызываются сухожильные и вестибулярные рефлексы, в 3-5 месяцев уже имеются лабиринтные и шейные тонические рефлексы положения. Наклон и поворот головы сопровождается разгибанием конечностей той стороны, в которую повернута голова.

Рефлекторная деятельность плодов обеспечивается преимущественно механизмами спинного мозга и ствола мозга. Однако сенсомоторная кора уже реагирует возбуждением на раздражения рецепторов тройничного нерва на лице, рецепторов кожной поверхности конечностей; у 7-8-ми месячного плода в зрительной коре возникают реакции на световые стимулы, но в этот период кора, воспринимая сигналы, возбуждается локально и не передает значимость сигнала на другие, кроме двигательной коры, структуры мозга.

В последние недели внутриутробного развития у плода происходит чередование “быстрого” и “медленного” сна, причем быстрый сон занимает 30-60% общего времени сна.

Поступление в кровоток плода никотина, алкоголя, наркотиков, медикаментов и вирусов отражается на здоровье будущего ребенка, а в ряде случаев может привести к внутриутробной гибели плода.

Никотин, попадая из крови матери в кровь плода, а затем в нервную систему, влияет на развитие тормозных процессов, а тем самым на рефлекторную деятельность, дифференцировки, что в последующем будет сказываться на процессах памяти, концентрации внимания. Действие алкоголя также вызывает грубые нарушения созревания нервной системы, нарушает последовательность развития ее структур. Наркотики, используемые матерью, угнетают его физиологические центры, образующие естественные эндорфины, что в последующем может привести к дисфункции сенсорной системы, гипоталамическим регуляциям.

10.2 . Особенности развития и функционирования центральной нервной системы в постнатальном онтогенезе.

Общий план строения коры у новорожденного ребенка такой же, как и у взрослого. Масса его головного мозга составляет 10-11% массы тела, а у взрослого – всего 2%.

Общее количество нейронов головного мозга новорожденного равно количеству нейронов взрослого, но число синапсов, дендритов и коллатералей аксонов, их миелинизация у новорожденных значительно отстают от мозга взрослых (Табл.10-1).

Зоны коры новорожденного созревают гетерохронно. Наиболее рано созревает соматосенсорная и моторная кора. Это объясняется тем, что соматосенсорная кора из всех сенсорных систем получает наибольшее количество афферентной импульсации, моторная кора также имеет значительно большую афферентацию, чем другие системы, так как она имеет связи со всеми сенсорными системами и имеет наибольшее число полисенсорных нейронов.

К 3-м годам созревают практически все области сенсорной и моторной коры, за исключением зрительной и слуховой. Наиболее поздно созревает ассоциативная кора мозга. Скачок в развитии ассоциативных областей коры мозга отмечается в 7 лет. Созревание ассоциативных зон идет нарастающим темпом до пубертатного периода, а затем замедляется и завершается к 24-27 годам жизни. Позже всех из ассоциативных зон коры завершают созревание ассоциативные области лобной и теменной коры.

Созревание коры означает не только реализацию установления взаимодействия корковых, но и установление взаимодействия коры с подкорковыми образованиями. Эти взаимоотношения устанавливаются к 10-12 годам, что очень важно для регуляции деятельности систем организма в пубертатный период когда повышается активность гипоталамо-гипофизарной системы, а также систем, имеющих отношение к половому развитию, развитию желез внутренней секреции.

Период новорожденности (неонатальный период). Созревание коры головного мозга ребенка в процессе постэмбрионального развития на клеточном уровне происходит за счет постепенного увеличения размеров первичных, вторичных и третичных зон коры. Чем больше возраст ребенка, тем большие размеры занимают эти корковые зоны и тем сложнее и разнообразнее становится его психическая деятельность. У новорожденного ассоциативные нейронные слои коры головного мозга слабо развиты и совершенствуются только при нормальном его развитии. При врожденном слабоумии верхние слои коры головного мозга остаются недоразвитыми.

Уже в первые часы после рождения у ребенка развитыми являются тактильная и другие системы рецепции, поэтому новорожденный имеет ряд защитных рефлексов на болевые и тактильные раздражения, живо реагирует на температурные раздражители. Из дистантных анализаторов наиболее хорошо у новорожденного ребенка развит слуховой. Наименее развит зрительный анализатор. Лишь к концу периода новорожденности устанавливаются согласованные движения левого и правого глазных яблок. Тем не менее, реакция зрачков на свет имеет место уже в первые часы после рождения (врожденный рефлекс). К концу периода новорожденности появляется способность к конвергенции глаз (Табл.10-3).

Таблица 10-3.

Оценка (баллы) возрастного развития новорожденного (1-я неделя)

Показатель

Оценка ответа

Динамические функции

Соотношения сна и бодрство­вания

Спит спокойно, просыпается только для кор­млении или ког­да мокрый, быс­тро засыпает

Спит спокойно и не просыпает­ся мокрый и для кормления или сытый и сухой не засыпает

Не просыпается голодный и мокрый, а сытый и сухой не засы­пает или часто беспричинно кричит

Очень трудно разбудить или мало спит, но и не кричит или кричит постоянно

Крик громкий, чистый с корот­ким вдохом и удлиненным вы­дохом

Крик тихий, слабый, но с коротким вдо­хом и удлинен­ным выдохом

Крик болезнен­ный, пронзитель-ный или отдель-ные всхлипыва-ния на вдохе

Крик отсутст-вует или от­дельные вскри­кивания, или крик афоничный

Безусловные рефлексы

Все безусловные рефлексы вызываются, симметричны

Требуют более длительной сти­муляции или быстро исто­щаются или не­ постоянно асим­метричны

Вызываются все, но после дли-тельного латент-ного перио­да и повторной стиму-ляции, бы­стро истощают­ся или стойко асимметричны

Большинство рефлексов не вызывается

Мышечный тонус

Симметричный флексорный тонус, преодолеваемый при пассивных движениях

Легкая асим­метрия или тен­денция к гипо- или гипертен-зии, не влияю­щие на позу и движения

Постоянные асимметрии, гипо- или гипер-, ограничивающие спонтанные движения

Позы описто-тонуса или эм­бриона, или лягушки

Асимметричный шейный тониче­ский рефлекс(АШТР)

При повороте головы в сторону непостоянно разгибает “лицевую” руку

Постоянное раз­гибание или отсутствие разги­бания руки при повороте голо­вы в сторону

Поза фехто­вальщика

Цепной симмет­ричный рефлекс

Отсутствует

Сенсорные реакции

Жмурится и бес­покоится при ярком свете; повора-чивает глаза к источнику све-та и вздрагива-ет при гром­ком звуке

Одна из реак­ций сомнитель­на

Одна из реак­ций оценки от­вета 3 отсут­ствует или 2-3 реакции сомни­ тельные

Все реакции оценки ответа 3 отсутствуют

Двигательная активность новорожденного ребенка беспорядочна и некоординированна. Неонатальный период доношенного ребенка характеризуется преимущественной активностью мышц-сгибателей. Хаотичные движения ребенка обусловлены деятельностью подкорковых образований и спинного мозга не координируемой корковыми структурами.

С момента рождения у новорожденного начинают функционировать важнейшие безусловные рефлексы (Табл.10-4). Первый крик новорожденного, первый выдох являются рефлекторными. У доношенного ребенка хорошо выражены три безусловных рефлекса – пищевой, оборонительный и ориентировочный. Поэтому уже на второй неделе жизни у него вырабатываются условные рефлексы (например, рефлекс положения на кормление).

Таблица 10-4.

Рефлексы новорожденного.

Способ определения

Краткая характеристика

Бабинского

Легкое поглаживание стопы от пятки к пальцам

Сгибает I палец стопы и вытягивает остальные

Неожиданный шум (например, хлопок ладошами) или быстрое опускание головки ребенка

Разводит ручки в стороны, а затем скрещивает их на груди

Смыкание

(закрывание век)

Вспышка света

Зажмуривает глаза

Хватательный

В руки ребенка вкладывают палец или карандаш

Захватывает палец (карандаш) пальцами рук

В неонатальном периоде происходит быстрое созревание уже имеющихся перед рождением рефлексов, а также появление новых рефлексов или их комплексов. Усиливается механизм реципрокного торможения спинальных, симметричных и реципрокных рефлексов.

У новорожденного любое раздражение вызывает ориентировочный рефлекс. Вначале он проявляется общим вздрагиванием тела и торможением двигательной активности с задержкой дыхания, в последующем на внешние сигналы возникает двигательная реакция рук, ног, головы, туловища. В конце первой недели жизни ребенок реагирует на сигналы ориентировочной реакцией с наличием некоторых вегетативных и исследовательской компонент.

Существенным переломным этапом развития нервной системы является этап возникновения и закрепления антигравитационных реакций и приобретения способности осуществлять целенаправленные локомоторные акты. Начиная с этого этапа характер и степень интенсивности осуществления двигательных поведенческих реакций определяют особенности роста и развития данного ребенка. В этом периоде выделяется фаза до 2,5-3 месяцев, когда ребенок впервые закрепляет первую антигравитационную реакцию , характеризующуюся способностью удерживать головку в вертикальном положении. Вторая фаза длится с 2,5-3 до 5-6 месяцев, когда ребенок делает первые попытки реализовать вторую антигравитационную реакцию – позу сидения. Непосредственно-эмоциональное общение ребенка с матерью повышает его активность, становится необходимой основой для развития его движений, восприятия, мышления. Недостаточное общение отрицательно сказывается на его развитии. Дети, оказавшиеся в детском доме отстают в психическом развитии (даже при хорошем гигиеническом уходе), речь у них появляется поздно.

Гормоны материнского молока необходимы ребенку для нормального созревания механизмов его мозга. Так, например, более половины женщин, получавших в раннем детстве искусственное вскармливание, страдают бесплодием вследствие недополучения пролактина. Дефицит пролактина в материнском молоке нарушает развитие дофаминергической системы мозга ребенка, что приводит к недоразвитию тормозных систем его мозга. В постнатальный период высока потребность развивающегося мозга в анаболических и тиреоидных гормонах, так как в это время осуществляется синтез белков нервной ткани и идет процесс ее миелинизации.

Развитию центральной нервной системы ребенка в значительной мере способствуют гормоны щитовидной железы. У новорожденных и в течение первого года жизни уровень тиреоидных гормонов максимален. Снижение выработки тиреоидных гормонов в фетальном или раннем постнатальном периодах приводит к кретинизму в связи с уменьшением числа и размеров нейронов и их отростков, торможением развития синапсов, перехода их из потенциальных в активные. Процесс миелинизации обеспечивают не только тиреоидные гормоны, но и стероидные, что является проявлением резервных возможностей организма в регуляции созревания мозга.

Для нормального развития различных центров мозга необходима их стимуляция сигналами, несущими информацию о внешних воздействиях. Активность нейронов головного мозга является обязательным условием развития и функционирования центральной нервной системы. В процессе онтогенеза не смогут функционировать те нейроны, которые вследствие дефицита афферентного притока не установили достаточного количества эффективных синаптических контактов. Интенсивность сенсорного притока предопределяет онтогенез поведения и психического развития. Так, в результате воспитания детей в сенсорно обогащенной среде наблюдается ускорение психического развития. Адаптация к внешней среде и обучение слепоглухонемых детей возможны только при усиленном притоке в ЦНС афферентных импульсов от сохранившихся рецепторов кожи.

Любые дозированные воздействия на органы чувств, двигательную систему, на речевые центры выполняют многоцелевые функции. Во-первых, они оказывают общесистемное действие, регулируя функциональное состояние мозга, улучшая его работу; во-вторых, способствуют изменению скорости процессов созревания мозга; в-третьих, обеспечивают развертывание сложных программ индивидуального и социального поведения; в-четвертых, облегчают процессы ассоциации при ментальной деятельности.

Таким образом, высокая активность сенсорных систем ускоряет созревание ЦНС и обеспечивает реализацию ее функций в целом.

В возрасте около 1-го года у ребенка закрепляется третья антигравитационная реакция – реализация позы стояния. До ее реализации физиологические отправления организма в основном обеспечивают рост и преимущественное развитие. После реализации позы стояния у ребенка появляются новые возможности в координации движений. Поза стояния способствует развитию моторики, формированию речи. Критическим фактором для развития соответствующих корковых структур в данном возрастном периоде является сохранение общения ребенка с себе подобными. Изоляция ребенка (от людей) или неадекватные условия воспитания, например среди животных, несмотря на генетически обусловленное созревание структур мозга к данному переломному этапу онтогенеза, организм не начинает взаимодействовать со специфическими для человека условиями среды, которые стабилизировали бы и способствовали развитию созревших структур. Поэтому возникновение новых человеческих физиологических функций и поведенческих реакций не реализуется. У детей, выросших в условиях изоляции функция речи не реализуется, даже когда изоляция от людей заканчивается.

Помимо критических возрастных периодов, выделяют сенситивные периоды развития нервной системы. Под этим термином понимаются периоды наибольшей чувствительности к определенным специфическим воздействиям. Сенситивный период развития речи длится от года до 3 лет, и если этот этап упущен (с ребенком не было речевого общения), компенсировать потери в дальнейшем практически невозможно.

В возрастном периоде 1 года до 2,5-3 лет . В этом возрастном периоде происходит освоение локомоторных актов в среде (ходьбы и бега) в связи с совершенствованием реципрокных форм торможения мышц антагонистов. На развитие ЦНС ребенка большое влияние оказывают афферентные импульсы с проприоцепторов, возникающие при сокращении скелетных мышц. Существует прямая связь между уровнем развития опорно-двигательного аппарата, двигательного анализатора ребенка и его общим физическим и психическим развитием. Влияния двигательной активности на развитие функций мозга ребенка проявляются в специфической и неспецифической формах. Первая связана с тем, что двигательные области головного мозга являются необходимым элементом его деятельности как центра организации и совершенствования движений. Вторая форма связана с влиянием движений на активность корковых клеток всех структур мозга, повышение которой способствует формированию новых условно-рефлекторных связей и реализации старых. Ведущее значение в этом имеют тонкие движения пальцев детей. В частности, на формирование моторной речи влияют координированные движения пальцев рук: при тренировке точных движений голосовые реакции у детей 12-13 месяцев развиваются не только интенсивнее, но и оказываются более совершенными, речь становится четче, легче воспроизводятся сложные словосочетания. Дети в результате тренировки тонких движений пальцев очень быстро овладевают речью, значительно опережая группу детей, в которой эти упражнения не проводились. Влияние проприоцептивной импульсации с мышц руки на развитие коры больших полушарий наиболее выражено в детском возрасте, пока идет формирование речевой моторной зоны мозга, однако оно сохраняется и в более старших возрастах.

Таким образом, движения ребенка представляют собой не только важный фактор физического развития, но и являются необходимыми для нормального психического развития. Ограничение подвижности или мышечные перегрузки нарушают гармоничность функционирования организма и могут быть патогенетическим фактором в развитии ряда заболеваний.

3 года - 7 лет. 2,5–3 года - очередной переломный этап в развитии ребенка. Интенсивное физическое и психическое развитие ребенка приводит к напряженной работе физиологических систем его организма, а в случае слишком высоких требований – к их “поломке”. Особенно ранимой оказывается нервная система, ее перенапряжение приводит к появлению синдрома малых мозговых дисфункций, торможению развития ассоциативного мышления и т.д.

Нервная система ребенка дошкольного возраста чрезвычайно пластична и чувствительна к различным внешним воздействиям. Ранний дошкольный возраст наиболее благоприятен для совершенствования деятельности органов чувств, накопления представлений об окружающем мире. Многие связи между нервными клетками неокортекса, даже имеющиеся при рождении и обусловленные наследственными механизмами роста, должны быть подкреплены в период общения организма со средой, т.е. эти связи должны быть востребованы вовремя. В противном случае эти связи уже не смогут функционировать.

Одним из объективных показателей степени функциональной зрелости головного мозга ребенка, может служить функциональная межполушарная асимметрия. Первый этап становления межполушарного взаимодействия продолжается от 2 до 7 лет и соответствует периоду интенсивного структурного созревания мозолистого тела. До 4-х летнего возраста полушария относительно разобщены, однако, к концу первого периода существенно увеличиваются возможности передачи информации из одного полушария в другое.

Предпочтение правой или левой руки четко выявляется уже в 3-х летнем возрасте. Степень асимметрии прогрессивно увеличивается от 3 до 7 лет, дальнейшее нарастание асимметрии незначительно. Скорость прогрессивного нарастания асимметрии в интервале 3-7 лет выше у левшей, чем у правшей. С возрастом, при сравнении дошкольников и младших школьников, увеличивается степень предпочтения использования правой руки и ноги. В возрасте 2-4 года правши составляют 38%, а к 5-6 годам – уже 75%. У аномальных детей развитие левого полушария значительно задерживается и функциональная асимметрия выражена слабо.

Среди экзогенных факторов, обуславливающих возникновение признаков нарушения развития ЦНС, существенное значение имеет окружающая среда. Нейропсихологическое обследование детей в возрасте 6-7 лет в городах с неблагоприятной экологической ситуацией выявляют дефицит двигательной координации, слухомоторной координации, стереогноза, зрительной памяти, речевых функций. Отмечены моторная неловкость, снижение слухового восприятия, замедленность мышления, ослабление внимания, недостаточная сформированность навыков интеллектуальной деятельности. При неврологическом обследовании выявляется микросимптоматика: анизорефлексия, мышечная дистония, нарушение координации. Установлена связь между частотой нарушений нейропсихологического развития детей с патологией их перинатального периода и отклонениями в здоровье в это время родителей, занятых на экологически неблагоприятных производствах.

7 – 12 лет. Следующий этап развития – 7 лет (второй критический период постнатального онтогенеза) - совпадает с началом школьного обучения и вызван необходимостью физиологической и социальной адаптации ребенка к школе. Распространение практики начального обучения по расширенным и углубленным программам в погоне за ростом учебно-педагогических показателей детей, приводят к существенному срыву нервно-психического статуса ребенка, что проявляется снижением работоспособности, ухудшением памяти и внимания, изменениями функционального состояния сердечно-сосудистой и нервной систем, нарушениями зрения у первоклассников.

У большинства детей дошкольного возраста в норме отмечается правополушарное доминирование, даже в реализации речи, что, по-видимому, свидетельствует о преобладании у них образного, конкретного восприятия внешнего мира, осуществляемого в основном правым полушарием. У детей младшего школьного возраста (7-8 лет) наиболее распространенным является смешанный вид асимметрии, т.е. по одним функциям преобладала активность правого полушария, по другим – левого. Однако, усложнение и неуклонное развитие второсигнальных условных связей с возрастом, видимо, обуславливает увеличение степени межполушарной асимметрии, а также увеличение количества случаев левополушарной асимметрии у 7-ми и в особенности у 8-ми летних детей. Таким образом, на данном отрезке онтогенеза четко прослеживается смена фазных отношений между полушариями и становление, развитие доминантности левого полушария. Электроэнцефалографические (ЭЭГ) исследования леворуких детей указывают на меньшую степень зрелости их нейрофизиологических механизмов по сравнению с праворукими.

В 7-10 лет, мозолистое тело увеличивается в объеме за счет продолжающейся миелинизации, усложняются взаимоотношения каллозальных волокон с нейронным аппаратом коры, что расширяет компенсаторные взаимодействия симметричных мозговых структур. К 9-10-летнему возрасту значительно усложняется структура интернейрональных связей коры, обеспечивающих взаимодействие нейронов как в пределах одного ансамбля, так и между нейронными ансамблями. Если в первые годы жизни развитие межполушарных отношений определяется структурным созреванием мозолистого тела, т.е. межполушарным взаимодействием, то после 10 лет доминирующим фактором является формирование внутри- и межполушарной организации мозга.

12 – 16 лет. Период – полового созревания, или подростковый, или старший школьный возраст. Его принято характеризовать как возрастной кризис, при котором имеет место быстрое и бурное морфофизиологическое преобразование организма. Данный период соответствует активному созреванию нейронного аппарата коры больших полушарий, интенсивному формированию ансамблевой функциональной организации нейронов. На этом этапе онтогенеза завершается развитие ассоциативных внутриполушарных связей различных корковых полей. Совершенствование с возрастом морфологических внутриполушарных связей создает условия для становления специализации в осуществлении различных видов деятельности. Возрастающая специализация полушарий приводит к усложнению функциональных межполушарных связей.

В возрасте между 13 и 14 годами имеет место выраженная дивергенция в особенностях развития между мальчиками и девочками.

17 лет – 22 года (ювенильный период). Юношеский возраст у девочек начинается в 16, а у мальчиков в 17 лет и заканчивается у юношей в 22-23 года, а у девушек в 19-20 лет. В этот период стабилизируется наступившая половая зрелость.

22 года – 60 лет. Период половой зрелости, или детородный период, в пределах которого установившиеся до него морфофизиологические характеристики сохраняются более или менее однозначными является относительно стабильным периодом. Поражения нервной системы в этом возрасте могут быть вызваны инфекционными заболеваниями, инсультами, опухолями, травмами и другими факторами риска.

Старше 60 лет. Стационарный детородный период сменяется регрессивным периодом индивидуального развития, который включает следующие стадии: 1-я стадия – период пожилого возраста, с 60 до 70-75 лет; 2-я стадия – период старческого возраста с 75 до 90 лет; 3-я стадия – долгожители – старше 90 лет. Принято считать в общей форме, что изменения морфологических, физиологических и биохимических показателей статистически коррелируют с увеличением хронологического возраста. Термин “старение” означает прогрессирующую утрату восстановительных и адаптивных реакций, которые служат для поддержания нормальных функциональных возможностей. Для ЦНС старение характеризуется асинхронным изменением физиологического состояния различных структур мозга.

При старении происходят количественные и качественные изменения в структурах центральной нервной системы. Нарастающее уменьшение количества нейронов начинается с 50-60 лет. К 70 годам кора мозга теряет 20%, а к 90 годам – 44-49% своего клеточного состава. Наибольшие потери нейронов происходят в лобной, нижневисочной, ассоциативных областях коры.

В связи со специализацией нейронных структур мозга уменьшение его клеточного состава в одной из них сказывается на деятельности центральной нервной системы в целом.

Одновременно с дегенеративно-атрофическими процессами при старении развиваются механизмы, способствующие поддержанию функциональных возможностей ЦНС: увеличиваются поверхность нейрона, органелл, объем ядра, количество ядрышек, число контактов между нейронами.

Наряду с гибелью нейронов происходит нарастание глиоза, это приводит к увеличению соотношения количества глиальных клеток к нервным, что благоприятно сказывается для трофики нейрона.

Следует обратить внимание, что отсутствует прямая связь между числом погибших нейронов и степенью функциональных изменений в деятельности той или иной структуры мозга.

При старении ослабляются нисходящие влияния головного мозга на спинной мозг. В пожилом возрасте повреждения спинного мозга оказывают менее продолжительное угнетающее влияние на рефлексы спинного мозга. Ослабление центрального влияния на рефлексы ствола мозга показаны относительно сердечно-сосудистой, дыхательной и других систем.

Межцентральные отношения структур головного мозга при старении сказываются на ослаблении реципрокных взаимотормозных влияний. Распространение синхронизированной, судорожной активности вызывается меньшими дозами коразола, кордиамина и т.д., чем у молодых. В то же время судорожные припадки у стариков не сопровождаются бурными вегетативными реакциями, как это имеет место у молодых.

Старение сопровождается увеличением в мозжечке соотношения глиоциты – нейрон с 3,6+0,2 до 5,9+0,4. К 50 годам у человека, сравнительно с 20 летними активность холин-ацетилтрансферазы уменьшается на 50%. Уменьшается с возрастом количество глутаминовой кислоты. Наиболее выражены при старении не функциональные изменения в самом мозжечке. Изменения в основном касаются мозжечково-лобных отношений. Это затрудняет или полностью нивелирует у пожилых возможности взаимокомпенсации нарушений функций одной из этих структур.

В лимбической системе мозга при старении снижается общее число нейронов, в сохранившихся нейронах увеличивается количество липофусцина, ухудшаются межклеточные контакты. Астроглия разрастается, значительно уменьшается на нейронах количество аксосоматических и аксодендритических синапсов, уменьшается шипиковый аппарат.

При деструкции тканей мозга реиннервация клеток в пожилом возрасте идет медленно. Медиаторный обмен в лимбической системе нарушается при старении значительно больше, чем в том же возрасте в других структурах мозга.

Длительность циркуляции возбуждения по структурам лимбической системы с возрастом уменьшается, а это сказывается на кратковременной памяти и формировании долговременной памяти, на поведении, мотивации.

Стриопаллидарная система мозга, при ее дисфункциях, вызывает различные двигательные нарушения, амнезии, вегетативные расстройства. При старении, после 60 лет, возникают дисфункции стриопаллидарной системы, что сопровождается гиперкинезами, тремором, гипомимией. Причиной таких нарушений являются два процесса: морфологический и функциональный. При старении объем стриопаллидарных ядер уменьшается. Количество интернейронов в неостриатуме становится меньше. Вследствие морфологических деструкций нарушаются функциональные связи стриарных систем через таламус с экстрапирамидной корой. Но это не единственная причина функциональных нарушений. К ним следует отнести изменения медиаторного обмена и рецепторных процессов. Стриарные ядра имеют отношение к синтезу дофамина, одного из тормозных медиаторов. При старении накопление дофамина в стриарных образованиях уменьшается. Старение приводит к нарушениям регуляции со стороны стриопаллидума тонких, точных движений конечностей, пальцев рук, нарушениям мышечной силы, возможности длительного сохранения высокого тонуса мышцы.

Ствол мозга является наиболее устойчивым образованием в возрастном аспекте. Это видимо обусловлено значимостью его структур, широким дублированием и резервированием их функций. Количество нейронов к старости в стволе мозга изменяется мало.

Наиболее важное значение в регуляции вегетативных функций имеет гипоталамо-гипофизарный комплекс.

Структурные и ультраструктурные изменения в гипоталамо-гипофизарных образованиях заключаются в следующем. Ядра гипоталамуса стареют не синхронно. Признаки старения выражаются в накоплении липофусцина. Наиболее рано выраженное старение появляется в переднем гипоталамусе. Нейросекреция в гипоталамусе уменьшается. Скорость обмена катехоламинов уменьшается вдвое. Гипофиз усиливает к старости выделение вазопрессина, что соответственно стимулирует повышение артериального давления

Функции спинного мозга существенно изменяются при старении. Основной причиной этого является снижение его кровоснабжения.

При старении в первую очередь изменяются длинноаксонные нейроны спинного мозга. К 70 годам число аксонов в корешках спинного мозга уменьшается на 30%, в нейронах накапливается липофусцин, появляются различного рода включения, падает активность холин-ацетилтрансферазы, нарушается трансмембранный транспорт K + и Na + , включение аминокислот в нейроны затрудняется, содержание РНК в нейронах уменьшается особенно активно после 60 лет. В этом же возрасте замедляется аксоплазматический ток белков, аминокислот. Все эти изменения в нейроне снижают его лабильность, в 3 раза уменьшается частота генерируемых импульсов, увеличивается длительность потенциала действия.

Моносинаптические рефлексы спинного мозга с латентными периодами (ЛП) 1,05 мс составляют 1%. ЛП этих рефлексов удлиняется к старости вдвое. Такое удлинение времени рефлекса обусловлено замедлением образования и выброса медиатора в синапсах данной рефлекторной дуги.

В многонейронной рефлекторной дуге спинного мозга время реакции увеличивается за счет замедления медиаторных процессов в синапсах. Указанные изменения в синаптической передаче приводят к снижению силы сухожильных рефлексов, увеличению их ЛП. У лиц 80 лет резко снижаются или даже исчезают ахилловы рефлексы. Например, ЛП ахиллова рефлекса у молодых составляет 30-32 мс, а у стариков – 40-41 мс. Такие замедления характерны и для других рефлексов, что сказывается замедлением моторных реакций у пожилого человека.



Рассказать друзьям