Как получить 1 группу. Новый закон о инвалидности

💖 Нравится? Поделись с друзьями ссылкой

Задачей количественного анализа является определение количественного содержания отдельных составных ча­стей в исследуемом веществе или в смеси. Результаты количественного определения выражают обычно в про­центах. Количественный анализ используется в биоло­гии, физиологии, медицине, биохимии, химии пищевых продуктов и т. д.

Все методы количественного анализа можно разделить на три основные группы.

1. Гравиметрический (весовой) анализ. Гравиметрическим анализом называют определение количества компонента (элемента или иона) по массе вещества, полученного в результате анализа. В методах этой группы определяемую часть анализируемого вещества выделяют в чистом виде или в виде соединения известного состава, массу которого определяют.

Например, чтобы определить количество бария в его соединениях, ион Ва 2+ осаждают при помощи разбав­ленной серной кислоты:

ВаС1 2 + H 2 S0 4 = BaS0 4 | + 2НС1.

Осадок BaS0 4 фильтруют, промывают, прокаливают и точно взвешивают. Зная массу осадка BaS0 4 и его фор­мулу, вычисляют, сколько в нем содержится бария. Гра­виметрический метод дает результаты высокой точности, но он очень трудоемок.

2. Титриметрический (объемный) анализ. Титриметрический анализ основан на точном измерении количества реактива, затраченного на реакцию с определяемым
компонентом. Реактив берется в виде раствора определенной концентрации - титрованный раствор. Момент,
когда реактив будет прибавлен в количестве, эквивалентном содержанию определяемого компонента, т. е. момент окончания реакции определяется различными способами. При титровании приливают количество реактива, эквивалентное количеству определяемого вещества. Зная объем и точную концентрацию раствора, пошедшего на реакцию с определяемым веществом, рассчитывают количество определяемого вещества.

Титриметрический анализ дает менее точные результаты, чем гравиметрический, но важным его преимуществом является большая скорость выполнения анализа. В зависимости от типа реакций, протекающих в процессе титрования, титриметрический анализ делят на три группы: методы кислотно-основного титрования, методы редоксиметрии и методы осаждения и комплексообра-зования.

3. Методы фотометрии. В этом методе количество вещества определяют по интенсивности окраски раствора. Для этого используют так называемые цветные реакции, т. е. реакции, сопровождающиеся изменением окраски раствора. Например, при определении количества железа используется реакция

FeCl3 + 3KSCN 7-Fe(SCN)3 + 3KCI,

приводящая к образованию раствора красного цвета. Оценку интенсивности окраски раствора производят визуально или с помощью соответствующих приборов.

Иногда определяемый компонент превращают в малорастворимое соединение и о содержании определяемого вещества судят по интенсивности помутнения раствора. Метод, основанный на этом принципе, называют нефелометрией. Методы фотометрии и нефелометрии применяются для определения компонентов, входящих в состав анализируемого вещества в очень малых количествах. Точность этого метода ниже, чем гравиметрического или титриметрического.

Кроме этих методов, имеются еще другие: газовый анализ, спектральный анализ, электрохимический и хро-матографический методы. В данном учебнике эти методы не рассматриваются.

Все методы количественного анализа подразделяются на химические и физико-химические. К химическим методам относятся гравиметрический, титриметрический и газовый анализ, к физико-химическим - фотометрия и нефелометрия, электрохимический, спектральный, хро-.матографический методы анализа

В количественном анализе различают методы макро-, микро- и полумикрометод. В настоящем учебнике рас­сматривается только макрометод. При выполнении макроопределений определяются сравнительно большие (0,01-0,1 г) количества вещества. Исключение состав­ляют фотометрические и нефелометрические методы, при которых количество определяемого вещества состав­ляет доли миллиграмма.

КОЛИЧЕСТВЕННЫЙ АНАЛИЗ

Химические методы

Классические химические методы анализа

Гравиметрия (весовой анализ).

Метод основан на измерении массы (веса) малорастворимого соединения (осадка), образующегося в результате химической реакции между определяемым компонентом и реактивом (осадителем). Измерение проводится путем взвешивания на аналитических весах гравиметрической формы.

Определяемый компонент + осадитель = осадок взвешиваемая форма

(определяемая форма) (реагент, (осаждаемая (гравиметрическая

реактив) форма) форма)

Титриметрия (титриметрический или объемный анализ).

Метод основан на точном измерении объема раствора известного реактива, пошедшего на реакцию с определяемым компонентом. В титриметрии используют титрованные растворы , концентрация которых известна. Эти растворы называют титрантами (рабочими растворами). Процесс постепенного приливания (добавления по каплям) раствора титранта к раствору анализируемого вещества называется титрованием. При титровании добавляют количество вещества титранта эквивалентное количеству определяемого вещества.

Конец реакции называется точкой стехиометричности или точкой эквивалентности.

Эксперименталь­но конец титрования определяют по появлению или исчез­новению окраски раствора, прекращению выделения осад­ка или же с помощью индикаторов. Эта точка, называемая конечной точкой титрования

Требования к реакциям, которые составляют основу методов

Количественного анализа

Взаимодействие между определяемым компонентом и реактивом должно идти в определенных стехиометричеких отношениях по уравнению реакци. Реакция должна идти практически до конца. Продукт реакции должен быть определенного точного состава и формулы.

Реакция должна проходить быстро, с большой скоростью, что особенно важно при прямом титровании. Точно фиксировать точку эквивалентности при медленных реакциях трудно. Побочных или конкурирующих реакций должен быть минимум.

Должен быть удовлетворительный способ нахождения (определения) точки эквивалентности и конца титрования.

Титриметрия

Классификация методов титриметрического анализа

По типам химических реакций

1. Кислотно - основное титрование (метод нейтрализации)

Например.

HCl + NaOH = NaCl + H 2 O

сильная сильное соль

кислота основание

индикатор

HCl + NH 4 OH = NH 4 Cl + H 2 O

слабое соль

основание

титрант определяемый

компонент

2. Окислительно - восстановительное титрование

Например.

2 KMnO 4 + 10 FeSO 4 + 8 H 2 SO 4 = 2 MnSO 4 + 5 Fe 2 (SO 4) 3 + K 2 SO 4 + 8 H 2 O

окислитель восстановитель кислая среда

титрант определяемое

вещество

Способы титрования

1. Способ прямого титрования

К раствору определяемого компонента добавляют небольшими порциями (по каплям) титрант до точки эквивалентности.

Способ прямого реверсионного титрования: к точному объему титранта, находящегося в конической колбе, добавляют небольшими порциями (по каплям) раствор определяемого вещества из бюретки.

2.Способ обратного титрования или титрование по остатку

При этом используют два титранта с известными точными концентрациями. В коническую колбу к раствору определяемого вещества добавляют в избыточном количестве точный объем первого титранта V 1 с точной концентрацией С 1 . Так как первый титрант добавлен в избытке, то часть его вступает в реакцию с определяемым веществом, а непрореагировавшая часть первого титранта остается в растворе и ее оттитровывают вторым титрантом и на это расходуется объем V 2 второго титранта с концентрацией С 2 .

Если концентрации титрантов равны между собой (С 1 = С 2), то количество раствора первого титранта V, пошедшего на реакцию с определяемым компонентом, определяют по разности между добавленным V 1 и оттитрованным V 2 объемом:

Если концентрации титрантов не равны, то вычисляют количество моль эквивалентов (n) первого титранта, которое вступило в реакцию с определяемым веществом, по разности между количеством моль эквивалентов первого титранта C 1 V 1 и количеством моль эквивалента второго титранта C 2 V 2:

n = С 1 V 1 - C 2 V 2

Способ обратного титрования применяют, когда нет подходящего индикатора или когда основная реакция протекает не очень быстро.

Например. Определение количества хлорида натрия NaCl .

К раствору NaCl добавляют избыточный объем первого титранта AgNO 3 . Часть этого титранта вступает в реакцию с определяемым веществом по уравнению

AgNO 3 + NaCl = AgCl + NaNO 3

Титрант 1 белый

Остаток титранта 1 (AgNO 3), не вступившего в реакцию с NaCl, далее титруется вторым титрантом NH 4 SCN.

AgNO 3 + NH 4 SCN = AgSCN + NH 4 NO 3

Титрант 1 Титрант 2 красно-бурый

3. Способ заместительного титрования

Этот способ применяют, когда по каким-то причинам трудно определить точку эквивалентности, особенно при работе с неустойчивыми веществами, легко окисляемыми кислородом воздуха и др., или веществами, которые трудно определяются при прямом титровании, или реакция идет медленно.

Способ заключается в том, что к определяемому веществу добавляют вспомогательный реагент, при взаимодействии с которым количественно выделяется продукт реакции. Этот выделившийся продукт реакции называют заместителем и далее титруют соответствующим титрантом.

Например.

K 2 Cr 2 O 7 + 6 KI + 7 H 2 SO 4 = 3 I 2 + 4 K 2 SO 4 + Cr 2 (SO 4) 3 + 7 H 2 O

определяемое вспомогательный кислая продукт

вещество реагент среда реакции

заместитель

I 2 + 2 Na 2 S 2 O 3 = 2 NaI + Na 2 S 4 O 6

заместитель титрант индикатор

Расчеты в титриметрии

Закон эквивалентов: вещества реагируют друг с другом в эквивалентных количествах. В общем виде для любых реагирующих веществ по закону эквивалентов

где n - количество моль эквивалентов реагирующих веществ.

где С э - молярная концентрация эквивалента, моль/л.

C 1 V 1 = C 2 V 2

При одинаковой концентрации растворов реагирующих веществ реакции идут между их равными объемами.

Например. На 10,00 мл раствора кислоты расходуется 10,00 мл раствора щелочи, если их концентрации равны 0,1 моль/л.

Титр (Т ) раствора - это масса вещества, содержащегося в 1 мл раствора (или в 1 см 3), размерность - г/мл.

Т = m (вещества) / V (раствора)

Т = С э М э / 1000

Например. T (HCl/HCl) = 0,0023 г/мл читается: титр соляной кислоты (или хлороводородной кислоты) по HCl равен 0,0023 г/мл. Это означает, что каждый 1 мл этого раствора соляной кислоты содержит 0,0023 г HCl или 2,3 мг в 1 мл.

МЕТОД НЕЙТРАЛИЗАЦИИ

Метод отдельных навесок

Например. В коническую колбу взята определенная навеска m (х.ч.) щавелевой кислоты H 2 C 2 O 4 2H 2 O (взвешена на аналитических весах с точностью до 0,0001 г). Растворена в воде и полностью оттитрована раствором NaOH с индикатором метилоранжем. На титрование израсходован объем V мл раствора NaOH. Вычислить концентрацию NaOH.

Для вычисления концентрации NaOH используем формулу:

m (H 2 C 2 O 4 2H 2 O) = C (NaOH) x V (NaOH) x M (1/2 H 2 C 2 O 4 2H 2 O)

Из этой формулы выводим C (NaOH), все остальные данные известны.

КОЛИЧЕСТВЕННЫЙ АНАЛИЗ

МЕТОДЫ количественного анализа

В количественном анализе выделяют методы химические, физические и физико-химические Отнесение метода к той или иной группе зависит от того, в какой мере определение химического состава вещества данным методом основано на использовании химических или физических процессов, или сочетание тех и других процессов.

Разработаны аналитические методы, которые основаны на использовании почти всех известных химических и физических свойств атомов и молекул. Следует учитывать, что аналитическая методика, как правило, состоит из нескольких стадий, каждая из которых основана на том или ином свойстве.

Соответственно трем агрегатным состояниям материи - твердому, жидкому, газообразному - количественные измерения можно проводить путем определения массы (путем взвешивания) и путем определения объемов жидких или газообразных веществ.

Химические методы

Химические методы основаны на следующих превращениях: образование осадка или растворение осадка, образование окрашенного соединения или изменение цвета раствора, образование газообразных веществ.

Химические методы используются в анализах, которые называются “классическими”. Они хорошо проверены, состоят из нескольких стадий, каждая из которых вносит свою ошибку, требует от аналитика внимательности, аккуратности, большого терпения.

Методы количественного анализа. Количественный анализ предназначен для определения количественного состава анализируемого вещества. Существуют химические, физические и физико-химические методы количественного анализа. Основой всякого количественного исследования является измерение. Химические методы количественного анализа основаны на измерении массы и объема. Количественные исследования позволили ученым установить такие основные законы химии, как закон сохранения массы вещества, закон постоянства состава, закон эквивалентов и др. законы, на которых основана химическая наука. Принципы количественного анализа являются основной для химико-аналитического контроля производственных процессов различных отраслей промышленности и составляют предмет т. н. технического анализа. Различают 2-ва основных метода количественного химического анализа: весовой или гравиметрический и объемный или титриметрический.

Весовым анализом наз-ся метод количественного анализа, в котором точно измеряют только массу. Объемный анализ - основан на точном измерении массы веществ и объема раствора реактива известной концентрации, реагирующего с определенным количеством анализируемого вещества. Особым видом кол-го анализа является анализ газов и газовых смесей, т.н. газовый анализ, выполняемый тоже путем измерения объема или массы анализируемой смеси или газа. Определение одного и того же вещества можно выполнить весовым или объемным методами анализа. Выбирая метод определения, аналитик должен учитывать необходимую точность результата, чувствительность реакции и быстроту выполнения анализа, а в случае массовых определений - доступность и стоимость применяемых реактивов.

В связи с зтим различают макро-, микро-, полумикро-, ультрамикрометоды кол-го анализа, при помощи которых можно проводить анализ минимальных количеств анализируемого вещества. В настоящее время простые химические методы все больше вытесняются физическими и физико-химическим методами, для работы с которыми необходимы дорогостоящие приборы и оборудование. Оптические, электрохимические, хроматографические, различные спектро- и фотометрические исследования (инфракрасная, атомноадсорбционная, пламенная и т.д.), потенциометрия, полярография, масс-спектрометрия, ЯМР исследования. С одной стороны эти методы ускоряют получение результатов, повышают их точность и чувствительность измерений: предел обнаружения (1-10 -9 мкг) и предельная концентрация (до 10 -15 г/мл), селективность (можно определять составные компоненты смеси без их разделения и выделения), возможность их компьютеризации и автоматизации.

Но с другой стороны все более удаляют от химии, снижают знание химических методов анализа у аналитиков, что и привело к ухудшению преподавания химии в школах, отсутствию хороших учителей-химиков, оснащенных школьных химических лабораторий, снижению знаний по химии у школьников. К недостаткам следует отнести сравнительно большую ошибку определения (от 5 до 20 %, в то время как химический анализ дает ошибку обычно от 0,1 до 0,5 %), сложность аппаратуры и ее высокую стоимость. Требования, предъявляемые к реакциям в количественном анализе. Реакции должны протекать быстро, до конца, по возможности, - при комнатной температуре. Исходные вещества, вступающие в реакцию, должны реагировать в строго определенных количественных соотношениях (стехиометрически) и без побочных процессов. Примеси не должны мешать проведению количественного анализа. При проведении измерений не исключены ошибки, погрешности измерений и расчетов. Для исключения ошибок, сведения их к минимуму, измерение проводят в повторностях (параллельных определениях), не менее 2-х и проводят метрологическую оценку результатов (имеется в виду правильность и воспроизводимость результатов анализа).

Классификация химических методов количественного анализа:

Титриметрический метода. Измерение объема израсходованного на реакцию раствора реактива точно известной концентрации.

Гравиметрический. Измерение массы определяемого вещества или его составных частей, выделяемых в виде соответствующих соединений.

Важнейшими характеристиками методов анализа является их чувствительность и точность. Чувствительностью метода анализа называют наименьшее количество вещества, которое можно достоверно определить данным методом. Точностью анализа называют относительную ошибку определения, которая представляет собой отношение разности найденного (х 1) и истинного (х) содержания вещества к истинному содержанию вещества и находят по формуле:

Отн. ош.= (х 1 -х)/ х, для выражения в процентах умножают на 100. За истинное содержание принимают среднеарифметическое содержание вещества, найденное при анализе пробы в 5 -7 определениях.

Весовым (гравиметрическим) анализом называют метод количественного анализа, при котором количественный состав анализируемого вещества устанавливают на основании измерений масс, путем точного взвешивания массы устойчивого конечного вещества известного состава, в которое полностью переведен данный определяемый компонент. Например, гравиметрическое определение серной к-ты в водном растворе осуществляется с помощью водного раствора соли бария: ВаС1 2 + Н 2 SО 4 > ВаSО 4 v +2 НСl. Осаждение проводят в таких условиях, в которых практически весь сульфат-ион переходит в осадок ВаSО 4 с наибольшей полнотой - количественно, с минимальными потерями, вследствие незначительной, но все же имеющейся растворимости сульфата бария.

Далее осадок отделяют от раствора, промывают для удаления растворимых примесей, высушивают, прокаливают, для удаления летучих сорбированных примесей и взвешивают на аналитических весах в виде чистого безводного сульфата бария. А затем рассчитывают массу серной кислоты. Классификация методов гравиметрического анализа. Методы осаждения, отгонки, выделения, термогравиметрические методы (термогравиметрия). Методы осаждения - определяемую составную часть количественно связывают в такое химическое соединение, в виде которого она может быть выделена и взвешена. Состав этого соединения должен быть строго определенным, т.е. точно выражаться химической формулой, и оно не должно содержать каких-либо посторонних примесей. Соединение, в виде которого определяемую составную часть взвешивают, называют весовой формой.

Пример, определение Н 2 SО 4 (выше), определение массовой доли железа в его растворимых солях, основанное на осаждении железа (111) в форме гидроксида Fе(ОН) 3 хН 2 О с последующим его отделением и прокаливанием до оксида Fе 2 О 3 (весовая форма). Методы отгонки. Определяемый компонент выделяют из анализируемой пробы в виде газообразного вещества и измеряют либо массу отогнанного вещества (прямой метод), либо массу остатка (косвенный метод). Прямой метод широко используется для определения содержания воды в анализируемых веществах путем ее отгонки из взвешенного образца и конденсации, а затем измеряют объем конденсированной воды в приемнике. По плотности пересчитывают объем воды на массу и, зная массу образца и воды, рассчитывают содержание воды в анализируемой пробе. Косвенный метод отгонки широко применяют для определения содержания летучих веществ (включая слабосвязанную воду) по изменению массы образца до и после высушивания до постоянного веса в термостате (в сушильном шкафу) при постоянной температуре.

Условия проведения таких испытаний (температура, время сушки) определяются природой образца и конкретно указываются в методических руководствах. Методы выделения основаны на выделении из раствора определяемого компонента путем электролиза на одном из электродов (электрогравиметрический метод). Затем электрод с выделевшимся веществом промывают, высушивают и взвешивают. По увеличению массы электрода с веществом находят массу выделившегося на электроде вещества (сплавы золота, меди переводят в раствор). Термогравиметрические методы не сопровождаются отделением исследуемого вещества, а исследуется сам образец поэтому эти методы условно относят к гравиметрическим методам анализа. Методы основаны на измерении массы анализируемого вещества при его непрерывном нагревании в заданном температурном интервале на специальных приборах - дериватографах.

По полученным термогравиграммам при их расшифровке можно определить содержание влаги и других составляющих анализируемого вещества. Основные этапы гравиметрического определения: расчет массы навески анализируемой пробы и объема (или массы) осадителя; взвешивание (взятие) навески образца; растворение навески анализируемого образца; осаждение, т.е. получение осаждаемой формы определяемого компонента; фильтрование (отделение осадка от маточного раствора); промывание осадка; высушивание и (при необходимости) прокаливание осадка до постоянной массы, т. е. получение гравиметрической формы; взвешивание гравиметрической формы; расчет результатов анализа, их статистическая обработка и представление. Каждая из этих операций имеет свои особенности. При расчете оптимальной массы навески анализируемого вещества учитывают возможную массовую долю определяемого компонента в анализируемой пробе и в гравиметрической форме, массу гравиметрической формы, систематическую ошибку взвешивания на аналитических весах (обычно 0,0002), характер получаемого осадка - аморфный, мелкокристаллический, крупнокристаллический. Расчет исходной навески ведут исходя из того, что масса гравиметрической навески должна быть не меньше 0,1 г.

В общем случае нижний предел оптимальной массы m исходной навески анализируемого вещества (в граммах) рассчитывают по формуле:

m = 100m (ГФ) F/ W(X),

где m(ГФ) - масса гравиметрической формы в граммах; F - гравиметрический фактор, фактор пересчета, аналитический множитель); W(X) - массовая доля (в %) определяемого компонента в анализируемом веществе. Гравиметрический фактор F численно равен массе определяемого компонента в граммах, соответствующий одному грамму гравиметрической формы.

Гравиметрический фактор рассчитывают по формуле как отношение молярной массы М(Х) определяемого компонента Х к молярной массе гравиметрической формы М(ГФ), умноженное на число n молей определяемого компонента, из которого получается один моль гравиметрической формы:

F = n M(X) / M (ГФ).

Так, если из 2-х молей Fе С1 3 6Н 2 О получается один моль гравиметрической формы Fе 2 О 3 , то n = 2. Если из одного моля Ва(NО 3) 2 получают один моль гравиметрической формы ВаСrО 4 , то n = 1.

Качественный анализ неорганических веществ. Предмет и задачи качественного анализа. Основные понятия.

Качественный анализ – обнаружение или открытие составных компонентов в исследуемой системе.

Цель качественного анализа-определение; элементного или изотопного состава вещества. При анализе органических соединений находят непосредственно отдельные химические элементы, например углерод, серу, фосфор, азот или функциональные группы. При анализе неорганических соединений определяют, какие ионы, молекулы, группы атомов, химические элементы составляют анализируемое вещество.

Классификация методов качественного анализа. Аналитический сигнал

В зависимости от количества пробы используемой в анализе различают:

Макроанализ (масса – более 100 мг, объем р-ра – 10-100 мл)

Полу-микроанализ (масса – 10-100 мг, объем р-ра – 1-10 мл)

Микроанализ (масса – 1-10 мг, объем р-ра – 0,01-1 мл)

Субмикроанализ (масса – 0,1-1 мг, объем р-ра – 0,001-0,01 мл)

Ультрамикроанализ (масса – менее 0,1 мг, объем р-ра – менее 0,001 мл)

В случае необходимости обнаружения какого-либо компонента обычно

фиксируют появление аналитического сигнала – появление осадка, окраски, и т.д. Появление аналитического сигнала должно быть надежно

зафиксировано. При определении количества компонента измеряется величина

аналитического сигнала – масса осадка и т.п.

Дробный и систематический анализ. Групповой реагент.

Дробный анализ – обнаружение ионов с помощью специфических реакций в отдельных порциях исследуемого раствора, выполняется в любой последовательности.

Систематический анализ – определённая последовательность выполнения реакций, при которых каждый ион обнаруживается после того, как удаляются все мешающие ионы.

В ходе систематического анализа ионы выделяют из сложной смеси целыми группами, пользуясь одинаковым отношением к некоторым реагентам.

Реагенты, позволяющие выделить из сложной смеси группу ионов, называются групповыми реагентами.

Требования:

* должен осаждать ионы практически полностью

* получающийся осадок должен легко растворяться в щелочах или кислотах для проведения дальнейших исследований.

* его избыток не должен мешать обнаружению оставшихся в растворе ионов.

Классификация катионов на аналитические группы.

Сероводородная (сульфидно-аммиачная)

1 – Na+, K+, Pb+, Cs+, Fr+, NH4+, Mg+, (гр. реагент - нет)

2 – Ca+2, Sr+2, Ba+2, Ra+2, (гр. реагент – (NH 4) 2 CO 3 , pH=8-9)

3.1 – Fe (II и III), Mn+2, Zn+2, Co+2, Ni+2, (гр. реагент - (NH 4) 2 S, pH=8-9) (осаждаются в виде сульфидов)

3.2 – Al+3, Cr+3, Ti+4, Be+2 (гр. реагент - (NH 4) 2 S, pH=8-9) (осаждаются в виде гидроксидов)

4.1 – Cu+2, Hg+2, Bi+3, Cd+2, (гр. реагент – H 2 S) (не растворяются в (NH 4) 2 S)

4.2 – Sn+2, Sn+4, Sb+3, Sb+5, As+3, As+5,(гр. реагент – HCl, pH=0,5)

5 – Ag+, Bb+2, Hg+4 (гр. реагент - HCl)

Классификация анионов на аналитические группы.

1.1 (не раств. в HCl) – SO 4 -2, групповой реагент – BaCl.

1.2 (раств. в HCl) – SO 3 -2, S2O3 -2, CO 3 -2, SiO 3 -2, PO 4 -3 групповой реагент – BaCl.

2 – I-, Cl-, S, Br-, групповой реагент – AgNO 3.

3 – NO 3 -, CH 3 COO- групповой реагент – нет.

Предмет и задачи количественного анализа. Классификация методов количественного химического анализа.

Количественный анализ – определяет количественное содержание компонентов в исследуемой системе.

Методами количественного химического анализа устанавливают, в каких количественных соотношениях находятся составные части в исследуемом веществе. Количественными методами можно определить соединение химического элемента или другой составной части в содержании, сплаве, смеси, растворе. Кроме того, количественные методы позволяют определять атомные, эквивалентные и молекулярные массы, константы равновесия, произведения растворимости, кислотность или щелочность среды.

Гравиметрические (весовые) методы – выделяют и взвешивают осадок.

Титриметрические (объемные) методы – измерение V стандартного раствора, необходимого для реакции.

Газоволюметрические – Измерение V газа, выделяющегося в ходе реакции.

Все методы количественного анализа в зависимости от характера экспериментальной техники, применяемой для конечного определения составных частей анализируемого вещества или смеси веществ, делят на три группы: химические, физические и физико-химические (инструментальные) методы анализа.

К химическим методам анализа относятся:

1. Весовой анализ - измерение массы определяемого вещества или его составных частей, выделяемых в химически чистом состоянии или в виде соответствующих соединений.

2. Объемный анализ - измерение объема жидких, твердых и газообразных продуктов или их водных и неводных растворов.

Известны разнообразные объемные методы:

1) объемный титриметрический - измерение объема израсходованного на реакцию реактива точно известной концентрации;

2) газовый объемный - анализ газовых смесей, основанный на избирательном поглощении из анализируемой газовой смеси определяемого компонента подходящими поглотителями;

3) седиментационный объемный, основанный на расслоении дисперсных систем под действием силы тяжести, сопровождающемся отделением дисперсной фазы в виде осадка и последующем измерении объема осадка в калиброванной центрифужной пробирке. Например, в микро- и ультрамикроанализе содержание серы находят путем окисления ее до сульфатной и последующего осаждения в виде осадка сульфата бария, определяемого указанным методом.

В более широком смысле седиментационным анализом называют метод определения в дисперсных системах величины и относительного содержания частиц различных размеров по скорости седиментации (оседания или всплывания).

Скорость седиментации сферических частиц при известных условиях описывается уравнением Стокса:

где v - скорость седиментации;

Радиус частицы;

Плотность материала частицы;

Плотность дисперсной среды;

Вязкость среды;

Ускорение силы тяжести.

Очень часто в лабораторной практике применяют весовые методы седиментационного анализа, основанное на гидростатическом взвешивании осадка в процессе его накопления при помощи седиментационных стеклянных весов Н. А. Фигуровского.

В ряде случаев разделение методов анализа на химические и физикохимические условно, так как иногда трудно или практически невозможно решить вопрос о принадлежности того или иного метода анализа к какой-либо из указанных групп.

Перечисленные методы являются лишь методами конечного определения определяемого вещества или его составных частей и не отражают всех особенностей химического анализа.

Существенной частью химического анализа, на выполнение которой химику-аналитику иногда приходится расходовать больше времени и труда, чем на конечное определение определяемого вещества, являются методы разложения анализируемого вещества, а также методы разделения, выделения и концентрирования определяемых элементов (или ионов).



Рассказать друзьям