Өөр өөр суурьтай логарифмуудыг хэрхэн хуваах вэ. Логарифм: жишээ ба шийдэл

💖 Танд таалагдаж байна уу?Холбоосыг найзуудтайгаа хуваалцаарай

Тооны логарифм Н дээр суурилсан А экспонент гэж нэрлэдэг X , та үүнийг барих хэрэгтэй А дугаарыг авахын тулд Н

Тэгсэн бол
,
,

Логарифмын тодорхойлолтоос харахад ийм байна
, өөрөөр хэлбэл
- энэ тэгш байдал нь үндсэн логарифмын ижилсэл юм.

10 суурь хүртэлх логарифмыг аравтын логарифм гэнэ. Оронд нь
бичих
.

Суурь руу логарифмууд д байгалийн гэж нэрлэдэг ба томилогдсон байна
.

Логарифмын үндсэн шинж чанарууд.

    Нэгийн логарифм нь аль ч суурийн хувьд тэгтэй тэнцүү байна.

    Бүтээгдэхүүний логарифм нь хүчин зүйлийн логарифмын нийлбэртэй тэнцүү байна.

3) Хэсгийн логарифм нь логарифмын зөрүүтэй тэнцүү байна


Хүчин зүйл
логарифмаас суурь руу шилжих модуль гэж нэрлэдэг а суурь дээр логарифм руу б .

2-5-р шинж чанарыг ашиглан логарифм дээрх энгийн арифметик үйлдлийн үр дүнд нийлмэл илэрхийллийн логарифмыг багасгах боломжтой байдаг.

Жишээлбэл,

Логарифмын ийм хувиргалтыг логарифм гэж нэрлэдэг. Логарифмын урвуу хувиргалтыг потенциац гэж нэрлэдэг.

Бүлэг 2. Дээд математикийн элементүүд.

1. Хязгаарлалт

Функцийн хязгаар
нь хязгаарлагдмал тоо юм xx 0 урьдчилан тодорхойлсон тус бүрийн хувьд
, ийм тоо байна
тэр даруйдаа
, Тэр
.

Хязгаарлалттай функц нь үүнээс хязгааргүй бага хэмжээгээр ялгаатай:
, хаана- b.m.v., i.e.
.

Жишээ. Функцийг авч үзье
.

Хичээж байхдаа
, функц y тэг рүү чиглэдэг:

1.1. Хязгаарын тухай үндсэн теоремууд.

    Тогтмол утгын хязгаар нь энэ тогтмол утгатай тэнцүү байна

.

    Хязгаарлагдмал тооны функцын нийлбэрийн (ялгаа) хязгаар нь эдгээр функцүүдийн хязгаарын нийлбэр (ялгаа)-тай тэнцүү байна.

    Хязгаарлагдмал тооны функцын үржвэрийн хязгаар нь эдгээр функцүүдийн хязгаарын үржвэртэй тэнцүү байна.

    Хэрэв хуваагчийн хязгаар тэг биш бол хоёр функцийн хязгаарын хязгаар нь эдгээр функцүүдийн хязгаарын хуваарьтай тэнцүү байна.

Гайхамшигтай хязгаарууд

,
, Хаана

1.2. Хязгаарлалтын тооцооны жишээ

Гэсэн хэдий ч бүх хязгаарыг тийм ч хялбархан тооцдоггүй. Ихэнхдээ хязгаарыг тооцоолох нь тодорхойгүй байдлын төрлийг илрүүлэхэд хүргэдэг. эсвэл .

.

2. Функцийн дериватив

Бидэнд функцтэй байцгаая
, сегмент дээр тасралтгүй
.

Аргумент бага зэрэг нэмэгдлээ
. Дараа нь функц нь өсөлтийг хүлээн авах болно
.

Аргументын утга функцийн утгатай тохирч байна
.

Аргументын утга
функцийн утгатай тохирч байна.

Тиймээс, .

Энэ харьцааны хязгаарыг олъё
. Хэрэв энэ хязгаар байгаа бол өгөгдсөн функцийн дериватив гэж нэрлэдэг.

Тодорхойлолт 3 Өгөгдсөн функцийн дериватив
аргументаар аргументийн өсөлт нь дур зоргоороо тэг рүү чиглэх үед функцийн өсөлтийг аргументийн өсөлттэй харьцуулсан харьцааны хязгаар гэж нэрлэдэг.

Функцийн дериватив
дараах байдлаар тодорхойлж болно:

; ; ; .

Тодорхойлолт 4 Функцийн деривативыг олох үйлдлийг гэнэ ялгах.

2.1. Деривативын механик утга.

Зарим хатуу бие эсвэл материаллаг цэгийн шулуун хөдөлгөөнийг авч үзье.

Хэзээ нэгэн цагт зөвшөөр хөдлөх цэг
зайтай байсан эхлэх байрлалаас
.

Хэсэг хугацааны дараа
тэр хол нүүсэн
. Хандлага =- материаллаг цэгийн дундаж хурд
. Үүнийг харгалзан энэ харьцааны хязгаарыг олъё
.

Иймээс материаллаг цэгийн хөдөлгөөний агшин зуурын хурдыг тодорхойлох нь цаг хугацааны хувьд замын деривативыг олох хүртэл буурдаг.

2.2. Деривативын геометрийн утга

Графикаар тодорхойлогдсон функцтэй болцгооё
.

Цагаан будаа. 1. Деривативын геометрийн утга

Хэрэв
, дараа нь зааж өгнө үү
, цэг рүү ойртож, муруйн дагуу хөдөлнө
.

Тиймээс
, өөрөөр хэлбэл аргументийн өгөгдсөн утгын деривативын утга тэнхлэгийн эерэг чиглэлтэй өгөгдсөн цэг дээрх шүргэгчийн үүсгэсэн өнцгийн тангенстай тоон хувьд тэнцүү
.

2.3. Үндсэн ялгах томъёоны хүснэгт.

Эрчим хүчний функц

Экспоненциал функц

Логарифм функц

Тригонометрийн функц

Урвуу тригонометрийн функц

2.4. Ялгах дүрэм.

-ийн дериватив

Функцийн нийлбэрийн (ялгаа) дериватив


Хоёр функцийн үржвэрийн дериватив


Хоёр функцийн хуваалтын дериватив


2.5. Нарийн төвөгтэй функцийн дериватив.

Функцийг өгье
хэлбэрээр төлөөлөх боломжтой

Тэгээд
, хувьсагч хаана байна тэгвэл завсрын аргумент юм

Комплекс функцийн дериватив нь өгөгдсөн функцийн завсрын аргументийн деривативын үржвэртэй, x-тэй холбоотой завсрын аргументийн деривативтай тэнцүү байна.

Жишээ 1.

Жишээ 2.

3. Дифференциал функц.

Байг
, зарим интервалаар ялгах боломжтой
орхи цагт Энэ функц нь деривативтай

,

тэгвэл бид бичиж болно

(1),

Хаана - хязгааргүй бага хэмжигдэхүүн,

хэзээнээс

Бүх тэгш байдлын нөхцөлийг (1) үржүүлэв
бидэнд байгаа:

Хаана
- b.m.v. илүү өндөр дараалал.

Хэмжээ
функцийн дифференциал гэж нэрлэдэг
болон томилогдсон

.

3.1. Дифференциалын геометрийн утга.

Функцийг өгье
.

Зураг 2. Дифференциалын геометрийн утга.

.

Мэдээжийн хэрэг, функцийн дифференциал
өгөгдсөн цэг дэх шүргэгчийн ординатын өсөлттэй тэнцүү байна.

3.2. Төрөл бүрийн эрэмбийн дериватив ба дифференциал.

Хэрвээ тэнд
, Дараа нь
анхны дериватив гэж нэрлэдэг.

Эхний деривативын деривативыг хоёрдугаар эрэмбийн дериватив гэж нэрлээд бичнэ
.

Функцийн n-р эрэмбийн дериватив
(n-1)-р дарааллын дериватив гэж нэрлэгддэг ба дараах байдлаар бичнэ.

.

Функцийн дифференциалын дифференциалыг хоёр дахь дифференциал буюу хоёрдугаар эрэмбийн дифференциал гэнэ.

.

.

3.3 Биологийн асуудлыг ялгах аргыг ашиглан шийдвэрлэх.

Даалгавар 1. Судалгаанаас харахад бичил биетний колонийн өсөлт нь хуульд захирагддаг
, Хаана Н - бичил биетний тоо (мянганаар), т - цаг (өдөр).

б) Энэ хугацаанд колонийн хүн ам өсөх эсвэл буурах уу?

Хариулах. Колонийн хэмжээ нэмэгдэх болно.

Даалгавар 2. Нуурын усыг үе үе шинжилж, эмгэг төрүүлэгч бактерийн агууламжийг хянаж байдаг. дамжуулан т шинжилгээ хийснээс хойш хэд хоногийн дараа бактерийн концентрацийг харьцаагаар тодорхойлно

.

Нуурт хэзээ нянгийн хамгийн бага концентраци үүсч, усанд сэлэх боломжтой болох вэ?

Шийдэл: Функц нь дериватив нь тэг байхад max эсвэл min-д хүрнэ.

,

6 хоногийн дараа хамгийн их эсвэл мин болохыг тодорхойлъё. Үүнийг хийхийн тулд хоёр дахь деривативыг авч үзье.


Хариулт: 6 хоногийн дараа бактерийн хамгийн бага концентраци байх болно.

a (a>0, a нь 1-тэй тэнцүү биш) эерэг тооны b-ийн логарифм нь c тоо бөгөөд a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b) > 0)       

Эерэг бус тооны логарифм нь тодорхойгүй гэдгийг анхаарна уу. Үүнээс гадна логарифмын суурь нь 1-тэй тэнцүү биш эерэг тоо байх ёстой. Жишээлбэл, хэрэв бид -2-ийн квадрат бол бид 4-ийн тоог авна, гэхдээ энэ нь логарифм нь 4-ийн суурь -2 гэсэн үг биш юм. 2-той тэнцүү байна.

Үндсэн логарифмын таних тэмдэг

a log a b = b (a > 0, a ≠ 1) (2)

Энэ томъёоны баруун ба зүүн талыг тодорхойлох хүрээ өөр байх нь чухал юм. Зүүн тал нь зөвхөн b>0, a>0 ба a ≠ 1-д тодорхойлогддог. Баруун тал нь дурын b-д тодорхойлогддог бөгөөд a-аас огт хамаарахгүй. Тиймээс тэгшитгэл ба тэгш бус байдлыг шийдвэрлэхдээ үндсэн логарифмын "идентификатор" -ыг ашиглах нь OD-ийг өөрчлөхөд хүргэдэг.

Логарифмын тодорхойлолтын хоёр тодорхой үр дагавар

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Үнэн хэрэгтээ, а тоог эхний зэрэглэлд хүргэхэд бид ижил тоо, тэг рүү өсгөхөд нэг тоог авна.

Үржвэрийн логарифм ба хуваалтын логарифм

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Лог a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Сургуулийн сурагчдад логарифмын тэгшитгэл, тэгш бус байдлыг шийдвэрлэхдээ эдгээр томьёог бодлогогүй ашиглахаас сэрэмжлүүлмээр байна. Тэдгээрийг "зүүнээс баруун тийш" ашиглах үед ODZ нарийсч, логарифмын нийлбэр эсвэл зөрүүгээс бүтээгдэхүүн эсвэл хэсгийн логарифм руу шилжих үед ODZ өргөжиж байна.

Үнэн хэрэгтээ log a (f (x) g (x)) илэрхийлэл нь хоёр тохиолдолд тодорхойлогддог: функц нь хоёулаа эерэг байх эсвэл f(x) ба g(x) хоёулаа тэгээс бага байх үед.

Энэ илэрхийлэлийг log a f (x) + log a g (x) нийлбэр болгон хувиргаснаар бид зөвхөн f(x)>0 ба g(x)>0 тохиолдолд л хязгаарлагдахаас өөр аргагүй болно. Зөвшөөрөгдөх утгуудын хүрээ нарийсч байгаа бөгөөд энэ нь шийдлийг алдахад хүргэж болзошгүй тул үүнийг хүлээн зөвшөөрөх боломжгүй юм. Томъёо (6)-д ижил төстэй асуудал бий.

Зэрэгийг логарифмын тэмдгээс хасаж болно

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

Дахин хэлэхэд би үнэн зөв байхыг уриалмаар байна. Дараах жишээг авч үзье.

Лог a (f (x) 2 = 2 log a f (x)

Тэгээс бусад f(x)-ийн бүх утгуудын хувьд тэгш байдлын зүүн тал тодорхой тодорхойлогддог. Баруун тал нь зөвхөн f(x)>0! Логарифмаас градусыг авснаар бид ODZ-ийг дахин нарийсгана. Урвуу процедур нь хүлээн зөвшөөрөгдсөн утгын хүрээг өргөжүүлэхэд хүргэдэг. Эдгээр бүх тайлбарууд нь зөвхөн 2-р хүчинд төдийгүй аливаа тэгш эрх мэдэлд хамаарна.

Шинэ суурь руу шилжих томъёо

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Өөрчлөлтийн явцад ODZ өөрчлөгддөггүй ховор тохиолдол. Хэрэв та c суурийг ухаалгаар сонгосон бол (эерэг ба 1-тэй тэнцүү биш) шинэ суурь руу шилжих томъёо нь бүрэн аюулгүй юм.

Хэрэв бид b тоог c шинэ суурь болгон сонговол (8) томъёоны чухал онцгой тохиолдлыг олж авна.

Лог a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Логарифмын зарим энгийн жишээ

Жишээ 1. Тооцоол: log2 + log50.
Шийдэл. log2 + log50 = log100 = 2. Бид логарифмын нийлбэр томъёо (5) болон аравтын бутархай логарифмын тодорхойлолтыг ашигласан.


Жишээ 2. Тооцоол: lg125/lg5.
Шийдэл. log125/log5 = log 5 125 = 3. Бид шинэ суурь руу шилжих томъёог ашигласан (8).

Логарифмтай холбоотой томъёоны хүснэгт

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

ln x функцийн натурал логарифмын үндсэн шинж чанар, график, тодорхойлолтын хүрээ, утгын багц, үндсэн томъёо, дериватив, интеграл, зэрэглэлийн цуваа тэлэлт, ln x функцийг комплекс тоо ашиглан дүрслэх аргачлалуудыг өгөв.

Тодорхойлолт

Байгалийн логарифмнь y = функц юм ln x, экспоненциалын урвуу нь x = e y ба e тооны суурийн логарифм юм: ln x = log e x.

Байгалийн логарифм нь математикт өргөн хэрэглэгддэг, учир нь түүний дериватив нь хамгийн энгийн хэлбэртэй байдаг. (ln x)′ = 1/ x.

Үндэслэсэн тодорхойлолтууд, натурал логарифмын суурь нь тоо юм д:
e ≅ 2.718281828459045...;
.

y = функцийн график ln x.

Натурал логарифмын график (функц у = ln x) нь y = x шулуун шугамтай харьцуулахад толин тусгалаар экспоненциал графикаас гарна.

Натурал логарифм нь x хувьсагчийн эерэг утгуудын хувьд тодорхойлогддог. Энэ нь тодорхойлолтын хүрээнд монотоноор нэмэгддэг.

x → дээр 0 натурал логарифмын хязгаар нь хасах хязгааргүй (-∞) юм.

x → + ∞ тул натурал логарифмын хязгаар нь хязгааргүй (+ ∞) байна. Том х-ийн хувьд логарифм нэлээд удаан өсдөг. А эерэг үзүүлэлттэй аливаа х a чадлын функц логарифмаас хурдан өсдөг.

Натурал логарифмын шинж чанарууд

Тодорхойлолтын талбар, утгын багц, экстремум, өсөлт, бууралт

Натурал логарифм нь нэг хэвийн өсөлттэй функц тул экстремумгүй. Байгалийн логарифмын үндсэн шинж чанаруудыг хүснэгтэд үзүүлэв.

ln x утгууд

ln 1 = 0

Байгалийн логарифмын үндсэн томъёо

Урвуу функцийн тодорхойлолтоос үүссэн томъёонууд:

Логарифмын үндсэн шинж чанар ба түүний үр дагавар

Суурь солих томъёо

Аливаа логарифмыг үндсэн орлуулалтын томъёог ашиглан натурал логарифмын хэлбэрээр илэрхийлж болно.

Эдгээр томъёоны нотолгоог "Логарифм" хэсэгт үзүүлэв.

Урвуу функц

Натурал логарифмын урвуу нь экспонент юм.

Хэрэв бол

Хэрэв тийм бол.

Дериватив ln x

Натурал логарифмын дериватив:
.
X модулийн натурал логарифмын дериватив:
.
n-р эрэмбийн дериватив:
.
Томьёог гарган авах > > >

Интеграл

Интегралыг хэсгүүдээр интегралд тооцно.
.
Тэгэхээр,

Комплекс тоо ашигласан илэрхийлэл

z цогцолбор хувьсагчийн функцийг авч үзье.
.
Комплекс хувьсагчийг илэрхийлье zмодулиар дамжуулан rболон маргаан φ :
.
Логарифмын шинж чанарыг ашигласнаар бид дараахь зүйлийг олж авна.
.
Эсвэл
.
φ аргумент нь өвөрмөц байдлаар тодорхойлогдоогүй байна. Хэрэв та тавьсан бол
, энд n нь бүхэл тоо,
Энэ нь өөр n-ийн хувьд ижил тоо байх болно.

Тиймээс комплекс хувьсагчийн функц болох натурал логарифм нь нэг утгатай функц биш юм.

Эрчим хүчний цувралын өргөтгөл

Өргөтгөх үед:

Лавлагаа:
И.Н. Бронштейн, К.А. Семендяев, Инженер, коллежийн оюутнуудад зориулсан математикийн гарын авлага, "Лан", 2009 он.

  1. Логарифмын тэмдгийн дор сөрөг тоо эсвэл нэг тоо байгаа эсэхийг шалгана уу.Энэ аргыг маягтын илэрхийлэлд хэрэглэнэ log b ⁡ (x) log b ⁡ (a) (\displaystyle (\frac (\log _(b)(x))(\log _(b)(a)))). Гэсэн хэдий ч энэ нь зарим онцгой тохиолдлуудад тохиромжгүй:

    • Сөрөг тооны логарифм нь ямар ч сууринд тодорхойгүй байна (жишээлбэл, бүртгэл ⁡ (− 3) (\displaystyle \log(-3))эсвэл бүртгэл 4 ⁡ (− 5) (\displaystyle \log _(4)(-5))). Энэ тохиолдолд "шийдэл байхгүй" гэж бичнэ үү.
    • Аль ч суурийн тэгийн логарифм нь мөн тодорхойгүй байна. Хэрэв та баригдвал ln ⁡ (0) (\displaystyle \ln(0)), "шийдэл байхгүй" гэж бичнэ үү.
    • Нэгээс дурын суурийн логарифм ( бүртгэл ⁡ (1) (\displaystyle \лог(1))) нь үргэлж тэг байдаг, учир нь x 0 = 1 (\displaystyle x^(0)=1)бүх үнэт зүйлсийн хувьд x. Энэ логарифмын оронд 1 гэж бичээд доорх аргыг бүү ашигла.
    • Жишээлбэл, логарифмууд өөр өөр суурьтай бол l o g 3 (x) l o g 4 (a) (\displaystyle (\frac (лог_(3)(x))(лог_(4)(а)))), мөн бүхэл тоо болгон бууруулаагүй тохиолдолд илэрхийллийн утгыг гараар олох боломжгүй.
  2. Илэрхийллийг нэг логарифм болгон хувирга.Дээрх онцгой тохиолдлуудад илэрхийлэл хамаарахгүй бол үүнийг нэг логарифм хэлбэрээр илэрхийлж болно. Үүний тулд дараах томъёог ашиглана уу. log b ⁡ (x) log b ⁡ (a) = log a ⁡ (x) (\displaystyle (\frac (\log _(b)(x))(\log _(b)(a)))=\ log_(a)(x)).

    • Жишээ 1: Илэрхийлэлийг авч үзье бүртгэл ⁡ 16 бүртгэл ⁡ 2 (\displaystyle (\frac (\log (16))(\лог (2)))).
      Эхлээд дээрх томьёог ашиглан илэрхийллийг нэг логарифм хэлбэрээр илэрхийлье. бүртгэл ⁡ 16 бүртгэл ⁡ 2 = бүртгэл 2 ⁡ (16) (\ displaystyle (\ frac (\ log (16)) (\ log (2)))) = \ log _ (2) (16)).
    • Логарифмын “суурийг орлуулах” энэ томьёо нь логарифмын үндсэн шинж чанараас гаралтай.
  3. Боломжтой бол илэрхийллийн утгыг гараар үнэлнэ үү.Олох log a ⁡ (x) (\displaystyle \log _(a)(x)), илэрхийллийг төсөөлөөд үз дээ " а? = x (\displaystyle a^(?)=x)", өөрөөр хэлбэл, дараах асуултыг асуу: "Та ямар хүчийг нэмэгдүүлэх ёстой вэ а, олж авах x?. Энэ асуултад хариулахад тооны машин шаардлагатай байж болох ч хэрэв та азтай бол үүнийг гараар олох боломжтой.

    • Жишээ 1 (үргэлжлэл): Дахин бичнэ үү 2? = 16 (\displaystyle 2^(?)=16). Та "?" тэмдгийн оронд ямар тоо байх ёстойг олох хэрэгтэй. Үүнийг туршилт, алдаагаар хийж болно:
      2 2 = 2 ∗ 2 = 4 (\displaystyle 2^(2)=2*2=4)
      2 3 = 4 ∗ 2 = 8 (\displaystyle 2^(3)=4*2=8)
      2 4 = 8 ∗ 2 = 16 (\displaystyle 2^(4)=8*2=16)
      Тэгэхээр бидний хайж буй тоо 4 байна: бүртгэл 2 ⁡ (16) (\displaystyle \log _(2)(16)) = 4 .
  4. Хэрэв та хариултаа хялбарчилж чадахгүй бол логарифмын хэлбэрээр үлдээнэ үү.Олон логарифмыг гараар тооцоолоход маш хэцүү байдаг. Энэ тохиолдолд үнэн зөв хариулт авахын тулд танд тооцоолуур хэрэгтэй болно. Гэсэн хэдий ч, хэрэв та ангид асуудал шийдэж байгаа бол багш логарифмын хэлбэрээр хариулт өгөхөд сэтгэл хангалуун байх болно. Доор хэлэлцсэн аргыг илүү төвөгтэй жишээг шийдвэрлэхэд ашигладаг.

    • жишээ 2: юутай тэнцүү вэ log 3 ⁡ (58) log 3 ⁡ (7) (\displaystyle (\frac (\log _(3)(58))(\log _(3)(7))))?
    • Энэ илэрхийллийг нэг логарифм болгон хөрвүүлье: бүртгэл 3 ⁡ (58) бүртгэл 3 ⁡ (7) = бүртгэл 7 ⁡ (58) (\ displaystyle (\ frac (\ log _ (3) (58)) (\ log _ (3) (7))) =\ log_(7)(58)). Хоёр логарифмд нийтлэг 3 суурь алга болохыг анхаарна уу; Энэ нь ямар ч шалтгаанаар үнэн юм.
    • Маягт дахь илэрхийллийг дахин бичье 7? = 58 (\displaystyle 7^(?)=58)тэгээд утгыг нь олох гээд үзье?:
      7 2 = 7 ∗ 7 = 49 (\displaystyle 7^(2)=7*7=49)
      7 3 = 49 ∗ 7 = 343 (\displaystyle 7^(3)=49*7=343)
      Энэ хоёр тооны хооронд 58 байгаа тул бүхэл тоогоор илэрхийлэгдэхгүй.
    • Бид хариултыг логарифм хэлбэрээр үлдээдэг. бүртгэл 7 ⁡ (58) (\displaystyle \log _(7)(58)).

Зааварчилгаа

Өгөгдсөн логарифм илэрхийллийг бич. Хэрэв илэрхийлэл нь 10-ын логарифмыг ашигладаг бол түүний тэмдэглэгээг богиносгож, дараах байдлаар харагдана: lg b нь аравтын логарифм юм. Хэрэв логарифмын суурь нь e тоотой бол дараах илэрхийллийг бичнэ үү: ln b – натурал логарифм. Ямар ч үр дүн нь b тоог олж авахын тулд суурь тоог өсгөх ёстой хүчин чадал гэдгийг ойлгодог.

Хоёр функцийн нийлбэрийг олохдоо тэдгээрийг нэг нэгээр нь ялгаж, үр дүнг нэмэхэд хангалттай: (u+v)" = u"+v";

Хоёр функцийн үржвэрийн деривативыг олохдоо эхний функцийн деривативыг хоёр дахь функцээр үржүүлж, хоёрдугаар функцийн деривативыг эхний функцээр үржүүлсэнийг нэмэх шаардлагатай: (u*v)" = u"*v. +v"*u;

Хоёр функцийн үржвэрийн деривативыг олохын тулд ногдол ашгийн деривативын үржвэрийн үржвэрийн үржвэрийн үржвэрийг хуваагч функцээр үржүүлсэн үржвэрийг хасаж, хуваах шаардлагатай. энэ бүгдийг хуваагч функцээр квадрат. (u/v)" = (u"*v-v"*u)/v^2;

Хэрэв нарийн төвөгтэй функц өгөгдсөн бол дотоод функцийн дериватив ба гадаад функцийн деривативыг үржүүлэх шаардлагатай. y=u(v(x)), дараа нь y"(x)=y"(u)*v"(x) гэж үзье.

Дээрх үр дүнг ашиглан та бараг бүх функцийг ялгаж чадна. Тиймээс хэд хэдэн жишээг харцгаая:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2) *x));
Нэг цэгт деривативыг тооцоолоход бас асуудал гардаг. y=e^(x^2+6x+5) функцийг өгье, та x=1 цэг дээрх функцийн утгыг олох хэрэгтэй.
1) Функцийн деривативыг ол: y"=e^(x^2-6x+5)*(2*x +6).

2) Өгөгдсөн y"(1)=8*e^0=8 цэг дээрх функцийн утгыг тооцоол.

Сэдвийн талаархи видео

Хэрэгтэй зөвлөгөө

Анхан шатны деривативын хүснэгтийг сур. Энэ нь цагийг ихээхэн хэмнэх болно.

Эх сурвалжууд:

  • тогтмолын дериватив

Тэгэхээр, иррационал тэгшитгэл ба оновчтой тэгшитгэлийн хооронд ямар ялгаа байдаг вэ? Хэрэв үл мэдэгдэх хувьсагч квадрат язгуур тэмдгийн доор байвал тэгшитгэлийг иррациональ гэж үзнэ.

Зааварчилгаа

Ийм тэгшитгэлийг шийдвэрлэх гол арга бол хоёр талыг барих арга юм тэгшитгэлдөрвөлжин болгон. Гэсэн хэдий ч. Энэ бол байгалийн зүйл, таны хийх ёстой хамгийн эхний зүйл бол тэмдгийг арилгах явдал юм. Энэ арга нь техникийн хувьд хэцүү биш боловч заримдаа асуудалд хүргэж болзошгүй юм. Жишээлбэл, тэгшитгэл нь v(2x-5)=v(4x-7). Хоёр талыг квадрат болгосноор 2x-5=4x-7 болно. Ийм тэгшитгэлийг шийдэх нь хэцүү биш юм; x=1. Гэхдээ 1-ийн тоог өгөхгүй тэгшитгэл. Яагаад? Тэгшитгэлд x-ийн утгын оронд нэгийг оруулаад баруун, зүүн тал нь утгагүй илэрхийллүүдийг агуулна, өөрөөр хэлбэл. Энэ утга нь квадрат язгуурт тохирохгүй. Тиймээс 1 нь гадны язгуур тул энэ тэгшитгэл нь үндэсгүй болно.

Тиймээс иррационал тэгшитгэлийг хоёр талыг нь квадрат болгох аргыг ашиглан шийддэг. Тэгшитгэлийг шийдсэний дараа гаднах үндсийг таслах шаардлагатай. Үүнийг хийхийн тулд олсон үндсийг анхны тэгшитгэлд орлуулна.

Өөр нэгийг авч үзье.
2х+вх-3=0
Мэдээжийн хэрэг, энэ тэгшитгэлийг өмнөхтэй ижил тэгшитгэл ашиглан шийдэж болно. Нэгдлүүдийг зөөх тэгшитгэл, квадрат язгуургүй, баруун талд, дараа нь квадратын аргыг хэрэглэнэ. Үүссэн рационал тэгшитгэл ба язгуурыг шийд. Гэхдээ бас өөр, илүү гоёмсог. Шинэ хувьсагч оруулах; vх=y. Үүний дагуу та 2y2+y-3=0 хэлбэрийн тэгшитгэлийг хүлээн авна. Энэ нь энгийн квадрат тэгшитгэл юм. Түүний үндсийг олох; y1=1 ба y2=-3/2. Дараа нь хоёрыг шийд тэгшитгэл vх=1; vх=-3/2. Хоёр дахь тэгшитгэл нь үндэсгүй бөгөөд эхнийхээс бид x=1 болохыг олж мэднэ. Үндэсийг нь шалгахаа бүү мартаарай.

Тодорхойлолтыг шийдвэрлэх нь маш энгийн. Үүнийг хийхийн тулд тавьсан зорилгодоо хүрэх хүртэл ижил төстэй өөрчлөлтүүдийг хийх шаардлагатай. Тиймээс энгийн арифметик үйлдлүүдийн тусламжтайгаар тавьсан асуудлыг шийдэх болно.

Танд хэрэгтэй болно

  • - цаас;
  • - үзэг.

Зааварчилгаа

Ийм хувиргалтуудын хамгийн энгийн нь алгебрийн товчилсон үржүүлэх (нийлбэрийн квадрат (ялгаа), квадратуудын зөрүү, нийлбэр (ялгаа), нийлбэрийн шоо (ялгаа) гэх мэт) юм. Үүнээс гадна олон тооны тригонометрийн томъёо байдаг бөгөөд тэдгээр нь үндсэндээ ижил төстэй шинж чанартай байдаг.

Үнэн хэрэгтээ хоёр гишүүний нийлбэрийн квадрат нь эхнийхийн квадрат дээр нэмэх нь эхнийх нь хоёр дахь үржвэрийн хоёр дахин үржвэр, хоёр дахьын квадратыг нэмсэнтэй тэнцүү, өөрөөр хэлбэл (a+b)^2= (a+) b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Хоёуланг нь хялбарчил

Шийдлийн ерөнхий зарчим

Тодорхой интеграл гэж юу болохыг математик анализ эсвэл дээд математикийн сурах бичгээс давт. Мэдэгдэж байгаагаар тодорхой интегралын шийдэл нь дериватив нь интеграл өгөх функц юм. Энэ функцийг антидериватив гэж нэрлэдэг. Энэ зарчимд үндэслэн үндсэн интегралуудыг байгуулна.
Энэ тохиолдолд хүснэгтийн интегралуудын аль нь тохирохыг интегралын төрлөөр тодорхойлно. Үүнийг нэн даруй тодорхойлох нь үргэлж боломжгүй байдаг. Ихэнхдээ интегралыг хялбарчлахын тулд хэд хэдэн хувиргалт хийсний дараа хүснэгт хэлбэр нь мэдэгдэхүйц болдог.

Хувьсагчийг солих арга

Хэрэв интеграл нь аргумент нь олон гишүүнт тригонометрийн функц бол хувьсагчдыг өөрчлөх аргыг ашиглаж үзнэ үү. Үүнийг хийхийн тулд интегралын аргумент дахь олон гишүүнтийг шинэ хувьсагчаар солино. Шинэ болон хуучин хувьсагчдын хоорондын хамаарал дээр үндэслэн интеграцийн шинэ хязгаарыг тодорхойлно. Энэ илэрхийлэлийг ялгаснаар шинэ дифференциалыг . Тиймээс та өмнөх интегралын шинэ хэлбэрийг авах болно, ойрын эсвэл бүр хүснэгтэн хэлбэртэй харгалзах болно.

Хоёр дахь төрлийн интегралыг шийдвэрлэх

Хэрэв интеграл нь хоёр дахь төрлийн интеграл, интегралын вектор хэлбэр бол эдгээр интегралаас скаляр руу шилжих дүрмийг ашиглах шаардлагатай болно. Ийм дүрмийн нэг бол Остроградский-Гаусын харилцаа юм. Энэ хууль нь тодорхой векторын функцийн роторын урсгалаас өгөгдсөн векторын талбарын дивергенцийг давсан гурвалсан интеграл руу шилжих боломжийг бидэнд олгодог.

Интеграцийн хязгаарыг орлуулах

Эсрэг деривативыг олсны дараа интеграцийн хязгаарыг орлуулах шаардлагатай. Нэгдүгээрт, дээд хязгаарын утгыг эсрэг деривативын илэрхийлэлд орлуулна. Та хэд хэдэн дугаар авах болно. Дараа нь үүссэн тооноос доод хязгаараас олж авсан өөр тоог эсрэг дериватив болгон хасна. Хэрэв интеграцийн хязгаарын нэг нь хязгааргүй бол түүнийг эсрэг дериватив функцэд орлуулахдаа хязгаарт очиж, илэрхийлэл юунд чиглэж байгааг олох шаардлагатай.
Хэрэв интеграл нь хоёр хэмжээст эсвэл гурван хэмжээст бол интегралыг хэрхэн үнэлэхийг ойлгохын тулд та интегралын хязгаарыг геометрээр илэрхийлэх шаардлагатай болно. Үнэн хэрэгтээ, гурван хэмжээст интегралын хувьд интегралын хязгаар нь нэгтгэж буй эзлэхүүнийг хязгаарладаг бүхэл бүтэн хавтгай байж болно.
найзууддаа хэл