Слух ВКонтакте Facebook. Физиология слуха

💖 Нравится? Поделись с друзьями ссылкой

Слуховые рецепторы находятся в улитке внутреннего уха, которая расположена в пирамиде височной кости. Звуковые колебания передаются к ним через целую систему специальных образований: наружный слуховой проход, барабанную перепонку, слуховые косточки, жидкость лабиринта и основную перепонку улитки. В данном случае имеется «обрастание» рецепторов вспомогательными образованиями, вследствие чего достигается более совершенное и тонкое восприятие звуковых явлений.

. Наружный слуховой проход служит для проведения звуковых колебаний к барабанной перепонке. Всякий звук, идущий сбоку, поступает к одному уху на несколько долей миллисекунды позже, чем к другому. Разница во времени прихода звуковых волн, воспринимаемых правым и левым ухом, дает возможность человеку довольно точно (с точностью до 3-4°) определить направление звука. Это доказывается следующим опытом: звук подводится раздельно в оба уха испытуемого по трубкам разной длины.

. Существеннейшей частью среднего уха является цепь косточек - молоточек, наковальня и стремечко, которые передают колебания барабанной перепонки внутреннему уху. Одна из этих косточек - молоточек - вплетена своей рукояткой в барабанную перепонку, другая сторона молоточка сочленена с наковальней.

Костная передача звуков . Кроме воздушной передачи звука, через барабанную перепонку и слуховые косточки, возможна передача через кости черепа - костная передача звука. Если поставить ножку камертона на темя или на сосцевидный отросток, то звук будет слышен даже при закрытом слуховом проходе. Очевидно, звучащее тело вызывает колебания костей черепа, которые вовлекают в колебание слуховой парат. Это видно из того, что если, кроме камертона, поставленного на темя, поднести другой звучащий камертон к слуховому проходу, то можно получить ослабленное ощущение звука вследствие интерференции волн, если их фазы не совпадают. Из этого можно сделать вывод, что как воздушная, так и костная передача действует на один и тот же субстрат.

Внутреннее ухо и восприятие звуков . Во внутреннем ухе, кроме преддверия и полукружных каналов, функции которых рассмотрены выше, находится , являющаяся воспринимающей частью слухового анализатора.

Звуковые ощущения

Диапазон восприятия звуков . Человек воспринимает звуки с частотой колебаний от 16 до 20 000 в секунду. Этот диапазон соответствует 10-11 октавам. Верхняя граница воспринимаемых звуков зависит от возраста: чем человек старше, тем она ниже; старики часто не слышат высоких тонов, например звука, издаваемого сверчком. У многих животных верхняя граница слуха лежит значительно выше: у собаки, например, удается образовать условные рефлексы на очень высокие, неслышимые человеком звуки.

Чувствительность органа слуха . Чувствительность слуха можно измерить силой еле слышимого звука, причем энергию звуковых колебаний можно выразить в эрг/см2·сек. На основании подобных измерений установлено, что чувствительность сильно меняется в зависимости от высоты звука.

В области звуковых колебаний от 1000 до 3000 в секунду ухо человека обладает максимальной чувствительностью. В пределах указанных частот слышен звук, имеющий энергию только 1-10 -9 эрг/см2·сек. При колебаниях до 1000 и выше 3000 в секунду чувствительность резко уменьшается: например, при 20 колебаниях и при 20 000 колебании в секунду энергия звука должна быть 1 эрг/см2·сек. Эти данные изображает нижняя кривая EFG на рис. 203 .

Рис. 203. Площадь звуковых восприятии (по Beгtлю и Гbльдемейстеру). По абсциссе отложены числа колебаний в секунду, по ординате - сила звука, выраженная в динах на 1 см2 (давление на барабанную перепонку).

При увеличении силы звука и при неизменной высоте его можно дойти такой силы, когда звук вызывает неприятное ощущение давления и даже боли в ухе. Звуки такой силы дадут, очевидно, верхний предел слышимости.

Кривая верхнего предела слышимости пересекает кривую порога в двух местах -А и D (при 16 и при 20 000 колебаний в секунду) и ограничивает вместе с ней площадьслухового восприятия. Эта площадь представлена на рис. 203 .

Ощущение громкости звука . От объективной интенсивности звука, измеряемой в эрг/см2·сек, следует отличать субъективное ощущение громкости звука.

Субъективное ощущение громкости не идет параллельно нарастанию интенсивности звука.

Единицей громкости звука, широко распространенной в настоящее время, является. Эта единица представляет собой десятичный логарифм отношения действующей интенсивности звука I к пороговой его интенсивности I 0 . В практике обычно пользуются в качестве единицы громкости децибелом, т. е. 0,1 бела, иначе говоря, 10 lg 10 I/I 0 .

Для того чтобы получить громкость в 1 децибел, т. с. для того, чтобы 10 lg 10 I/I 0 =1, lg 10 I/I 0 должен быть равен 0,1. Из этого следует, что при громкости в 1 децибел отношение I/I 0 , должно быть равно 1,26, так как lg 10 l,26=0,1. Это значит, что для того, иметь громкость в 1 децибел, звук I должен иметь интенсивность на 26% выше пороговой интенсивности.

Таким же образом можно найти, что громкость, равная 10 децибелам, возникает в том случае, если сила звука I будет в 10 раз больше I 0 (lgm 10 10=1), 60 децибелам - в том случае, если отношение силы звуков I и I 0 будет равно 1 000 000 (lg 10 10 6 =6).

Пороговая интенсивность звука и нарастание ощущения громкости при его услении различны в зависимости от высоты звука.

При сравнении звуков разной высоты при определении уровня их громкости в децибелах сравнивают исследуемые звуки со звуком одинаковой субъективной громкости, имеющим 1000 колебании в секунду.

Максимальный уровень громкости, когда звук переходит в болевое ощущение, равняется 130-140 децибелам (сила звука в 10 13 -10 14 больше пороговой).

Определение остроты слуха . В клинической практике важно бывает определить степень понижения остроты слуха данного субъекта. Это понижение может быть выражено в децибелах. Так как порог отстоит от верхнего предела слышимости на 140 децибел, то полная глухота будет характеризоваться понижением слуха на 140 децибел.

Точное определение остроты слуха производят с помощью звуковых генераторов- аудиометров, позволяющих регулировать высоту и силу звуков. О восприятии звуков или по словесному отчету исследуемого человека («слышу», «не слышу») или по ответным реакциям. Г. В. Гершуни разработал способ определения восприятия звуков по появлению кожно-гальванического рефлекса при действии звуковых раздражений.

Адаптация . Если на ухо долго действует звук большой силы, то чувствительность слуха падает. В этом проявляется адаптация слухового аппарата. Выявлено, что чем больше сила звука, тем меньше вследствие адаптации окончательная чувствительность уха. Таким образом, субъективная громкость может дойти только до известного предела, несмотря на все повышающуюся интенсивность звука.Механизм явлений адаптации изучен еще неполностью. Кроме процессов, протекающих в центральных звеньях звукового анализатора известное значение имеет и определенный уровень «настройки» рецепторного аппарата. Выше было указано, что сокращения m. tensor tympani иm. stapedius могут изменять количество звуковой энергии, передающейся на улитку.

Десметом обнаружено, что раздражение определенных точек ретикулярной формации среднего мозга приводит к угнетению электрической активности кохлеарного ядра и коры головного мозга, вызываемой звуковым раздражением постоянной силы (щелчком). Анатомическим образованием, через которое ретикулярная формация может регулировать чувствительность слуховых рецепторных клеток, являются волокна направляющиеся от ретикулярной формации к улитке и слуховым передаточным точным нейронам и образующие так называемый пучок Расмуссена.

Звук можно представить как колебательные движения упругих тел, распространяющиеся в различных средах в виде волн. Для восприятия звуковой сигнализации сформировался еще сложнее, чем вестибулярный, - рецепторный орган. Формировался он вместе с вестибулярным аппаратом, и поэтому в их строении есть немало подобных структур. Костный и перепончатый каналы в человека образуют 2,5 витка. Слуховая сенсорная система для человека - второй после зрения по значимости и объему информации, получаемой от внешней среды.

Рецепторы слухового анализатора относятся к вторинночутливих. Рецепторные волосковые клетки (у них сокращенный кіноцилій) образуют спиральный орган (кортіїв), что находится в завитці внутреннего уха, в ее завитковій проливе на основной мембране, длина которой - около 3,5 см. Она состоит из 20 000-30 000 волокон (рис. 159). Начиная от овального отверстия, длина волокон постепенно увеличивается (примерно в 12 раз), тогда как толщина их постепенно уменьшается (примерно в 100 раз).

Образование спирального органа завершает текторіальна мембрана (покровная перепонка), расположенная над волосковими клетками. На основной мембране располагаются рецепторные клетки двух типов: внутренние -в один ряд, а внешние - в 3-4. На их мембране, возвращенной в сторону покровной, у внутренних клеток находится 30 - 40 относительно коротких (4-5 мкм) волосков, а у внешних - 65 - 120 более тонких и более длинных. Между отдельными рецепторними клетками нет функциональной равенства. Об этом свидетельствует и морфологическая характеристика: сравнительно небольшая (около 3 500) количество внутренних клеток обеспечивает 90% аферентів кохлеарного (улиткового) нерва; в то время как от 12 000-20 000 внешних клеток отходит только 10 % нейронов. Кроме того, клетки базальной, и

Рис. 159. 1 - лестница пригінка; 2 - барабанные лестницы; С - основная перепонка; 4 - спиральный орган; 5 - средние лестница; 6 - сосудистая полоска; 7 -покровная перепонка; 8 - рейснерова перепонка

особенно средней, спирали и завитки имеют больше нервных окончаний, чем верхушечной спирали.

Пространство завиткової пролива заполнено эндолимфой. Над вестибулярной и основной мембранами в пространстве соответствующих каналов содержится перилімфа. Она сочетается не только с перилимфой вестибулярного канала, но и с субарахноидальным пространством мозга. Состав ее довольно подобный состав спинномозговой жидкости.

Механизм передачи звуковых колебаний

Прежде чем достичь внутреннего уха, звуковые колебания проходят через наружное и среднее. Наружное ухо служит преимущественно для улавливания звуковых колебаний, поддержания постоянства влажности и температуры барабанной перепонки (рис. 160).

За барабанной перепонкой начинается полость среднего уха, с другого конца закрыта перепонкой овального отверстия. Заполненная воздухом полость среднего уха соединяется с полостью носоглотки с помощью слуховой (евстахиевой) трубы, служит для выравнивания давления с обеих сторон барабанной перепонки.

Барабанная перепонка, воспринимая звуковые колебания, передает их на систему расположенных в среднем ухе лодыжек (молоточек, наковальня и стремечко). Косточки не только отправляют колебания на мембрану овального отверстия, но и усиливают колебания звуковой волны. Это происходит вследствие того, что сначала колебания передаются более длинному рычагу, образованном рукояткой молоточка и отростком коваделка. Этому же способствует и различие поверхностей стремінця (около 3,2 o МҐ6 м2) и барабанной перепонки (7 * 10"6). Последнее обстоятельство примерно в 22 раза (70:3,2) усиливает давление звуковой волны на барабанную пе

Рис. 160. : 1 - воздушная передача; 2 - механическая передача; 3 - жидкостная передача; 4 - электрическая передача

ретинку. Но при усилении колебания барабанной перепонки снижается амплитуда волны.

Указанные выше и последующие звукопередавальні структуры создают чрезвычайно высокую чувствительность слухового анализатора: звук воспринимается уже в случае давления на барабанную перепонку более 0,0001 мг1см2. К тому же мембрана завитки перемещается на расстояние, меньше диаметра атома водорода.

Роль мышц среднего уха.

Расположенные в полости среднего уха мышцы (m. tensor timpani и m. stapedius), воздействуя на натяжение барабанной перепонки и ограничивая амплитуду движения стремінця, участвуют в рефлекторной адаптации слухового органа к интенсивности звука.

Мощный звук может повлечь нежелательные последствия как для слухового аппарата (вплоть до повреждения барабанной перепонки и волосков рецепторных клеток, нарушения микроциркуляции в завитці), так и для ЦНС. Поэтому для предотвращения указанных последствий рефлекторно уменьшается натяжение барабанной перепонки. Вследствие этого, с одной стороны, снижается возможность ее травматического разрыва, а с другой, - уменьшается интенсивность колебания косточек и расположенных за ними структур внутреннего уха. Рефлекторную реакцию мышц наблюдают уже через 10 мс от начала действия мощного звука, что оказывается во время звука в 30-40 дБ. Этот рефлекс замыкается на уровне стволовых отделов мозга. В некоторых случаях воздушная волна бывает такой мощной и быстрой (например при взрыве), что защитный механизм не успевает сработать и возникают различные повреждения слуха.

Механизм восприятия звуковых колебаний рецепторними клетками внутреннего уха

Колебания мембраны овального окна сначала передается пери-лимфе вестибулярных лестницы, а затем через вестибулярную мембрану - ендолімфі (рис. 161). На вершине улитки между верхним и нижним перепончатыми каналами содержится соединительное отверстие - гелікотрема, через которое колебание передается перилимфе барабанных лестницы. В стенке, отделяющей среднее ухо от внутреннего, кроме овального, есть еще и круглое отверстие со своей мембраной.

Возникновение волны приводит к движению базилярной и покровной мембраны, после чего волоски рецепторных клеток, которые касаются покровной мембраны, деформируются, вызывая зарождение РП. Хотя волоски внутренних волосковых клеток касаются покровной мембраны, однако они также сгибаются под действием смещений эндолимфы в промежутке между ней и верхушками волосковых клеток.

Рис. 161.

С рецепторними клетками связаны аференти кохлеарного нерва, передача импульса на которые опосредуется медиатором. Главными сенсорными клетками органа Корти, обусловливающих генерирование ПД в слуховых нервах, являются внутренние волосковые клетки. Внешние волосковые клетки іннервовані холинергическим еферентними нервными волокнами. Эти клетки становятся более низкими в случае деполяризации и удлиняются в случае гіперполяризації. Они гіперполяризують под действием ацетилхолина, что выделяют эфферентные нервные волокна. Функция этих клеток заключается в увеличении амплитуды и обострении пиков вибрации базилярной мембраны.

Даже в тишине волокна слухового нерва проводят до 100 имп.1с (фоновая импульсация). Деформация волосков приводит к повышению проницаемости клеток к №+, вследствие чего в нервных волокнах, отходящих от этих рецепторов, частота импульсации возрастает.

Различение высоты тона

Основные характеристики звуковой волны - частота и амплитуда колебаний, а также время воздействия.

Ухо человека способно воспринимать звук в случае колебания воздуха в диапазоне от 16 до 20 000 Гц. Однако наибольшая чувствительность находится в пределах от 1000 до 4000 Гц, а это диапазон человеческого голоса. Именно здесь чувствительность слуха подобная к уровню броуновского шума - 2 * 10"5. В пределах участка слухового восприятия человек может испытывать около 300 000 различных по силе и высоте звуков.

Предполагают наличие двух механизмов различения высоты тонов. Звуковая волна представляет собой колебания молекул воздуха, распространяется в виде продольной волны давления. Передаваясь на перийендолімфу, эта волна, что бежит, между местом возникновения и затухания имеет участок, где колебания характеризуются максимальной амплитудой (рис. 162).

Месторасположение этого амплитудного максимума зависит от частоты колебания: в случае высоких частот он ближе к овальной мембране, а низших - к гелікотреми (проема перепонки). Как следствие амплитудный максимум для каждой слышимой частоты размещается в специфической точке эндолимфатического канала. Так, амплитудный максимум для частоты колебаний 4000 за 1 с находится на расстоянии 10 мм от овального отверстия, а 1000 за 1 с-23 мм. На верхушке (в гелікотреми) содержится амплитудный максимум для частоты 200 за 1 сек.

На указанных явлениях основывается так называемая пространственная (принцип места) теория кодирования высоты сприймального тона в самом рецеп

Рис. 162. а - распространение звуковой волны завиткою; б частотный максимум в зависимости от длины волны: И - 700 гЦ; 2 - 3 000 гЦ

тори. Амплитудный максимум начинает проявляться при частотах свыше 200 за 1 сек. Наивысшая чувствительность уха человека в диапазоне человеческого голоса (от 1000 до 4000 Гц) отображается и морфологическими особенностями соответствующего отдела завитки: в базальных и средних спиралях наблюдают наибольшую плотность афферентных нервных окончаний.

На уровне рецепторов только начинается различение звуковой информации, окончательное ее обработка происходит в нервных центрах. К тому же в диапазоне частот человеческого голоса на уровне нервных центров может оказаться суммация возбуждения нескольких нейронов, поскольку каждый из них в отдельности не способен надежно играть своими разрядами звуковые частоты свыше нескольких сотен герц.

Различение силы звука

более Интенсивные звуки ухо человека воспринимает как громче. Этот процесс начинается уже в самом рецепторе, что структурно составляет целостный орган. Основными клетками, где зарождается РП завитки, считают внутренние волосковые клетки. Внешние клетки, вероятно, немного усиливают это возбуждение, передавая свой РП внутренним.

В пределах наивысшей чувствительности различения силы звука (1000-4000 Гц) человек слышит звук, имеет ничтожно малую энергию (до 1 -12 ерг1с * см). В то же время чувствительность уха к звуковым колебаниям во втором диапазоне волн значительно ниже, и в пределах слышимости (ближе к 20 или 20 000 Гц) пороговая энергия звука должна быть не ниже чем 1 ерг1с - см2.

Слишком громкий звук может вызвать ощущение боли. Уровень громкости, когда человек начинает чувствовать боль, составляет 130-140 дБ над порогом слышимости. Если на ухо длительное время действует звук, особенно громкий, постепенно развивается явление адаптации. Снижение чувствительности достигается прежде всего благодаря сокращению мышцы-натяжителя и стремінцевого мышцы, которые изменяют интенсивность колебания косточек. Кроме того, до многих отделов обработки слуховой информации, в том числе и рецепторных клеток, подходят эфферентные нервы, которые могут изменять их чувствительность и тем самым участвовать в адаптации.

Центральные механизмы обработки звуковой информации

Волокна кохлеарного нерва (рис. 163) достигают кохлеарных ядер. После переключения на клетках кохлеарных ядер ПД поступают до следующего скопления ядер: оливарних комплексов, латеральной петли. Далее волокна направляются в нижних бугорков чотиригорбикового тела и медиальных коленчатых тел - главных релейных отделов слуховой системы таламуса. Потом заходят в таламус, и лишь післязвукові

Рис. 163. 1 - спиральный орган; 2 - переднее ядро завитки; 3 - заднее ядро завитки; 4 - олива; 5 - добавочное ядро; 6 - боковая петля; 7 - нижние бугорки чотиригорбикової пластинки; 8 - присереднє коленчатый тело; 9 - височная область коры

пути поступают к первичной звуковой коры полушарий большого мозга, расположенной в височной доле. Рядом с ней размещены нейроны, принадлежащие к вторичной слуховой зоны коры.

Информация, содержащаяся в звуковом стимуле, пройдя все указанные ядра переключения, многократно (по крайней мере не меньше чем 5 - б раз) "прописывается" в виде нейронного возбуждения. В таком случае на каждом этапе происходит ее соответствующий анализ, к тому же нередко с подключением сенсорных сигналов других, "неслухових", отделов ЦНС. В результате могут возникать рефлекторные ответы, характерные для соответствующего отдела ЦНС. Но распознавание звука, его осмысленное осознание происходят лишь в том случае, если импульсы достигают коры полушарий большого мозга.

Во время действия сложных звуков, что реально существующие в природе, в нервных центрах возникает своеобразная мозаика нейронов, которые возбуждаются одновременно, и происходит запоминание этой мозаичной карты, связанной с поступлением соответствующего звука.

Осознанное оценки различных свойств звука человеком возможно лишь в случае соответствующего предварительной тренировки. Наиболее полно и качественно эти процессы происходят только в корковых отделах. Корковые нейроны активируются не одинаково: одни - контр латеральным (противоположным) ухом, другие - іпсилатеральними стимулами, третьи - только при одновременной стимуляции обеих ушей. Возбуждаются они, как правило, целыми звуковыми группами. Повреждение этих отделов ЦНС затрудняет восприятие речи, пространственную локализацию источника звука.

Широкие связи слуховых участков ЦНС способствуют взаимодействия сенсорных систем и образованию различных рефлексов. Например, при возникновении резкого звука происходит бессознательный поворот головы и глаз в сторону его источника и перераспределение мышечного тонуса (стартовая позиция).

Слуховая ориентация в пространстве.

Довольно точная слуховая ориентация в пространстве возможна только в случае бінаурального слуха. В таком случае большое значение имеет то обстоятельство, что одно ухо находится дальше от источника звука. Учитывая то, что в воздушной среде звук распространяется со скоростью 330 м1с, 1 см он проходит за 30 мс, и малейшее отклонение источника звука от средней линии (даже меньше чем 3°) оба уха уже воспринимают с разницей во времени. То есть в этом случае имеет значение фактор разделения и по времени, и по интенсивности звука. Ушные раковины как рупоры способствуют концентруванню звуков, а также ограничивают поток звуковых сигналов с тыльной поверхности головы.

нельзя исключить участие формы ушной раковины в некоторой индивидуально обусловленной смене звуковых модуляций. Кроме того, ушная раковина и наружный слуховой ход, имея собственную резонансную частоту около 3 кГц, усиливают интенсивность звука для тонов, подобных к диапазону голоса человека.

Остроту слуха измеряют с помощью аудиометра, основывается на поступлении чистых тонов различной частоты через наушники и регистрации порога чувствительности. Снижение чувствительности (глухота) может быть связано с нарушением состояния передающих сред (начиная с наружного слухового хода и барабанной перепонки) или волосковых клеток и нейронных механизмов передачи и восприятия.

Тема. Физиология слуха

Вопровы:

    Функции слуховой сенсорной системы: звукопроведение и звуковосприятие.

    Звукопроведение через наружное ухо.

    Звукопроведение в среднем ухе. Понятие об акустическом импедансе.

    Звукопроведение во внутреннем ухе.

    Звуковосприятие. Теории слуха.

1. Функции слуховой сенсорной системы: звукопроведение и звуковосприятие

С точки зрения физиологии, слуховая сенсорная система делится на:

1. звукопроводящий отдел;

2. звуковоспринимающий отдел.

Функции звукопроводящего отдела: доставка звукового колебания к кортиевому органу. Состав: наружное ухо, барабанная перепонка, слуховые косточки, жидкости лабиринта, слуховые мышцы. Звукопроведение может осуществляться 2 путями:

Воздушный путь;

Костный путь.

В норме основной путь звукопроведения – воздушный. Звукопроведение через наружное ухо.

2. Звукопроведение через наружное ухо

Ушная раковина. В звукопроведении ушная раковина не играет важной роли, поэтому люди, рождённые без ушной раковины, слышат нормально. Функции ушной раковины:

Защитная;

Коллектор звуков (собирает звуки и направляет в наружный звуковой проход);

Служит для определения источника звука (анализатор).

Наружный слуховой проход, благодаря изогнутому строению и наличию 2 частей преломляет звуковые волны таким образом, что звуковое давление у барабанной перепонки становится в 3 раза выше, чем у наружного слухового прохода. Основная функция: проведение звуков к барабанной перепонке. Эта функция может нарушаться и влиять на остроту слуха только в случае двухсторонней закупорке.

Барабанная перепонка, благодаря своему анатомическому строению (наличие расслабленной и натянутой частей) обладает минимальной собственной амплитудой колебания. Поэтому все звуки с различной амплитудой она передаёт с одинаковой силой и без искажения. Такой резонанс барабанной перепонки называется универсальным. Барабанная перепонка через цепь слуховых косточек передаёт колебания на овальное окно, а оттуда на внутреннее ухо. Установлено, что барабанная перепонка трансформирует звуковые волны с большой амплитудой и малой силой в звуковые волны с малой амплитудой и большой силой. Такая функция позволяет защищать ухо от повреждения. Установлено, что благодаря системе барабанная перепонка плюс слуховые косточки звуковое давление у овального окна возрастает в 36 раз. Барабанная перепонка позволяет проводить звуки разные по высоте, этому способствуют слуховые мышцы. Большое значение для подвижности барабанной перепонки имеет равенство давления по обе её стороны. При нарушении проходимости евстахиевых труб, давление в барабанной перепонке понижается, что приводит к втягиванию барабанной перепонки в барабанную полость и ограничению её подвижности. Результатом этого является возникающая тугость.

3. Звукопроведение в среднем ухе. Понятие об акустическом импедансе

Мышцы среднего уха - это активные элементы звукопроводящей системы. Их функция:

Поддерживают оптимальный тонус элементов звукопроводящей системы круглосуточно;

По безусловно-рефлекторному механизму проведения чрезмерно сильных звуков;

Аккомодационная, т.е. благодаря мышцам возможно проведение звуков высоких и низких. Установлено, что мышца, натягивающая барабанную перепонку, при расслаблении способствует проведению низких звуков, а напряжение - высоких звуков.

Звукопроведение через систему барабанная перепонка плюс слуховые косточки зависят от ряда факторов - акустический импеданс (их 3).

1-й фактор - масса элементов звукопроводящей системы;

2-й фактор - сила трения между элементами;

3-й фактор - подвижность этих образований.

При увеличении массы элементов проводящей системы нарушается проведение высоких звуков. Это возможно при воспалительных процессах в барабанной полости, при инородных телах, жидкости в среднем ухе.

При уменьшении подвижности элементов проводящей системы нарушается проведение низких звуков. Это бывает при спайках в барабанной полости, при блокаде овального и круглого окна и др.

При увеличении трения страдают проведения как высоких, так и низких звуков.

Т.о. при воспалительных процессах в наружном и среднем ухе происходит увеличение акустического импеданса, которое приводит к развитию «проводниковой тугоухости».

4. Звукопроведение во внутреннем ухе.

Колебание стремечка в овальном окне приводит в колебательное состояние перилимфу. Колебание перилимфы приводит к колебанию основной мембраны, на которой лежит кортиков орган. Основное правило звукопроведения во внутреннем ухе – это синхронное движение стремечка и мембраны круглого окна. Установлено, что при вдавливании стремечка в овальное окно, мембрана круглого должна синхронно вытягиваться в барабанной полости.

Звуковосприятие. В звуковоспринимающий отдел входят:

Волосковые клетки кортикового органа;

Спиральный узел улитки;

Слуховой нерв;

Слуховые ядра продолговатого мозга;

Подкорковые центры слуха;

Внутримозговые, слуховые пути;

Височные доли коры.

5. Звуковосприятие. Теории слуха.

Звуковосприятие - сложный многоуровневый процесс, который начинаются с образованием нервного импульса во внутренних волосковых клетках, и заканчивается формированием слуховых ощущений в височной доли.

1. В улитке происходит первичный анализ звуков;

2. Каждый тон соответствует своему строго определённому участку основной мембраны;

3. На верхнем завитке улитки натянуты длинные струны, которые резонируют на низкие звуки. На нижнем завитке короткие, тугонатянутые струны. Они резонируют на высокие звуки

При звуковосприятии на основной мембране улитки происходят сложные гидродинамические процессы. Возникает так называемая «бегущая волна». Она представляет собой столбы жидкости, которые колеблются с различной амплитудой. Если столб жидкости колеблется с max амплитудой у верхнего завитка - то воспринимает низкие звуки, а у нижнего - высокие.

Улитка работает по принципу микрофона, т.е. энергию звуковых колебаний она превращает в электрические потенциалы. Установлено, что микрофонные токи возникают при смещении волосковых клеток относительно покровной мембраны.

Тема. Патология слухового анализатора

Вопросы:

    Причины стойких нарушений слуха.

    Пороки развития органа слуха.

    Заболевания периферического отдела органа слуха.

    Неврит слухового нерва. Центральное поражение слухового анализатора.

2. Пороки развития органа слуха.

Врождённые аномалии наружного уха. Очень часто сочетаются с врождёнными пороками развития. Встречаются 1:10000 детей. Виды:

а/ Анотия - врождённое отсутствие ушной раковины.

б/ Микротия – недоразвитие ушной раковины (например, нет только мочки)

в/ Деформация ушной раковины (например, обезьяньи уши – оттопырены)

Часто деформация встречается сочетается с врождённым заращением наружного слухового прохода – называется атрезия.

3. Заболевания периферического отдела органа слуха.

Воспалительное заболевание наружного уха:

а/ воспаление какого-либо отдела уха называется отит;

б/ воспаление наружного уха – наружный отит.

Причины: инфекция, грибки, аллергия. Выделяют 2 формы:

Ограниченная (локальная);

Распространённая (диффузная).

Ограниченная. Она протекает в виде ограниченного участка воспаления - фурункул в наружном слуховом проходе. Признаки: боль в ухе усиливается при надавливании на козелок и при жевании. У маленьких детей - повышение температуры. Возможны симптомы интоксикации (слабость, потеря аппетита, тошнота). Опасен осложнениями: переход инфекции на околоушную железу; переход инфекции в среднее ухо, т.е. в барабанную полость.

Распространённая форма. Болезненные ощущения бывают редко, основные жалобы – носильный зуд наружного слухового прохода. Из-за постоянного расчесывания образуются корочки, царапины. Особенно долгим течением отличается аллергический наружный отит – протекает годами (экзема наружного слухового прохода). Для него характерны чередующиеся периоды обострения и ремиссии.

Грибковое поражение наружного слухового прохода кожи называется отомикоз. Характеризуется: повышенной сухостью, шелушением в сочетании с поражением волос и ногтей.

Травмы наружного слухового прохода. Чаще всего наблюдаются при черепно-мозговой травме. Особенно опасны удары по нижней челюсти (подбородок). Они приводят к разрушению костной стенки наружного слухового прохода суставной головкой нижней челюсти. Основной признак – кровотечение из наружного слухового прохода. Кровотечение из ушей или микрокровотечения может говорить о тяжёлой черепно-мозговой травме – переломе основания черепа.

Инородные тела, нарушающие слуховой проход могут быть бобовые, мелкие предметы, насекомые. Признаки: шум в ухе, ощущения помехи. Удалять инородное тело должен медработник, чтобы не повредить барабанную перепонку. Если это насекомое, рекомендуется влить 2-3 капли подогретого масла, оттянуть ушную раковину назад и книзу и нагнуть голову, насекомое должно выйти с маслом. При попадании бобовых рекомендуется закапать в ухо 2-3 капли спирта (водки), предмет сморщивается и удаляется. Если при попадании инородного тела человек испытывает сильную боль - это свидетельствует о глубоком проникновении и задетой барабанной перепонке. Удаляет в этом случае только врач.

Патология барабанной перепонки

Надрывы или полные её разрывы могут возникать при черепно-мозговых травмах, баротравме (резкие колебания давления), при гнойных процессах в среднем ухе. Признаки: резкое снижение остроты слуха, крово- и гноетечение.

Литература

    Нейман Л.В., Богомильский М.Р. Анатомия, физиология и патология органов слуха и речи. М., 2003.

    Турик Г.Г. Анатомия и физиология слуховой сенсорной системы. Мн., 1989, 1990.

Функция органа слуха базируется на двух принципиально различающихся процессах — механоакустическом, определяемом как механизм звукопроведения , и нейрональном, определяемом как механизм звуковосприятия . Первый основан на ряде акустических закономерностей, второй — на процессах рецепции и трансформации механической энергии звуковых колебаний в биоэлектрические импульсы и их трансмиссии по нервным проводникам к слуховым центрам и корковым слуховым ядрам. Орган слуха получил название слухового, или звукового, анализатора, в основе функции которого лежат анализ и синтез невербальной и вербальной звуковой информации, содержащей природные и искусственные звуки в окружающей среде и речевые символы — слова, отражающие материальный мир и мыслительную деятельность человека. Слух как функция звукового анализатора — важнейший фактор в интеллектуальном и социальном развитии личности человека, ибо восприятие звука является основой его языкового развития и всей его сознательной деятельности.

Адекватный раздражитель звукового анализатора

Под адекватным раздражителем звукового анализатора понимают энергию слышимого диапазона звуковых частот (от 16 до 20 000 Гц), носителем которых являются звуковые волны. Скорость распространения звуковых волн в сухом воздухе составляет 330 м/с, в воде — 1430, в металлах — 4000-7000 м/с. Особенность звукового ощущения заключается в том, что оно экстраполируется во внешнюю среду в направлении источника звука, это определяет одно из основных свойств звукового анализатора — ототопику , т. е. способность пространственного различения локализации источника звука.

Основными характеристиками звуковых колебаний являются их спектральный состав и энергия . Спектр звука бывает сплошным , когда энергия звуковых колебаний равномерно распределена по составляющим его частотам, и линейчатым , когда звук состоит из совокупности дискретных (прерывистых) частотных составляющих. Субъективно звук со сплошным спектром воспринимается как шум без определенной тональной окраски, например как шелест листвы или «белый» шум аудиометра. Линейчатым спектром с кратными частотами обладают звуки, издаваемые музыкальными инструментами и человеческим голосом. В таких звуках доминирует основная частота , которая определяет высоту звука (тон), а набор гармонических составляющих (обертонов) определяет тембр звука .

Энергетической характеристикой звуковых колебаний является единица интенсивности звука, которая определяется как энергия, переносимая звуковой волной через единицу поверхности в единицу времени . Интенсивность звука зависит от амплитуды звукового давления , а также от свойств самой среды, в которой распространяется звук. Под звуковым давлением понимают давление, возникающее при прохождении звуковой волны в жидкой или газообразной среде. Распространяясь в среде, звуковая волна образует сгущения и разряжения частиц среды.

Единицей измерения звукового давления в системе СИ является ньютон на 1 м 2 . В некоторых случаях (например, в физиологической акустике и клинической аудиометрии) для характеристики звука применяют понятие уровень звукового давления , выражаемый в децибелах (дБ), как отношение величины данного звукового давления Р к сенсорному пороговому значению звукового давления Ро = 2,10 -5 Н/м 2 . При этом число децибел N = 20lg (Р/Ро ). В воздушной среде звуковое давление в пределах слышимого диапазона частот меняется в пределах от 10 -5 Н/м 2 вблизи порога слышимости до 10 3 Н/м 2 при самых громких звуках, например при шуме, производимом реактивным двигателем. С интенсивностью звука связана субъективная характеристика слуха — громкость звука и многие другие качественные характеристики слухового восприятия.

Носителем звуковой энергии является звуковая волна. Под звуковыми волнами понимают циклические изменения состояния среды или ее возмущения, обусловленные упругостью данной среды, распространяющиеся в этой среде и несущие с собой механическую энергию. Пространство, в котором распространяются звуковые волны, называется звуковым полем.

Основными характеристиками звуковых волн являются длина волны, ее период, амплитуда и скорость распространения. Со звуковыми волнами связаны понятия излучения звука и его распространения. Для излучения звуковых волн необходимо в среде, в которой они распространяются, произвести некоторое возмущение за счет внешнего источника энергии, т. е. источника звука. Распространение звуковой волны характеризуется в первую очередь скоростью звука, которая, в свою очередь, определяется упругостью среды, т. е. степенью ее сжимаемости, и плотностью.

Распространяющиеся в среде звуковые волны обладают свойством затухания , т. е. снижением амплитуды. Степень затухания звука зависит от его частоты и упругости среды, в которой он распространяется. Чем ниже частота, тем меньше степень затухания, тем дальше распространяется звук. Поглощение звука средой заметно возрастает с увеличением его частоты. Поэтому ультразвук, особенно высокочастотный, и гиперзвук распространяются на очень малые расстояния, ограниченные несколькими сантиметрами.

Законы распространения звуковой энергии присущи механизму звукопроведения в органе слуха. Однако, чтобы звук начал распространяться по цепи слуховых косточек, необходимо, чтобы барабанная перепонка пришла в колебательное движение. Колебания последней возникают в результате ее способности резонировать , т. е. поглощать энергию падающих на нее звуковых волн.

Резонанс — это акустическое явление, в результате которого падающие на какое-либо тело звуковые волны вызывают вынужденные колебания этого тела с частотой приходящих волн. Чем ближе собственная частота колебаний облучаемого объекта к частоте падающих волн, тем больше звуковой энергии этот объект поглощает, тем выше становится амплитуда его вынужденных колебаний, в результате чего этот объект сам начинает издавать собственный звук с частотой, равной частоте падающего звука. Барабанная перепонка благодаря своим акустическим свойствам обладает способностью резонировать на широкий спектр звуковых частот практически с одинаковой амплитудой. Такой тип резонирования называется тупым резонансом .

Физиология звукопроводящей системы

Анатомическими элементами звукопроводящей системы являются ушная раковина, наружный слуховой проход, барабанная перепонка, цепь слуховых косточек, мышцы барабанной полости, структуры преддверия и улитки (перилимфа, эндолимфа, рейснерова, покровная и базилярная мембраны, волоски чувствительных клеток, вторичная барабанная перепонка (мембрана окна улитки). На рис. 1 представлена общая схема системы звукопроведения.

Рис. 1. Общая схема системы звукопроведения. Стрелками показано направление звуковой волны: 1 — наружный слуховой проход; 2 — надбарабанное пространство; 3 — наковальня; 4 — стремя; 5 — головка молоточка; 6, 10 — лестница преддверия; 7, 9 — улитковый проток; 8 — улитковая часть преддверно-улиткового нерва; 11 — барабанная лестница; 12 — слуховая труба; 13 — окно улитки, прикрытое вторичной барабанной перепонкой; 14 — окно преддверия, с подножной пластинкой стремени

Каждому из этих элементов свойственны специфические функции, которые в совокупности обеспечивают процесс первичной обработки звукового сигнала — от его «поглощения» барабанной перепонкой до разложения на частоты структурами улитки и подготовки его к рецепции. Изъятие из процесса звукопроведения любого из этих элементов или повреждение какого-либо из них приводит к нарушению передачи звуковой энергии, проявляющемуся явлением кондуктивной тугоухости .

Ушная раковина человека сохранила в редуцированном виде некоторые полезные акустические функции. Так, интенсивность звука на уровне наружного отверстия слухового прохода на 3-5 дБ выше, чем в свободном звуковом поле. Определенную роль ушные раковины играют в реализации функции ототопики и бинаурального слуха. Ушные раковины играют также и защитную роль. Благодаря особой конфигурации и рельефу при обдувании их воздушным потоком образуются разбегающиеся вихревые потоки, препятствующие попаданию в слуховой проход воздуха и пылевых частиц.

Функциональное значение наружного слухового прохода следует рассматривать в двух аспектах — клинико-физиологическом и физиолого-акустическом. Первый определяется тем, что в коже перепончатой части наружного слухового прохода имеются волосяные луковицы, сальные и потовые железы, а также специальные железы, вырабатывающие ушную серу. Указанные образования играют трофическую и защитную роль, препятствуя проникновению в наружный слуховой проход инородных тел, насекомых, пылевых частиц. Ушная сера , как правило, выделяется в небольших количествах и является естественной смазкой для стенок наружного слухового прохода. Будучи в «свежем» состоянии липкой, она способствует прилипанию к стенкам перепончато-хрящевой части наружного слухового прохода пылевых частиц. Высыхая, она во время акта жевания фрагментируется под влиянием движений в височно-нижнечелюстном суставе и вместе со слущивающимися частицами рогового слоя кожного покрова и прилипшими к ней посторонними включениями выделяется наружу. Ушная сера обладает бактерицидным свойством, в результате чего на коже наружного слухового прохода и барабанной перепонке не обнаруживается микроорганизмов. Длина и изогнутость наружного слухового прохода способствуют защите барабанной перепонки от прямого повреждения инородным телом.

Функциональный (физиолого-акустический) аспект характеризуется ролью, которую играет наружный слуховой проход в проведении звука к барабанной перепонке. На этот процесс влияет не диаметр имеющегося или возникающего в результате патологического процесса сужения слухового прохода, а протяженность этого сужения. Так, при длинных узких рубцовых стриктурах потеря слуха на разных частотах может достигать 10-15 дБ.

Барабанная перепонка является приемником-резонатором звуковых колебаний, обладающим, как уже было отмечено выше, свойством резонировать в широком диапазоне частот без существенных энергетических потерь. Колебания барабанной перепонки передаются рукоятке молоточка, далее — наковальне и стремени. Колебания подножной пластинки стремени передаются перилимфе вестибулярной лестницы, что вызывает колебания основной и покровной мембран улитки. Их колебания передаются волосковому аппарату слуховых рецепторных клеток, в которых происходит трансформация механической энергии в нервные импульсы. Колебания перилимфы в вестибулярной лестнице передаются через вершину улитки к перилимфе барабанной лестницы и далее приводят в колебание вторичную барабанную перепонку окна улитки, подвижность которой обеспечивает протекание колебательного процесса в улитке и защищает рецепторные клетки от чрезмерного механического воздействия при громких звуках.

Слуховые косточки объединены в сложную рычажную систему, обеспечивающую повышение силы звуковых колебаний, необходимое для преодоления инерции покоя перилимфы и эндолимфы улитки и силы трения перилимфы в протоках улитки. Роль слуховых косточек заключается также и в том, что они путем непосредственной передачи жидким средам улитки энергии звука предотвращают отражение звуковой волны от перилимфы в области вестибулярного окна.

Подвижность слуховых косточек обеспечивается тремя суставами, два из которых (наковальне-молоточковый и наковальне-стременной ) устроены типичным образом. Третье сочленение (подножная пластинка стремени в окне преддверия) — это лишь сустав по функции, на самом деле это сложно устроенная «заслонка», выполняющая двоякую роль: а) обеспечение подвижности стремени, необходимой для передачи звуковой энергии структурам улитки; б) герметизация ушного лабиринта в области вестибулярного (овального) окна. Элементом, обеспечивающим эти функции, является кольцевая соединительнотканная связка.

Мышцы барабанной полости (мышца, натягивающая барабанную перепонку, и стременная мышца) выполняют двойную функцию — защитную в отношении сильных звуков и адаптационную при необходимости адаптации звукопроводящей системы к слабым звукам. Они иннервируются двигательными и симпатическими нервами, что при некоторых заболеваниях (миастения, рассеянный склероз, различного рода вегетативные нарушения) нередко отражается на состоянии этих мышц и может проявляться не всегда идентифицируемыми нарушениями слуха.

Известно, что мышцы барабанной полости рефлекторно сокращаются в ответ на звуковое раздражение. Этот рефлекс исходит из рецепторов улитки. Если воздействовать звуком на одно ухо, то в другом ухе возникает содружественное сокращение мышц барабанной полости. Эта реакция получила название акустического рефлекса и используется в некоторых методиках исследования слуха.

Различают три вида звукопроведения: воздушный, тканевый и тубарный (т. е. посредством слуховой трубы). Воздушный тип — это естественное звукопроведение, обусловленное поступлением звука к волосковым клеткам спирального органа из воздушной среды посредством ушной раковины, барабанной перепонки и всей остальной системы звукопроведения. Тканевое , или костное , звукопроведение реализуется в результате проникновения звуковой энергии к подвижным звукопроводящим элементам улитки через ткани головы. Примером реализации костного звукопроведения может служить методика камертонального исследования слуха, при которой рукоятка звучащего камертона прижимается к сосцевидному отростку, темени или другой части головы.

Различают компрессионный и инерционный механизм тканевого звукопроведения. При компрессионном типе возникает сжатие и разряжение жидких сред улитки, что вызывает раздражение волосковых клеток. При инерционном типе элементы звукопроводящей системы, благодаря силам инерции, развиваемым их массой, отстают в своих колебаниях от остальных тканей черепа, в результате чего возникают колебательные движения в жидких средах улитки.

К функциям внутриулиткового звукопроведения относится не только дальнейшая передача звуковой энергии к волосковым клеткам, но и первичный спектральный анализ звуковых частот, и распределение их по соответствующим сенсорным элементам , находящимся на базилярной мембране. При этом распределении соблюдается своеобразный акустико-топический принцип «кабельной» передачи нервного сигнала к высшим слуховым центрам, позволяющий осуществлять высший анализ и синтез информации, содержащейся в звуковых сообщениях.

Слуховая рецепция

Под слуховой рецепцией понимают трансформацию механической энергии звуковых колебаний в электрофизиологические нервные импульсы, являющиеся закодированным выражением адекватного раздражителя звукового анализатора. Рецепторы спирального органа и другие элементы улитки служат генератором биотоков, именуемых улитковыми потенциалами . Существует несколько типов этих потенциалов: токи покоя, токи действия, микрофонный потенциал, суммационный потенциал.

Токи покоя регистрируются в отсутствие звукового сигнала и делятся на внутриклеточный и эндолимфатический потенциалы. Внутриклеточный потенциал регистрируется в нервных волокнах, в волосковых и опорных клетках, в структурах базилярной и рейснеровой (ретикулярной) мембран. Эндолимфатический потенциал регистрируется в эндолимфе улиткового протока.

Токи действия — это интерферированные пики биоэлектрических импульсов, генерируемые только волокнами слухового нерва в ответ на звуковое воздействие. Информация, содержащаяся в токах действия, находится в прямой пространственной зависимости от места раздражаемых на основной мембране нейронов (теории слуха Гельмгольца, Бекеши, Дэвиса и др.). Волокна слухового нерва группируются по каналам, т. е. по признаку их частотной пропускной способности. Каждый канал способен передавать только сигнал определенной частоты; таким образом, если в данный момент на улитку действуют низкие звуки, то в процессе передачи информации участвуют только «низкочастотные» волокна, а высокочастотные в это время находятся в состоянии покоя, т. е. в них регистрируется только спонтанная активность. При раздражении улитки длительным однотонным звуком частота разрядов в отдельных волокнах уменьшается, что связано с феноменом адаптации или утомлением.

Микрофонный эффект улитки является результатом ответа на звуковое воздействие только наружных волосковых клеток. Действие ототоксических веществ и гипоксия приводят к угнетению или исчезновению микрофонного эффекта улитки. Однако в метаболизме этих клеток присутствует и анаэробный компонент, поскольку микрофонный эффект сохраняется на протяжении нескольких часов после смерти животного.

Суммационный потенциал обязан своим происхождением реакции на звук внутренних волосковых клеток. При нормальном гомеостатическом состоянии улитки суммационный потенциал, регистрируемый в улитковом протоке, сохраняет оптимальный отрицательный знак, однако незначительная гипоксия, действие хинина, стрептомицина и ряда других факторов, нарушающих гомеостаз внутренних сред улитки, нарушают соотношение величин и знаков улитковых потенциалов, при котором суммационный потенциал становится положительным.

К концу 50-х гг. XX в. было установлено, что в ответ на звуковое воздействие в различных структурах улитки возникают определенные биопотенциалы, которые дают начало сложному процессу восприятия звуков; при этом акционные потенциалы (токи действия) возникают в рецепторных клетках спирального органа. В клиническом отношении представляется весьма важным факт высокой чувствительности этих клеток к дефициту кислорода, изменению уровня углекислоты и сахара в жидких средах улитки, нарушению ионного равновесия. Указанные изменения могут приводить к парабиотическим обратимым или необратимым патоморфологическим изменениям рецепторного аппарата улитки и к соответствующим нарушениям слуховой функции.

Отоакустическая эмиссия . Рецепторные клетки спирального органа помимо своей основной функции обладают еще одним удивительным свойством. В покое или при действии звука они приходят в состояние высокочастотной вибрации, в результате чего образуется кинетическая энергия, распространяющаяся как волновой процесс через ткани внутреннего и среднего уха и поглощающаяся барабанной перепонкой. Последняя под влиянием этой энергии начинает излучать наподобие диффузора громкоговорителя очень слабый звук в полосе 500-4000 Гц. Отоакустическая эмиссия является не процессом синаптического (нервного) происхождения, а результатом механических колебаний волосковых клеток спирального органа.

Психофизиология слуха

Психофизиология слуха рассматривает две основные группы проблем: а) измерение порога ощущения , под которым понимают минимальный предел чувствительности сенсорной системы человека; б) построение психофизических шкал , отражающих математическую зависимость или отношение в системе «стимул/ реакция» при различных количественных значениях ее компонентов.

Существуют две формы порога ощущения — нижний абсолютный порог ощущения и верхний абсолютный порог ощущения . Под первым понимают минимальную величину стимула, вызывающего ответную реакцию, при которой впервые возникает осознанное ощущение данной модальности (качества) раздражителя (в нашем случае — звука). Под вторым подразумевают величину раздражителя, при которой ощущение данной модальности раздражителя исчезает или качественно изменяется . Например, мощный звук вызывает искаженное восприятие его тональности или даже экстраполируется в область болевого ощущения («порог боли»).

Величина порога ощущения зависит от того, при какой степени адаптации слуха он измерен. При адаптации к тишине порог понижается, при адаптации к определенному шуму — повышается.

Подпороговыми стимулами называются те, величина которых не вызывает адекватного ощущения и не формирует чувственного восприятия. Однако, по некоторым данным, подпороговые стимулы при достаточно длительном их действии (минуты и часы) могут вызывать «спонтанные реакции» типа беспричинных воспоминаний, импульсивных решений, внезапных озарений.

С порогом ощущения связаны так называемые пороги различения : дифференциальный порог интенсивности (силы) (ДПИ или ДПС) и дифференциальный порог качества или частоты (ДПЧ). Оба этих порога измеряются как при последовательном , так и при одновременном предъявлении стимулов. При последовательном предъявлении стимулов порог различения может быть установлен в том случае, если сравниваемые интенсивности и тональности звука различаются не менее чем на 10%. Пороги одновременного различения, как правило, устанавливаются при пороговом обнаружении полезного (тестирующего) звука на фоне помехи (шумовой, речевой, гетеромодальной). Метод определения порогов одновременного различения применяют для исследования помехоустойчивости звукового анализатора.

В психофизике слуха рассматриваются также пороги пространства , местоположения и времени . Взаимодействие ощущений пространства и времени дает интегральное чувство движения . Чувство движения основано на взаимодействии зрительного, вестибулярного и звукового анализаторов. Порог местоположения определяется пространственно-временной дискретностью возбуждаемых рецепторных элементов. Так, на базальной мембране звук в 1000 Гц отображается примерно в области ее средней части, а звук 1002 Гц сдвинут в сторону основного завитка настолько, что между участками этих частот находится одна невозбужденная клетка, для которой «не нашлось» соответствующей частоты. Следовательно, теоретически порог звукового местоположения идентичен порогу различения частоты и составляет 0,2% в частотном измерении. Этот механизм обеспечивает экстраполированный в пространство порог ототопики в горизонтальной плоскости в 2-3-5°, в вертикальной плоскости этот порог в несколько раз выше.

Психофизические законы восприятия звука формируют психофизиологические функции звукового анализатора. Под психофизиологическими функциями любого органа чувств понимают процесс возникновения ощущения, специфического для данной рецепторной системы при действии на нее адекватного раздражителя. В основе психофизиологических методов лежит регистрация субъективного ответа человека на тот или иной раздражитель.

Субъективные реакции органа слуха делятся на две большие группыспонтанные и вызванные . Первые по своему качеству приближаются к ощущениям, вызванным реальным звуком, хотя и возникают «внутри» системы, чаще всего при утомлении звукового анализатора, интоксикациях, различных местных и общих заболеваниях. Вызванные ощущения обусловлены в первую очередь действием адекватного раздражителя в заданных физиологических пределах. Однако они могут быть спровоцированы внешними патогенными факторами (акустическая или механическая травма уха или слуховых центров), тогда эти ощущения по своей сути приближаются к спонтанным.

Звуки делятся на информационные и индифферентные . Нередко вторые служат помехой для первых, поэтому в слуховой системе существует, с одной стороны, механизм селекции полезной информации, с другой — механизм подавления помех. Вместе они обеспечивают одну из важнейших физиологических функций звукового анализатора — помехоустойчивость .

В клинических исследованиях используется лишь небольшая часть психофизиологических методов исследования слуховой функции, в основе которых лежат лишь три: а) восприятие интенсивности (силы) звука, отражающееся в субъективном ощущении громкости и в дифференцировке звуков по силе; б) восприятие частоты звука, отражающееся в субъективном ощущении тона и тембра звука, а также и в дифференцировке звуков по тональности; в) восприятие пространственной локализации источника звука, отражающееся в функции пространственного слуха (ототопика). Все указанные функции в естественных условиях обитания человека (и животных) взаимодействуют, изменяя и оптимизируя процесс восприятия звуковой информации.

Психофизиологические показатели функции слуха, как и любого другого органа чувств, основываются на одной из важнейших функций сложных биологических системадаптации .

Адаптация — это биологический механизм, при помощи которого организм или отдельные его системы приспосабливаются к энергетическому уровню действующих на них внешних или внутренних раздражителей для адекватного функционирования в процессе своей жизнедеятельности . Процесс адаптации органа слуха может реализовываться в двух направлениях: повышение чувствительности при слабых звуках или их отсутствии и понижение чувствительности при чрезмерно сильных звуках . Повышение чувствительности органа слуха в тишине называют физиологической адаптацией. Восстановление чувствительности после ее снижения, возникающего под влиянием длительно действующего шума, называют обратной адаптацией. Время, в течение которого чувствительность органа слуха возвращается к исходному, более высокому уровню, называют временем обратной адаптации (BOA).

Глубина адаптация органа слуха к звуковому воздействию зависит от интенсивности, частоты и времени действия звука, а также от времени тестирования адаптации и соотношения частот воздействующего и тестирующего звуков. Степень слуховой адаптации оценивают по величине потери слуха над порогом и по BOA.

Маскировка — психофизиологический феномен, основанный на взаимодействии тестирующего и маскирующего звуков . Сущность маскировки заключается в том, что при одновременном восприятии двух звуков разной частоты более интенсивный (более громкий) звук будет маскировать более слабый. В объяснении этого феномена конкурируют две теории. Одна из них отдает предпочтение нейрональному механизму слуховых центров, находя подтверждение в том, что при воздействии шума на одно ухо наблюдается повышение порога чувствительности на другое ухо. Другая точка зрения основана на особенностях биомеханических процессов, происходящих на базилярной мембране, а именно при моноауральной маскировке, когда тестирующий и маскирующий звуки подаются в одно ухо, более низкие звуки маскируют более высокие звуки. Этот феномен объясняют тем, что «бегущая волна», распространяющаяся по базилярной мембране от низких звуков к вершине улитки, поглощает аналогичные волны, образующиеся от более высоких частот в нижних участках базилярной мембраны, и лишает таким образом способности последнюю резонировать на высокие частоты. Вероятно, оба указанных механизма имеют место. Рассмотренные физиологические функции органа слуха лежат в основе всех существующих методов его исследования.

Пространственное восприятие звука

Пространственное восприятие звука (ототопика по В. И. Воячеку) является одной из психофизиологических функций органа слуха, благодаря которой животные и человек обладают способностью определять направление и пространственное положение источника звука. Основу этой функции составляет двуушный (бинауральный) слух. Лица с выключенным одним ухом не способны по звуку ориентироваться в пространстве и определять направление источника звука. В клинике ототопика имеет значение при дифференциальной диагностике периферических и центральных поражений органа слуха. При поражении полушарий головного мозга возникают различные нарушения ототопики. В горизонтальной плоскости функция ототопики осуществляется с большей точностью, чем в вертикальной плоскости, что подтверждает теорию о ведущей роли в этой функции бинаурального слуха.

Теории слуха

Вышеперечисленные психофизиологические свойства звукового анализатора в той или иной степени объяснимы рядом теорий слуха, разработанных в конце XIX — начале XX в.

Резонансная теория Гельмгольца объясняет возникновение тонального слуха явлением резонирования так называемых струн основной перепонки на различные частоты: на высокие звуки резонируют короткие волокна основной мембраны, расположенные в нижнем завитке улитки, на средние частоты резонируют волокна, расположенные в среднем завитке улитки, и на низкие частоты — в верхнем завитке, где расположены наиболее длинные и расслабленные волокна.

Теория бегущей волны Бекеши основана на гидростатических процессах в улитке, обусловливающих при каждом колебании подножной пластинки стремени деформацию основной мембраны в виде волны, бегущей по направлению к вершине улитки. При низких частотах бегущая волна достигает участка основной мембраны, находящегося в верхушке улитки, где расположены длинные «струны», при высоких частотах волны вызывают изгиб основной мембраны в основном завитке, где расположены короткие «струны».

Теория П. П. Лазарева объясняет пространственное восприятие отдельных частот вдоль основной мембраны неодинаковой чувствительностью волосковых клеток спирального органа к разным частотам. Эта теория нашла свое подтверждение в трудах К. С. Равдоника и Д. И. Насонова, согласно которым живые клетки организма независимо от их принадлежности реагируют биохимическими изменениями на облучение звуком.

Теории о роли основной мембраны в пространственном различении звуковых частот нашли подтверждение в исследованиях с условными рефлексами в лаборатории И. П. Павлова. В этих исследованиях вырабатывался условный пищевой рефлекс на разные частоты, который исчезал после разрушения разных участков основной мембраны, ответственных за восприятие тех или иных звуков. В. Ф. Ундриц исследовал биотоки улитки, которые исчезали при разрушении различных участков основной мембраны.

Оториноларингология. В.И. Бабияк, М.И. Говорун, Я.А. Накатис, А.Н. Пащинин

Звуковая волна является двойным колебанием среды, в котором различают фазу повышения и фазу понижения давления. Звуковые колебания поступают в наружный слуховой проход, достигают барабанной перепонки и вызывают её колебания. В фазе повышения давления или сгущения барабанная перепонка вместе с рукояткой молоточка движется кнутри. При этом тело наковальни, соединенное с головкой молотка, благодаря подвешивающим связкам смещается кнаружи, а длинный росток наковальни - кнутри, смещая, таким образом, кнутри и стремя. Вдавливаясь в окно преддверия, стремя толчкообразно приводит к смещению перилимфы преддверия. Дальнейшее распространение волны по лестнице преддверия передают колебательные движения мембране Рейсснера, а та в свою очередь приводит в движение эндолимфу и через основную мембрану - перилимфу барабанной лестницы. В результате такого перемещения перилимфы возникают колебания основной и рейсснеровской мембран. При каждом движении стремени в сторону преддверия перилимфа в конечном итоге приводит к смещению в сторону барабанной полости мембраны окна преддверия. В фазе снижения давления происходит возврат передающей системы в исходное положение.

Воздушный путь доставки звуков во внутреннее ухо является основным. Другим путем проведения звуков к спиральному органу является костная (тканевая) проводимость. В этом случае вступает в действие механизм, при котором звуковые колебания воздуха попадают на кости черепа, распространяются в них и доходят до улитки. Однако механизм костно-тканевой передачи звука может иметь двоякий характер. В одном случае звуковая волна в виде двух фаз, распространяясь по кости до жидких сред внутреннего уха, в фазе давления будет выпячивать мембрану круглого окна и в меньшей степени основание стремени (учитывая практическую несжимаемость жидкости). Одновременно с таким компрессионным механизмом может наблюдаться другой - инерционный вариант. В этом случае при проведении звука через кость колебание звукопроводящей системы не будет совпадать с колебаниями костей черепа и, следовательно, основная и рейсснерова мембраны будут колебаться и возбуждать спиральный орган обычным путем. Колебание кос­тей черепа можно вызвать прикосновением к нему звучащего камертона или телефона. Таким образом, костный путь передачи при нарушении передачи звука через воздух приобретает большое значение.

Ушная раковина. Роль ушной раковины в физиологии слуха человека невелика. Некоторое значение она имеет в ототопике и как коллекторы звуковых волн.

Наружный слуховой проход. Представляет собой форму трубки, благодаря чему является хорошим проводником звуков в глубину. Ширина и форма слухового прохода не играет особой роли при звукопроведении. Вместе с тем механическая закупорка его препятствует распространению звуковых волн к барабанной перепонке и приводит к заметному ухудшению слуха. В слуховом проходе вблизи барабанной перепонки поддерживается постоянный уровень температуры и влажности независимо от колебаний температуры и влажности во внешней среде, что обеспечивает стабильность упругих сред барабанной полости. В силу особого строения наружного уха, давление звуковой волны в наружном слуховом проходе в два раза больше, чем в свобод­ном звуковом поле.

Барабанная перепонка и слуховые косточки. Основная роль барабанной перепонки и слуховых кос­точек заключается в трансформации звуковых колебаний большой ампли­туды и малой силы в колебания жидкостей внутреннего уха с малой амплитудой и большой силой (давлением). Колебания барабанной пере­понки приводят в соподчинение движение молоточек, наковальню и стремя. В свою очередь стремя передает колебания перилимфе, которое вызывает смещение мембран улиткового хода. Движение основной мемб­раны обусловливает раздражение чувствительных, волосковых клеток спирального органа, вследствие чего возникают нервные импульсы, следующие по слуховому пути в кору головного мозга.

Барабанная перепонка вибрирует в основном в своем нижнем квадранте с синхронным движением прикрепленного к ней молоточка. Ближе к периферии её колебания уменьшаются. При максимальной интенсивности звука колебания барабанной перепонки могут варьировать от 0,05 до 0,5 мм, причем на тоны низкой частоты размах колебаний больше, на тоны высокой частоты - меньше.

Трансформационный эффект достигается за счет разницы площади барабанной перепонки и площади основания стремени, соотношение которых составляет приблизительно 55:3 (соотношение площадей 18:1), а также благодаря рычажной системе слуховых косточек. При переводе в дБ рычажное действие системы слуховых косточек составляет 2 дБ, а повышение звукового давления вследствие разницы соотношения полезных площадей барабанной перепонки к основанию стремени обеспечивает усиление звука на 23 - 24 дБ.

По данным Бекеши /I960/, общий акустический выигрыш трансфор­матора звукового давления составляет 25 - 26 дБ. Это повышение давления компенсирует естественную потерю звуковой энергии, возникающую в результате отражения звуковой волны при переходе её из воз­душной среды в жидкую, особенно для низких и средних частот (Вульштеин JL, 1972).

Помимо трансформации звукового давления, барабанная перепонка; выполняет также функцию звукозащиты (экранирования) окна улитки. В норме звуковое давление, передаваемое через систему слуховых косточек к средам улитки, достигает окна преддверия несколько раньше, чем оно приходит к окну улитки через воздушную среду. Вследствие разницы давлений и сдвига фазы возникает движение перилимфы, вызывающее изгиб основной мембраны и раздражение рецепторного аппарата. При этом мембрана окна улитки колеблется синхронно с основанием стремени, но в противоположном направлении. При отсутствии барабанной перепонки этот механизм звукопередачи нарушается: следующая наружного слухового прохода звуковая волна одновременно в фазе достигает окна преддверия и улитки, в результате чего действие волны взаимно уничтожается. Теоретически при этом не должно быть сдвига перилимфы и раздражения чувствительных волосковых клеток. На caмом деле при полном дефекте барабанной перепонки, когда оба окна в равной степени доступны звуковым волнам, слух снижается до 45 - 50 Разрушение же цепи слуховых косточек сопровождается значительной потерей слуха (до 50-60 дБ).

Конструктивные особенности рычажной системы позволяют не только усиливать слабые звуки, но и выполнять в определённой мере защитную функцию - ослаблять передачу сильных звуков. При слабых звуках основание стремени колеблется главным образом вокруг вертикальной оси. При сильных звуках происходит скольжение в наковально-молоточковом суставе главным образом при низкочастотных тонах, в результате чего движение длинного отростка молоточка ограничивается. Наряду с этим основание стремени начинает колебаться преиму­щественно в горизонтальной плоскости, что также ослабляет переда звуковой энергии.

Помимо барабанной перепонки и слуховых косточек, защита внутреннего уха от избыточной звуковой энергии осуществляется в результате сокращения мышц барабанной полости. При сокращении мышцы стремени, когда акустический импеданс среднего уха резко возрастает, чувствительность внутреннего уха к звукам главным образом низкой частоты снижается до 45 дБ. Исходя из этого, существует мнение, стременная мышца предохраняет внутреннее ухо от избыточной энергии низкочастотных звуков (Ундриц В.Ф. и др., 1962; Мороз Б.С., 1978)

Функция мышцы, натягивающей барабанную перепонку, остается недостаточно изученной. Полагают, что она в большей степени связана с вентиляцией среднего уха и поддерживанием нормального давления в барабанной полости, чем с защитой внутреннего уха. Обе внутриушные мышцы сокращаются также при открытии рта, глотании. В этот момент чувствительность улитки к восприятию низких звуков снижается.

Звукопроводящая система среднего уха функционирует в оптималь­ном режиме, когда давление воздуха в барабанной полости и клетках сосцевидного отростка равно атмосферному давлению. В норме давление воздуха в системе среднего уха уравновешено с давлением внешней среды достигается это благодаря слуховой трубе, которая, открываясь в носоглотку, обеспечивает приток воздуха в барабанную полость. Одна­ко непрерывное поглощение воздуха слизистой оболочкой барабанной полости создает в ней слегка отрицательное давление, что требует постоянного выравнивания его с атмосферным давлением. В спокойном состоянии слуховая труба обычно закрыта. Она открывается при глота­нии или зевании в результате сокращения мышц мягкого неба (натяги­вающей и поднимающей мягкое нёбо). При закрытии слуховой трубы в ре­зультате патологического процесса, когда воздух не поступает в ба­рабанную полость, возникает резко отрицательное давление. Это при­водит к снижению слуховой чувствительности, а также к транссудации серозной жидкости из слизистой оболочки среднего уха. Потеря слуха при этом преимущественно на тоны низких и средних частот достигает 20 - 30 дБ. Нарушение вентиляционной функции слуховой трубы сказы­вается также на внутрилабиринтном давлении жидкостей внутреннего уха, что в свою очередь ухудшает проведение низкочастотных звуков.

Звуковые волны, вызывая перемещение лабиринтной жидкости, при­водят в колебание основную мембрану, на которой расположены чувст­вительные волосковые клетки спирального органа. Раздражение волосковых клеток сопровождается нервным импульсом, поступающим в спиральный ганглий, а затем по слуховому нерву к центральным отделам анализатора.



Рассказать друзьям